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Abstract. Let p be a polynomial in several non-commuting variables with coefficients in
a field K of arbitrary characteristic. It has been conjectured that for any n, for p multilinear,
the image of p evaluated on the set M, (K) of n by n matrices is either zero, or the set of
scalar matrices, or the set sl (K) of matrices of trace 0, or all of M,,(K). This expository
paper describes research on this problem and related areas. We discuss the solution of this
conjecture for n = 2 in Section 2, some decisive results for n = 3 in Section 3, and partial
information for n > 3 in Section 4, also for non-multilinear polynomials. In addition we
consider the case of K not algebraically closed, and polynomials evaluated on other finite
dimensional simple algebras (in particular the algebra of the quaternions). This review
recollects results and technical material of our previous papers, as well as new results of
other researches, and applies them in a new context. This article also explains the role of the
Deligne trick, which is related to some nonassociative cases in new situations, underlying our
earlier, more straightforward approach. We pose some problems for future generalizations
and point out possible generalizations in the present state of art, and in the other hand
providing counterexamples showing the boundaries of generalizations.
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1 Introduction

In this review, we present a systematized exposition including results obtained in previous
papers. In addition, we have systematized ideas and methods of proofs. Surprisingly, for quite
elementary looking results, we have used the Deligne trick, and a technique for working with
central simple algebras dating back to Amitsur. At the end of each section, we present open



Evaluations of Noncommutative Polynomials on Algebras 3

problems and our ideas, not all of which we were able to complete. We would be happy if other
scientists will succeed.

K(z1,...,zy) denotes the free K-algebra generated by noncommuting variables xy, ..., Zm;
we refer to the elements of K(x1,...,xy,) as polynomials. Consider any algebra R over a field K.
A polynomial p € K(xz1,...,zy) is called a polynomial identity (PI) of the algebra R if p(a1, ...,
ap) = 0 for all ay,...,a;, € R; p € K(x1,...,2) is a central polynomial of R, if for any
ai,...,am € R one has p(ai,...,am) € Cent(R) but p is not a PI of R.

For any polynomial p € K(x1,...,zy), the image of p (in R) is defined as

Imp:={r € R: there exist ay,...,a, € R such that p(ai,...,an) =r}.
Remark 1.1. Imp is invariant under conjugation, since

sp(xy, ..., xm)s L= p(sxls_l, swas~ L, ... ,sxms_l) € Imp,
for any invertible element s.

Images of polynomials evaluated on algebras play an important role in noncommutative
algebra. In particular, various challenging problems related to the theory of polynomial iden-
tities have been settled after the construction of central polynomials by Formanek [41] and
Razmyslov [89].

This survey consists of the main results by the authors describing the possible images of
polynomials, especially in connection with the partial solution of a conjecture attributed to
L’vov and Kaplansky concerning evaluations of polynomials on matrices that was formulated
in [29]:

Conjecture 1.2 (L'vov—Kaplansky). Let p be a multilinear polynomial. Then the set of values

of p on the matriz algebra M, (K) over an infinite field K is a vector space.

Remark 1.3. It is not difficult to ascertain the linear span of the values of any multilinear

polynomial. Indeed, the linear span of its values comprises a Lie ideal since, as is well known,
[a7p(a17 o 7an)] = p([a7a1]7 az. .., an) +p(a17 [a’vaﬂ ey an) + - +p(a17 ey [(I, an])7

and Herstein [52] characterized Lie ideals of a simple ring R as either being contained in the
center or containing the commutator Lie ideal [R, R]. Another proof is given in [18]; also see
[58, Lemma 4]. It is considerably more difficult to determine the actual image set Im p, rather
than its linear span.

Thus Conjecture 1.2 is equivalent to the following;:

Conjecture 1.4. If p is a multilinear polynomial evaluated on the matriz ring M, (K), then
Imp is either {0}, K, sl,(K), or M, (K). Here K indicates the set of scalar matrices and sly,(K)
is the set of matrices of trace zero.

Note that these options are mutually exclusive when char(K) does not divide n. While
lacking a verification of this conjecture, one is led to the following more general question:

Question 1.5. Given a polynomial p (not necessarily multilinear), what is its possible image
set? Which polynomial of minimal degree produces one of these image sets?

Recall the standard polynomial
Sg 1= Z SEN(T)Tr(1) "+ * Tre(h)-
TESk

A polynomial p is trace vanishing if each of its evaluations has trace 0. For example, it is
easy to see that sq is trace vanishing.
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Example 1.6. Imp can indeed equal {0}, K, sl,(K), or M,(K).

(i) Imp = {0} iff the polynomial p is a PI, and s, is an example of such a polynomial by
the Amitsur—Levitzki theorem [3]. To determine all such PI’s leads us to Specht’s finite
basis problem, which for multilinear polynomial identities is not yet settled in nonzero
characteristic. Also Kemer’s solution is non-computational, so we do not yet have explicit
generators of the T-ideal of PI's for n > 2.

(ii) If the polynomial p is central, then its image is K, and examples of such polynomials
can be found in [89] and in [41]. For n = 2 the central polynomial of smallest degree is
the multilinearization of [z, y]2. The central polynomial of smallest degrees are known for
n = 3,4 but not in general.

(iii) When p = 2122 — zaxy, Imp = sl,(K) by a theorem of Albert and Muckenhoupt [1].
Obviously p has the lowest possible degree.

In general, if Imp C sl,(K), then p is trace vanishing, which raises the issue, when does
this imply that Imp consists of all commutators? We shall investigate this issue, and
obtain counterexamples for non-multilinear polynomials.

(iv) Imp = M, (K) for p = z.

When K is a finite field, Chuang [23] proved that any subset S C M, (K) containing 0 is the
image of a polynomial with constant term zero, if and only if S is invariant under conjugation.
Later Chuang’s result was generalized by Kulyamin [68, 69] for graded algebras.

The research detailed in this paper focuses on associative algebras, mostly matrix alge-
bras M, (K) over an infinite field K, for n = 2,3. We also have density results for arbitrary n.
In [36] Dykema and Klep obtain an affirmative answer for the L’vov—Kaplansky conjecture, for
multilinear polynomials of degree 3 when n is either even, or odd and < 15.

In [85] Mesyan conjectured that if n > m — 1, then any multilinear polynomial of degree m
evaluated on M, (K) takes all values of trace zero, and proved it for m = 3. In [22] Buzinski
and Winstenley proved Mesyan’s conjecture for m = 4.

In [39] Fagundes denotes by U T for k > 0 the set of strictly upper triangular matrices
which, besides the main diagonal, also have k zero diagonals located above the main diagonal,
and proves that if p is a multilinear polynomial evaluated on UT, 7&0) of degree m then its image
is either {0} or UTém_l). In particular, Im p is a vector space.

In [40] Fagundes and de Mello describe the images of multilinear polynomials of degree < 4
on the upper triangular matrices.

Other works on upper triangular matrices include [96, 104, 105, 106].

Vitas [102] proved for any nonzero multilinear polynomial p, that if A is an algebra with
a surjective inner derivation, such as the Weyl algebra, then Imp = A.

A Lie polynomial is an element of the free Lie algebra in the alphabet {z;: i € I}, cf. [91,
p. 8]. In other words, a Lie polynomial is a sum of Lie monomials «;h;, where h; is a Lie word,
built inductively: each letter z; is a Lie word of degree 1, and if h;, hy, are distinct Lie words of
degree d; and dy, then [hj, hi] is a Lie word of degree dj +di. A Lie polynomial p is multilinear
if each letter appearing in p appears exactly once in each of its Lie monomials.

In [103] Spenko proved the L’vov-Kaplansky conjecture for Lie polynomials p of degree < 4
evaluated on matrix algebra M,,.

In [4] Anzis, Emrich and Valiveti proved the L’vov—Kaplansky conjecture for multilinear Lie
polynomials of degree 3 and 4 evaluated on the Lie algebras su(n) of traceless skew-Hermitian
matrices and so(n) of skew-symmetric matrices.

In [78] Ma and Oliva proved that the image of any multilinear Jordan polynomial of degree 3
evaluated on the Jordan algebras of real and complex symmetric matrices forms a vector space.
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In [76] Li and Tsui proved that if R is a central simple algebra of degree n over its center F
and char(F') = 0, with A € F'\ {0, —1}, then there exist a,c € R such that for any element r € R
of reduced trace 0 there is an element b € R such that r = [a, [c, b]] + A[c, [a, b]].

In [17] Bresar proved that for any unital algebra A over a field F' of characteristic 0, if
1 € [A, A] then [A, A] C span f(A) for every nonconstant polynomial f. Also he investigated the
set f(A) — f(A) of differences of evaluations and proved that for any algebraically closed field F'
of characteristic 0 and any noncommutative polynomial f, the set f(A) — f(A) on A = M, (F)
with n > 2 contains all square-zero matrices.

Papers on polynomial maps evaluated on matrix algebras include [49, 107], who investigated
maps that preserve zeros of multilinear polynomials.

Research into polynomial image sets has strong connections with the PI-theory. In particular,
a polynomial identity is a polynomial whose image set is {0}, and a central polynomial is a
polynomial whose images are central elements (in matrix algebras, central elements are scalar
matrices). The methods of working with PI are set out in [19, 26, 31, 32, 34, 42, 43, 48, 50, 54,
63, 64, 75, 87, 88, 95], for more detailed exposition of PI theory and related references see [56].
For combinatorial questions see [12].

In the study of evaluations of polynomials on algebras, the approach associated with the
investigation of normal bases of algebras seems significant. In this context, the research into
Grobner—Shirshov bases by the Bokut school (see [13, 14, 15]) is of interest, as is the study of
evaluations of polynomials on vertex algebras.

1.1 Evaluations of words

The parallel topic in group theory (the images of words in groups) also has been studied ex-
tensively, particularly in recent years. Investigation of the image sets of words in pro-p-groups
is related to the investigation of Lie polynomials and helped Zelmanov [108] to prove that the
free pro-p-group cannot be embedded in the algebra of n x n matrices when p > n. (For p > 2,
the impossibility of embedding the free pro-p-group into the algebra of 2 x 2 matrices had been
proved by Zubkov [110].) The general problem of nonlinearity of the free pro-p-group is related
on the one hand with images of Lie polynomials and words in groups, and on the other hand
with problems of Specht type, which is of significant current interest.

Let w = w(x1,...,xy) be an element of the free group F,,,(X), where X = {x1,x2,..., 2y}
Given a group G, we consider the corresponding evaluation map f,, ¢: G™ — G corresponding
to the word w. This map is called a word map, which for convenience we also notate as w instead
of fu,c. Note that the identity matrix I belongs to the image of any word map.

The major question under consideration is the size of the image w(G) C G. Surjectivity
of the map w means that w(G) = G, i.e., the equations w(z1,...,2,) = g can be solved for
eachg € G. This is, of course, a rare phenomenon even for “good” classes of groups. So usually
one has to vary the word w and group G to obtain a reasonable estimate of w(G). The typical
classes of groups which provide such estimates are simple algebraic groups, simple and perfect
finite groups, and some others.

The theorem of Borel [16] (also cf. [70]) states that for any simple (semisimple) algebraic
group G and any word w of the free group on m variables, the word map w: G"™ — G is dominant.
If the ground field K is algebraically closed this implies immediately that w(G(K))? = G, that
is, every element g € G is a product of two elements from w(G).

For an arbitrary infinite field K and arbitrary word w, Hui-Larsen—Shalev [53] proved that
w(G(K))* = G, that is, every element g € G is a product of four elements from w(G). This
estimate was improved by Egorchenova-Gordeev in [37] to w(G(K))? = G.

The most challenging open problem for word maps on semisimple algebraic groups is the
following, see [65]:
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Conjecture 1.7. Let G = PSLy(C), and let w = w(z,y) be an arbitrary non-identity word
in F(x,y). Then the word map w: PSLy(C) x PSLy(C) — PSLo(C) is surjective. In other
words, the equation

w(z1,z2) = a
has a solution for every a € PSLa(C).

This conjecture is still widely open, there being only several partial results, see [6, 10, 45, 46,
47, 65]. It is a special case of the conjecture in [57, Question 2].

Problem 1.8. Let G be the class of simple groups G of the form G = G(K) where K = K s
an algebraically closed field and G is a semisimple adjoint linear algebraic group. Is it true that
word maps evaluated on groups from G are surjective for all nontrivial non-power words?

The latter problem for groups of type A, can be reformulated as follows:

Problem 1.9. Is the word map w: PSL,(C) x PSL,(C) — PSL,(C) surjective for any non-
trivial w(z,y) € Fa(x,y)?

Now we turn from simple algebraic groups to finite simple groups. Ongoing interest to this
area was initially stimulated by the positive solution of Ore’s problem: Every element of a finite
simple group is a single commutator (see [38] and the final solution in Liebeck—O’Brien—Shalev—
Tiep [77]; a survey is given in [84]).

Formidable progress in the description of images of word maps on finite simple groups was
obtained by M. Larsen and A. Shalev, who stimulated the development of this area of research
under the name “Waring type problems”. The latest result of Larsen—Shalev—Tiep [72] (see also
[71, 73, 74]), is as follows:

Theorem 1.10 ([72]). Let w be an arbitrary non-trivial word of F(z1,...,x,). There ezists
a constant N = N(w) such that for all finite non-abelian simple groups of order greater than N
one has

w(G)? = G.

Different aspects of word maps are considered in a vast and extended literature; we refer to
the papers [7, 8, 9, 20, 21, 45, 46, 47, 57, 72, 97, 98, 99, 101] for details, surveys and further
explanations. Waring type questions for rings were considered by Matei Bresar [17].

In [55] Kanel-Belov, Grigoriev, Elishev and Yu prove the possibility of lifting a symplec-
tomorphism to an automorphism of the power series completion of the Weyl algebra of the
corresponding rank. They study the problem of lifting polynomial symplectomorphisms in char-
acteristic zero to automorphisms of the Weyl algebra, by means of approximation by tame
automorphisms.

1.2 Non-multilinear polynomials

As noted above, the analog to the L’vov—Kaplansky conjecture formulated for any polynomial
fails when K is a finite field, so we may assume that K is infinite. The situation is considerably
subtler for images of non-multilinear polynomials.

Definition 1.11. A polynomial p (written as a sum of monomials) is called semi-homogeneous
of weighted degree d with (integer) weights (w1, ..., wy,) if for each monomial A of p, taking d;
to be the degree of z; in h, we have

diwi + -+ + dpywy, = d.

A semi-homogeneous polynomial with weights (1,1,...,1) is called homogeneous of degree d.
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A polynomial p is completely homogeneous of multidegree (dy,...,d,,) if each variable z;
appears the same number of times d; in all monomials. A polynomial p € K(x1,...,xy,) is
multilinear iff it is homogeneous of multidegree (1,1,...,1). Thus, a polynomial is multilinear
if it is a polynomial of the form

p(T1,. . Tm) = Z Colo(1) " To(m)s
O'ES'm

where S, is the symmetric group in m letters and the coefficients ¢, are constants in K.

1.3 The main theorems

Here is a general combinatorial result.

Theorem 1.12 ([60, Theorem 1]). Let p(z1,...,%m) be any multilinear polynomial evaluated on

n xXn matrices over an infinite field. Assume that p is neither scalar nor PI. Then Imp contains
n—1

a matriz of the form cpen1 + > cieiiv1 where ci,...,¢n # 0. When char(K) is 0 or prime
i=1

ton, Imp contains a matrix with eigenvalues {c, CE,y. .. ,ca"‘l} for some 0 # ¢ € K, where ¢ is

a primitive n root of 1.

1.3.1 The main theorems for n = 2

Our most decisive results are for n = 2, given in [58], for which we settle Conjecture 1.4, proving
the following results (see [58, Section 2] for terminology). We call a field K quadratically closed
(with respect to the polynomial p) if every nonconstant polynomial in K[z] in one variable, of
degree < 2degp, has a root in K.

Theorem 1.13 ([58, Theorem 1)). Let p(z1,...,Zm) be a semi-homogeneous polynomial eval-
uated on the algebra My(K) of 2 X 2 matrices over a quadratically closed field. Then Imp is
either {0}, K, the set of all non-nilpotent matrices having trace zero, sla(K), or a dense subset
of My(K) (with respect to Zariski topology).

(We also give examples to show how p can have these images.)

Theorem 1.14 ([58, Theorem 2|). If p is a multilinear polynomial evaluated on the matrix
ring Mao(K) (where K is a quadratically closed field), then Imp is either {0}, K, sla, or Ms(K).

The L’vov—Kaplansky conjecture is proved in [81] for Ma(R), together with a partial solution
settling the major part of L’vov—Kaplansky’s conjecture in this case, proving the following result:

Theorem 1.15 ([81, Theorem 1]). If p is a multilinear polynomial evaluated on the matrix
ring Ma(K) (where K is an arbitrary field), then Imp is either {0}, or K (the set of scalar
matrices), or sl C Imp. If K =R then Imp is either {0}, or K, orsly or M.

Remark 1.16. Assume that p is a multilinear polynomial evaluated on 2x2 matrices. According
to Theorem 1.15, Im p is {0}, or K, or sla(K) or sla(K) & Imp. In the last case it is clear that
Im p must be Zariski dense in Ms(K), because otherwise dim(Imp) = 3 and Imp is reducible,
a contradiction.

The situation is considerably subtler for images of non-multilinear, completely homogeneous
polynomials than for multilinear polynomials, but nevertheless a classification of the possible
images of homogeneous polynomials evaluated on 2 x 2 matrices is provided:

Theorem 1.17 ([81, Theorem 2|). Let p(x1,...,zy) be a semi-homogeneous polynomial eva-
luated on 2 X 2 matrices with real entries. Then Imp is either:
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{0},

o the set R>q, t.e., the matrices \I for A >0,

e the set R of scalar matrices,

o the set R<q, i.e., the matrices \I for A <0,

e the set sly >0(R) of trace zero matrices with non-negative discriminant,
o the set sly <o(R) of trace zero matrices with non-positive discriminant,
e the set sla(R),

e or is Zariski dense in Ms(R).

1.3.2 The main theorems for n = 3

We have not classified the possible images of all homogeneous or semi-homogeneous polyno-
mials, but for n = 3 we do describe all possible images of trace vanishing semi-homogeneous
polynomials:

Theorem 1.18 ([59, Theorem 3]). Let p(z1,...,%m) be a semi-homogeneous polynomial which
is trace vanishing on 3 X 3 matrices. Then Imp is one of the following:

e {0},

the set of scalar matrices (which can occur only if Char K = 3),

a dense subset of sl3(K), or

the set of 3-scalar matrices, i.e., the set of matrices having eigenvalues {7, YE, 752}, where €
is a primitive cube root of 1.

All of the cases in Theorem 1.18 occur, and we give an example of a completely homogeneous
3-scalar polynomial. Unfortunately the question of whether there exists a 3-scalar multilinear
polynomial remains open.

Although we do not settle the L’vov—Kaplansky conjecture completely, we describe the pos-
sible images of multilinear polynomials.

Theorem 1.19 ([59, Theorem 4]). Let p be a multilinear polynomial which is trace vanishing
on 3 x 3 matrices over a field K of arbitrary characteristic. Then Imp is one of the following:

* {0},

the set of scalar matrices,

the set of 3-scalar matrices, or

for each triple A1 + Ao + A3 = 0 there exist a matriz M € Imp with eigenvalues Ay, Ao
and A3.

Theorem 1.20 ([59, Theorem 2|). If p is a multilinear polynomial evaluated on 3 x 3 matrices
over algebraically closed field K, then Imp is one of the following:

* {0},

the set of scalar matrices,

sls(K), (perhaps lacking the diagonalizable matrices of discriminant 0),
a dense subset of Ms3(K),

the set of 3-scalar matrices, or

the set of sums of scalar and 3-scalar matrices.
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1.3.3 Higher n

Let us improve the estimates of the dimension of Im p, first for n > 5 and then for n = 4.

Theorem 1.21 ([60, Theorem 4]). Assume that the characteristic of K does not divide n, and
K = F[e], where € is a primitive n-th root of 1. Let p be any multilinear polynomial evaluated on
n X n matrices which is not PI or central. If n > 5, then the image of p is at least (n2 —n-+ 3)—
dimensional.

Theorem 1.22 ([60, Theorem 5]). Let p be any multilinear polynomial evaluated on 4 x 4
matrices, which is neither PI nor central. Assume that Char K # 2. Then dimImp > 14,
equality holding only if the following conditions are satisfied:

e For any matrix units a;, if p(ay,...,an) is diagonal then it has eigenvalues (c,c, —c, —c)
for some c.

o Any value of p has eigenvalues (A1, A2, —A1, —A2).

In [61] we investigated possible images of homogeneous Lie polynomials evaluated on 2 x 2
matrices n = 2, and obtained the following result:

Theorem 1.23 ([61, Theorem 3)). For any algebraically closed field K of characteristic # 2,
the image of any Lie polynomial f (not necessarily homogeneous) evaluated on sla(K) is ei-
ther slo(K), or {0}, or the set of trace zero non-nilpotent matrices.

We also provide examples, showing the existence of completely homogeneous Lie polynomials
with exactly these image sets. In [61] adjoint maps are used to construct an important example
of the completely homogeneous Lie polynomial which image is the set of all trace vanishing
matrices except for the nilpotents.

1.3.4 Polynomials over quaternion algebras

One can generalize the L’vov—Kaplansky conjecture for an arbitrary finite dimensional simple
algebra.

Definition 1.24. By the quaternion algebra H we mean the four-dimensional algebra (1,1, j, k)r
such that

P2 =42 =k>=-1, ij = —ji=k, gk =—kj =1, ki = —ik = j.

In this algebra, R = R1 are called scalars, and V = Ri + Rj + Rk are called pure quaternions;
{1,i,7,k} are called basic quaternions. We also will use the standard quaternion functions: the
norm ||a + bi + cj + dk|| = Va? + b2 + ¢ + d2, the real part Re(a + bi + cj + dk) = a, and the
pure quaternion part Ve(a + bi + ¢j + dk) = bi + ¢j + dk.

Any quaternion can be uniquely written as a sum of a scalar and a pure quaternion, hence the
functions of real and pure quaternion parts are well defined. The norm function is multiplicative.

In [2] Almutairi proved that if p is a non-central multilinear polynomial then its image contains
all pure quaternions. In Section 2.1.5 we provide a complete classification of Im p, settling the
L’vov—Kaplansky conjecture for the quaternion algebra

Theorem 1.25 ([82, Theorem 1]). If p is a multilinear polynomial evaluated on the quaternion
algebra H(R), then Imp is either {0}, R (the space of scalar quaternions), or V (the space of
pure quaternions), or H(R).



10 A. Kanel-Belov, S. Malev, L. Rowen and R. Yavich

Also, the matrix representation of the quaternions ring is used in order to provide a classifica-
tion of possible images of semi-homogeneous polynomials evaluated on the quaternion algebra.

Theorem 1.26 ([82, Theorem 2]). If p is a semi-homogeneous polynomial evaluated on the
quaternion algebra H(R), then Imp is either {0}, or R, or R>q, or R<qg, or V', or some Zariski
dense subset of H.

1.4 Some basic tools

We recall the following elementary graph-theoretic lemma.

Lemma 1.27. Let p be a multilinear polynomial. If the a; are matriz units, then p(a,...,an)
is either 0, or c- e;; for some i # j, or a diagonal matriz.

The proof of this lemma is presented in Section 3.4.

Lemma 1.28. If Imp consists only of diagonal matrices, then Imp is either {0} or the set K
of scalar matrices.

Proof. Suppose that some nonscalar diagonal matrix A = Diag{\1,...,\,} is in the image.
Therefore \; # \; for some ¢ and j. The matrix A" = A + e;; (here e;; is the matrix unit) is
conjugate to A so by Remark 1.1 also belongs to Im p. However A’ is not diagonal, a contradic-
tion. |

The proofs of our theorems use some algebraic-geometric tools in conjunction with these
ideas from graph theory. The final part of the proofs of Theorems 1.14 and 1.20 uses the
First fundamental theorem of invariant theory (that in case Char K = 0, invariant functions
evaluated on matrices are polynomials involving traces), proved by Helling [51], Procesi [86], and
Razmyslov [90]. The formulation in positive characteristic, due to Donkin [30], is somewhat more
intricate. The group GL,(K) acts on m-tuples of n X n-matrices by simultaneous conjugation.

Theorem (Donkin [30]). For any m,n € N, the algebra of polynomial invariants
K[MH(K)m]GL"(K)

under GL,(K) is generated by the trace functions

J
EJ(CEl,l‘Q, - ,ﬂS‘m) = Trace <.CL‘Z'11’7;2 R /\ Kn>, (11)
where i = (i1,...,1), allip <m, r €N, j >0, and x;, x4, - - x5, acts as a linear transformation
on the exterior algebra N\ K™.

Remark 1.29. For n = 2, we have a polynomial function in expressions of the form

2
Trace <A, /\ K2>

and tr A where A is monomial. (tr A denotes the trace.) Note that

2
Trace <A, /\ K2> = det A.

We also need the first fundamental theorem of invariant theory (see [86, Theorem 1.3]).

Proposition 1.30. Any polynomial invariant of n X n matrices A1, ..., Ap is a polynomial in
the invariants tr(A;, Aq, - -+ A;, ), taken over all possible (noncommutative) products of the A;.

(The second fundamental theorem, dealing with relations between invariants, was proved
by Procesi [86] and Razmyslov [90] in the case Char K = 0 and by Zubkov [110] in the case
Char K > 0. We recommend reader to read the book [27].)
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1.4.1 Generic matrices

Another major tool is Amitsur’s theorem [92, Theorem 3.2.6, p. 176]. Generic matrices over K
are n X n matrices whose entries are commuting indeterminates over K. By Proposition 1.31)
the algebra of generic matrices is a domain UD, whose ring of fractions is a division algebra of
degree n,

UD C My (F(EM): 1<ij <n, k>1).

In fact, we need a slight modification of this theorem, which is well known. We can define the
reduced characteristic coefficients of elements of UD, which by [94, Remark 24.67] lie in F}.

Proposition 1.31. The algebra of generic matrices with traces is a domain which can be em-
bedded in the division algebra UD of central fractions of Amitsur’s algebra of generic matrices.
Likewise, all of the functions in Donkin’s theorem can be embedded in UD.

Proof. Any trace function can be expressed as the ratio of two central polynomials, in view
of [92, Theorem 1.4.12]; also see [62, Theorem J, p. 27] which says for any characteristic coeffi-
cient wy of the characteristic polynomial

t
A (=1D)Fwp A
k=1

that
t
wiflat, ... a1, Ty) = Z f(Tklal, o TRy, rm), (1.2)
k=1
summed over all vectors (ki,...,k:) where each k; € {0,1} and > k; = k, where f is any

t-alternating polynomial (and ¢ = n?). In particular, taking k = 1, so that wy = tr(T), we have

tr(T)f(at, ..y, 71, Tm) = Zf(al,...,aj,l,Taj,ajH,...,at,rl,...,rm),

=1
so the trace
t
flar, ... a1, Taj, a1, QT )
—
tr(T) = 2
flar,...;ap,r1, 0 Tm)

belongs to UD. In general, the function (1.1) of Donkin’s theorem is a matrix invariant and
thus can be written in terms of characteristic coefficients of matrices, so we can apply equa-
tion (1.2). [ |

Lemma 1.32. If Char K does not divide n, then any non-identity p(z1, ..., %m) of My(K) must
either be a central polynomial or take on a value which is a matriz whose eigenvalues are not
all the same.

Proof. Otherwise p(z1,...,Tm) — %tr(p(:rl, ...,Tp)) is a nilpotent element in the algebra of

generic matrices with traces, so by Proposition 1.31 is 0, implying p is central. |

For n > 2, we have an easy consequence of the theory of division algebras.
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Lemma 1.33. Suppose for some polynomial p and some number g < n, that p? takes on only
scalar values in My (K), over an infinite field K, for n prime. Then p takes on only scalar
values in M, (K).

Proof. We can view p as an element of the generic division algebra fJ\]S, and we adjoin a g-root
of 1 to K if necessary. Then p generates a subfield of dimension 1 or n of UD. The latter is
impossible, so the dimension is 1; i.e., p is already central. |

We also require one basic fact from linear algebra:

Lemma 1.34. Let V; (for 1 < i < m) and V be linear spaces over arbitrary field K. Let
m

f(Th,....,Tn): I Vi = V be a multilinear mapping (i.e., linear with respect to each T;). Assume
i=1

there exist two points in Im f which are not proportional. Then Im f contains a 2-dimensional

plane. In particular, if V is 2-dimensional, then Im f = V.

m
Proof. Let us denote for = (Ty...,T) and v = (17,..., 1)) € [I Vi
i=1

Dist(u,v) = #{i: Ts # T1}.

Consider k = min {d: there exists p, v € [] V; such that f(u) is not proportional to f(v) and

i=1
Dist(p,v) = d}. We know k& < m by assumptions of lemma. Also k& > 1 since any element of V'
is proportional to itself. Assume k = 1. In this case there exist ¢ and T7,...,T,,, T} such that

f(Th,...,Ty) is not proportional to f(T1,...,Ti—1,T},Ti+1,--.,Tmn). Therefore
<f(T17 s 7Tm)7f(T17' . -71_‘2'—171_‘1'/77%-{-17 s 7Tm)> - Imp

is 2-dimensional. Hence we can assume k > 2. We can enumerate variables and consider
p=(T,...,Tm) and v = (T7,..., T}, Tk41,-..,Tm), v1 = f(u) is not proportional to v = f(v).
Take any a,b € K. Consider vay, = f(aTy + b1, To+T5, ..., T+ 1}, Tit1,- .., Tm). Let us open
the brackets. We have

vap =avi +bua+ Y csf(Bs),

2GSGHL,....k}

where cg equals a if 1 € S and b otherwise, and g = (Tl,...,Tk,Tk+1,...,Tm) for T, = T} if
i € S or T/ otherwise. Note that any g in the sum satisfies Dist(6g, 1) < k and Dist(0s,v) < k
therefore f(6s) must be proportional to both v; and vy and thus f(fg) = 0. Therefore v, =
avy + buy and hence Im f contains a 2-dimensional plane. |

Lemma 1.35. The multiplicity of any eigenvalue of an element a of UD must divide n. In
particular, when n is odd, a cannot have an eigenvalue of multiplicity 2.

Proof. Recall [93, Remark 4.106] that for any element a in a division algebra, represented as
a matrix, the eigenvalues of a occur with the same multiplicity, which thus must divide n. W

Lemma 1.36. Assume that an element a ofﬁ has a unique eigenvalue o (of multiplicity n).
If Char(K) = 0, then a is scalar.
If Char(K) = k # 0, then a is k'-scalar for some .

Proof. If Char(K) = 0, then « is an element of UD and a — o is nilpotent, and thus 0.
If Char(K) = k then o*' is an element of UD, therefore ak' — aF' T is nilpotent, and thus 0.
Thus a is k'-scalar. This is impossible unless k divides n. |
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Over any field K, applying the structure theory of division rings to Amitsur’s theorem,
it is not difficult to get an example of a completely homogeneous polynomial f, noncentral
on M3(K), whose values all have third powers central; clearly its image does not comprise
a subspace of M3(K). Furthermore, in the (non-multilinear) completely homogeneous case, the
set of values could be dense without including all matrices. (Analogously, although the finite
basis problem for multilinear identities is not yet settled in nonzero characteristic, there are
counterexamples for completely homogeneous polynomials, cf. [11].)

1.4.2 Generic elements

Definition 1.37. Assume that K is an arbitrary field and ' C K is a subfield. The set
{&, ..., &} C K is called generic (over F) if f(&1,...,&) # 0 for any commutative polynomial
f € Flxy, ...,z that takes nonzero values.

Lemma 1.38. Assume that K has infinite transcendence degree over F. Then for any k € N
there exists a set of generic elements {&1,...,&} C K.

Proof. K has infinite transcendence degree over F. Therefore, there exists an element & €
K \ F, where F is an algebraic closure of F. Now we consider F; = F[¢1]. K has infinite
transcendence degree over F' and thus has infinite transcendence degree over Fj. Therefore
there exists an element & € K\ F;. And we consider the new base field F, = F} [€2]. We can
continue up to any natural number k. |

Remark 1.39. Note according to Lemma 1.38 that if K has infinite transcendence degree
over F' we can take as many generic elements as we need. In particular we can take as many
generic matrices as we need.

Lemma 1.40. Assume f: H — R (where H C R¥ is an open set in k-dimensional Buclidean

space) is a function that is continuous in a neighborhood of the point (y1,...,yrx) € H, with
flyr,...,yk) < q. Let ¢; be real numbers (in particular the coefficients of some polynomial p).
Then there exists a set of elements {x1,...,zr} C R generic over F = Qlcy,...,cn]| such that

(x1,...,2k) € H and f(x1,...,2%) < q.

Proof. The d-neighborhood Ns(x) of z € R denotes the interval (z — d,z + ) C R. Fix some
small & > 0 such that the product of §-neighborhoods of y; lays in H. For this particular §
we consider the d-neighborhood Nj(y1) of yi: the interval (y; — 0,41 + 0) is an uncountable
set, and therefore there exists 1 € Ns(y1) \ F. We consider Fy = F[r1] and analogically chose
x9 € Ns(y2) \ Fy and take Fy = F[xs]. In such a way we can take generic elements x, € Ns(yy).
Note that if § is not sufficiently small f(z1,...,zx) can be larger than ¢, but

f(xla'-'vxk) %f(ylavyk)
6—0
Thus there exists sufficiently small 0 and generic elements x; € Ny(y;) such that f(zq,..., k)
<q. |

Remark 1.41. Note that f can be a function defined on a set of matrices. In this case we
consider it as a function defined on the matrix entries.

Remark 1.42. Assume that Char(K) = 0. Suppose ¢ is a commuting indeterminate, and
f(x1,...,2m;t) is a polynomial taking values under matrix substitutions for the x; and scalars
for t. If there exists unique tg such that f(x1,...,zm;t0) = 0, then ¢( is a rational function with
respect to the entries of x;. If this ¢ is fixed under simultaneous conjugation of the matrices
X1, ..., Tm, then tg is in the center of Amitsur’s generic division algebra UD, implying f € UD. If
Char(K) = k # 0, then t’gl is a rational function for some | € Ny. For details see [58, Remark 2].
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Remark 1.43. In Remark 1.42 we could take a system of polynomial equations and polynomial
inequalities. If ¢y is unique, then it is a rational function (or t’gl if Char(K) = k).

1.4.3 Basic facts about cones

Here is one of the main tools for our investigation.

Definition 1.44. A cone of M,,(K) is a subset closed under multiplication by nonzero constants.
An invariant cone is a cone invariant under conjugation. An invariant cone is irreducible if it
does not contain any nonempty invariant cone.

Example 1.45. Examples of invariant cones of M, (K) include:

(i) The set of diagonalizable matrices.

(ii) The set of non-diagonalizable matrices.

)

)
(iii) The set K of scalar matrices.
(iv) The set of nilpotent matrices.
)

(v) The set sl,, of matrices having trace zero.
Let us continue with the following easy but crucial lemma.

Lemma 1.46. Suppose the field K is closed under d-roots. If the image of a semi-homogeneous
polynomial p of weighted degree d intersects an irreducible invariant cone C nontrivially, then
C ClImp.

Proof. If A € Imp then A = p(z1,...,zy) for some x; € M,(K). Thus for any ¢ € K,
cA = p(c“’l/dwl, w2y, ,cim/dxm) € Imp, where (w1,...,wy,) are the weights. This shows
that Im p is a cone. |

Remark 1.47. When the polynomial p is multilinear, the image of any multilinear polynomial
is an invariant cone, without any assumption on K.

1.5 Some general observations

Lemma 1.48. Let K be an algebraically closed field of characteristic 0, and let I be an ideal of
K[X1,...,X,], and V(I) = {x € K": f(x) =0V f € I}. Let m: K" — K" ! be the projection
onto the first n—1 coordinates. Let I' denote the ideal INK[X1,. .., Xp—1] of K[X1,..., Xn_1].
Then:

(1) #(V(I)) is a Zariski dense subset of V(I');

(2) if there exists a Zariski dense subset W of V(I') such that the pre-image 7~ (p) NV (I) of
each point p € W consists of one point, then there exists a rational K-valued function ¢
on V(I') such that all points of a Zariski-dense subset of V(I) have the form (p,¢(p))
where p € V(I').

If Char(K) = k > 0 then there exists non-negative integer ¢ such that (p,a) € V(I) satisfy
o(p) = a** on a Zariski-dense subset of V(I).

Proof. (1) is by [25, Chapter 3, Section 2, Theorem 3| and the subsequent remarks.

To prove (2), note that by (1) 7 induces a field homomorphism (hence an embedding)
K(V(I')) — K(V(I)) between the fields of rational functions on the respective varieties. It
is enough to show that this is an isomorphism. Indeed, K(V(I)) is generated by K(V(I'))
and X,. Moreover, X,, is algebraic over K(V(I’)). Let h be the minimal polynomial of X,
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over K(V(I')), of degree d. The derivative h’ has degree d — 1, and the discriminant Discr(h) is,
up to a scalar, the resultant of h and h’; it is non-zero since h is irreducible implies that A and A/
are relatively prime. Let now U be the open subset of V(I’) in which Discr(h) # 0 and the
coefficients of h are defined. Then each point of U has precisely d distinct 7-preimages in V' (I).
It follows that d = 1, as required.

If Char(K) = k > 0, we take ¢ such that h(z) = h; (xké) but A} is not identically zero. W

Lemma 1.49. Assume that Char(K) = 0. If an element a of UD has a unique eigenvalue «
(i.e., of multiplicity n), then a is scalar. If Char(K) =k # 0 then a is k'-scalar for some .

Proof. If Char(K) = 0, then « is an element of UD and a — of is nilpotent, and thus 0.
If Char(K) = k then o¥' is an element of UD, therefore ak — oF' I is nilpotent, and thus 0.
Thus a is k'-scalar. This is impossible if k is not the divisor of the size of the matrices n. |

Remark 1.50. The variety of n x n matrices with a given set of n distinct eigenvalues has

dimension n? — n.

Remark 1.51. Assume for some matrix units a; that p(ai, ..., a,) is a diagonal matrix. Then f
as constructed in (4.1) in the proof of Theorem 1.12 is diagonal. If the dimension of Im f is ¢,
then each evaluation M of f has some set of eigenvalues, and (if the point is generic and the
eigenvalues are distinct), then any matrix with this set of eigenvalues is similar to M and
therefore belongs to Im p . Therefore by Remark 1.50, Im p has dimension at least n? —n + 4.

Other works on polynomial maps evaluated on matrix algebras include [49, 107], who inves-
tigated maps that preserve zeros of multilinear polynomials.

2 The low rank case

Let p be a multilinear polynomial in several non-commuting variables with coefficients in a quad-
ratically closed field K of arbitrary characteristic. In this section we prove the L’vov—Kaplansky
conjecture for n = 2 in several general cases, and show that although the analogous assertion fails
for completely homogeneous polynomials, one can salvage most of the conjecture by including
the set of all non-nilpotent matrices of trace zero and also permitting dense subsets of M, (K).

Remark 2.1. For n = 2, Donkin’s theorem provides a polynomial function in expressions of
the form Trace (4, A’ K?) and tr A where A is monomial. Note that Trace (A, N> K?) = det A.

Next we introduce the cones of main interest to us, drawing from Example 1.45.

Example 2.2.

(i) The set of nonzero nilpotent matrices comprise an irreducible invariant cone, since these
all have the same minimal and characteristic polynomial z2.

(ii) The set of nonzero scalar matrices is an irreducible invariant cone.

(iii) K denotes the set of non-nilpotent, non-diagonalizable matrices in My(K). Note that
Ae K precisely when A is non-scalar, but with equal nonzero eigenvalues, which is the
case if and only if A is the sum of a nonzero scalar matrix with a nonzero nilpotent matrix.
These are all conjugate when the scalar part is the identity, i.e., for matrices of the form

(D) e

since these all have the same minimal and characteristic polynomials, namely 2 —2x+1.
It follows that K is an irreducible invariant cone.
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(iv) K denotes the set of non-nilpotent matrices in My(K) that have trace zero.

When Char K # 2, K is an irreducible invariant cone, since any such matrix has distinct

eigenvalues and thus is conjugate to (6‘ _0)\ )

When Char K = 2, K is an irreducible invariant cone, since any such matrix is conjugate
to (33):

(v) sla(K) \ {0} is the union of the two irreducible invariant cones of (i) and (iv). (The cases
Char K # 2 and Char K = 2 are treated separately.)

(vi) Let C denote the set of nonzero matrices which are the sum of a scalar and a nilpotent
matrix. Then C is the union of the following three irreducible invariant cones: The nonzero
scalar matrices, the nilpotent matrices, and the nonzero scalar multiples of non-identity
unipotent matrices. (All non-identity unipotent matrices are conjugate.)

2.1 2 X 2 matrices
2.1.1 The case of a quadratically closed field

In this subsection we assume that K is a quadratically closed field. In particular, all of the
eigenvalues of a matrix A € My(K) lie in K. We start with the semi-homogeneous case (which
includes the completely homogeneous case), and finally give the complete picture for the multi-
linear case.

Theorem 2.3. Let p(z1,...,Ty) be a semi-homogeneous polynomial evaluated on the alge-
bra Ma(K) of 2 x 2 matrices over a quadratically closed field. Then Imp is either {0}, K, the
set of all non-nilpotent matrices having trace zero, sla(K), or a dense subset of My(K) (with
respect to Zariski topology).

(We also give examples to show how p can have these images.)

Theorem 2.4. If p is a multilinear polynomial evaluated on the matriz ring My(K) (where K
is a quadratically closed field), then Imp is either {0}, K, sla, or Ma(K).

Whereas one has a decisive answer for multilinear polynomials, the situation is ambiguous
for homogeneous polynomials, since, as we shall see, certain invariant sets cannot occur as their
images. For the general non-homogeneous case, the image of a polynomial need not be dense,
even if it is non-central and takes on values of nonzero trace, as we see in Example 2.17.

One of our main ideas is to consider some invariant of the matrices in Im(p), and study the
corresponding invariant cones. Here is the first such invariant that we consider.

Remark 2.5. Any non-nilpotent 2 x 2 matrix A over a quadratically closed field has two
eigenvalues A1 and Ao, such that at least one of which is nonzero. Therefore one can define the
ratio of eigenvalues, which is well-defined up to taking reciprocals: )‘; and . Thus, we will say
that two non-nilpotent matrices have different ratios of eigenvalues if and only if their ratios of
eigenvalues are not equal nor reciprocal.

We do have a well-defined mapping II: Ms(K) — K given by A — i—; + i—f This mapping is
algebraic because

A1 A2 (tl“ A)2

AL .
o TN t et A

Remark 2.6. The set of non-scalar diagonalizable matrices with a fixed nonzero ratio r of
eigenvalues (up to taking reciprocals) is an irreducible invariant cone. Indeed, this is true since
any such diagonalizable matrix is conjugate to
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Images of semi-homogeneous polynomials.

Lemma 2.7. Suppose K is closed under d-roots, as well as being quadratically closed. If the
image Imp of a semi-homogeneous polynomial p of weighted degree d contains an element of K,
then Imp contains all of K.

Proof. This is clear from Lemma 1.46 together with Example 2.2(iii), since K is an irreducible
invariant cone. |

For the proof of Theorem 2.3 see Section 2.2.
We illuminate this result with some examples to show that certain cones are obtained from
specific completely homogeneous polynomials.

Example 2.8.

(i) The polynomial g(x1,72) = [21,72]? has the property that g(A, B) = 0 whenever A is
scalar, but g can take on a nonzero value whenever A is non-scalar. Thus, g(z1,z2)x;
takes on all values except scalars. This polynomial is completely homogeneous, but not
multilinear. (One can linearize in xy to make g linear in each variable except z1, and
the same idea can be applied to Formanek’s construction [41] of a central polynomial for
any n.)

(ii) Let S be any finite subset of K. There exists a completely homogeneous polynomial p
such that Imp is the set of all 2 x 2 matrices except the matrices with ratio of eigenvalues
from S. The construction is as follows. Consider

fl@)=a- [ = A28) (A2 — M),

oes

where \; o are eigenvalues of z. For each ¢ the product (A —A20)(A2 — A16) is a polynomial
of trx and trz?. Thus f(x) is a polynomial with traces, and, by [92, Theorem 1.4.12]),
one can rewrite each trace in f as a fraction of multilinear central polynomials. After that
we multiply the expression by the product of all the denominators, which we can take to
have value 1. We obtain a completely homogeneous polynomial p which image is the cone
under Im f and thus equals Im f. The image of p is the set of all non-nilpotent matrices
with ratios of eigenvalues not belonging to S.

(iii) The image of a completely homogeneous polynomial evaluated on 2 x 2 matrices can also
be K. Take f(x,y) = [z,y]>. This is the product of [z,y]2 and [z,y]. [x,y]? is a central
polynomial, and therefore tr f = 0. However, there are no nonzero nilpotent matrices in
Imp because if [4, B]? is nilpotent then [A, B] (which is a scalar multiple of [A, B]?) is
nilpotent and therefore [4, B]?> = 0 and [A, B]® = 0.

(iv) Consider the polynomial
plan, 2,51, 92) = [(2122)2, (9192)2]7 + [(122)2, (9192)2] (2191, T290) .

Then p takes on all scalar values (since it becomes central by specializing z1 +— x2 and
Y1 — y2), but also takes on all nilpotent values, since specializing x1 +— I + ej2, T2 — €22,
and y; — e19, and yo +—> €91 sends p to

2
[(612 + 622)2, 6%1} + [(612 + 622)27 6%1] [e12, €21] = 0 — e1a(e1r — ea2) = ena.

We claim that Imp does not contain any matrix a = p(Z1,Z2, 71, %2) in K. Otherwise,
the matrix [(Z1Z2)?, (§172)?][Z171, Z272]* would be the difference of a matrix having equal
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eigenvalues and a scalar matrix, but of trace 0, and so would have both eigenvalues 0 and
thus be nilpotent. Thus [(3_31;1_62)2, (gng)Q] would also be nilpotent, implying the scalar

term [(:Z"lffg)Q, (glyg)z]Q equals zero, implying a is nilpotent, a contradiction.

Im p also contains all matrices having two distinct eigenvalues. We conclude that Imp =

Remark 2.9. In Example 2.8(iv), The intersection S of Imp with the discriminant surface is
defined by the polynomial

tr(p(z1, ..., xm))% —4det(p(z1, ..., 2m)) = (A1 — A2)2.

S is the union of two irreducible varieties (its scalar matrices and the nonzero nilpotent matrices),
and thus S is a reducible variety. Thus, we see that the discriminant surface of a polynomial p
of the algebra of generic matrices can be reducible, even if it is not divisible by any trace
polynomial. Such an example could not exist for p multilinear, since then, by the same sort of
argument as given in the proof of Theorem 2.3, the discriminant surface would give a generic
zero divisor in Amitsur’s generic division algebra UD of Proposition 1.31, a contradiction. In
fact, we will also see that the image of a multilinear polynomial cannot be as in Example 2.8(iv).

Results for arbitrary polynomials.

Lemma 2.10. If A, B € Imp have different ratios of eigenvalues, then Imp contains matrices
having arbitrary ratios of eigenvalues % e K.

Proof. If A = p(z1,...,2m), B = p(y1,...,ym) € Imp have different ratios of eigenvalues,
then we can lift the z1,...,Zm, y1,. .., ym to generic matrices, and then p(z1,...,xm) = A and
p(y1,...,ym) = B also have different ratios of eigenvalues. Then take

f(1, Ty, ..., Ty) = p(nizy + iy, -, T;m@m + tmYm) s

where T; = (t;,7;) € K2. The polynomial f is linear with respect to all T;.

In view of Remark 2.9, it is enough to show that the ratio (ffe{ }2 takes on all values. Fix

2
Ty, ...,75-1,Ti+1, ..., Ty to be generic pairs where ¢ is such that ((tire{} is not constant with

respect to T;. Such i exist because otherwise all matrices in the image (in particular, A and B)

(tr f)?
det f

have the same ratio of eigenvalues. But is the ratio of quadratic polynomials, and K is
quadratically closed.

If there is a point 7; such that tr f = det f = 0, then f evaluated at this T; is nilpotent. Since
tr f is a linear function, the equation tr f = 0 has only one root, which is a rational function
on the other parameters. Thus f evaluated at this 7; is 0, by Amitsur’s theorem. We conclude
that the ratio of eigenvalues does not depend on T;, contrary to our assumption on i. Hence, we

can solve (ffe{ }2 = c for any c € K. [ |

Lemma 2.11. If there exist A\; # £Ao with a collection of matrices (A1, Aa, ..., Ay) such that
p(A1, Aa, ..., Ap) has eigenvalues A1 and Az, then all diagonalizable matrices lie in Im p.

Proof. Applying Lemma 1.27 to the hypothesis, there is a matrix

A0
<0 )\2) € Imp, AL # o

which is an evaluation of p on matrix units e;;. Consider the following mapping x acting on the
indices of the matrix units: x(e;;) = e3—;3—;. Now take the polynomial

f(,To, ..., Ty) = p(nizy + tix(x1), -« o, Tm@m + tm X (Tm)),
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where T; = (t;,7;) € K 2 which is linear with respect to each T;. Let us open the brackets.
We obtain 2™ terms and for each of them the degrees of all vertices stay even. (The edge 12
becomes 21 which does not change degrees, and the edge 11 becomes 22, which decreases the
degree of the vertex 1 by two and increases the degree of the vertex 2 by two.) Thus all terms
remain diagonal. Consider generic pairs 11,..., T}, € K?. For each i consider the polynomial
ﬁ(TZ*) = f(Th,....,Ti—1,T; + T}, Tit1, ..., T)n). For at least one i the ratio of eigenvalues of f;
must be different from +1. (Otherwise the ratio of eigenvalues of fi equal +1 all 4, implying
A1 = £A2}, a contradiction.)

Fix 4 such that the ratio of eigenvalues of fz is not £1. By linearity, Im ( ﬂ) takes on values
with all possible ratios of eigenvalues; hence, the cone under Im( ﬁ) is the set of all diagonal
matrices. Therefore by Lemma 1.46 all diagonalizable matrices lie in the image of p. |

Images of multilinear polynomials.

Lemma 2.12. Ifp is a multilinear polynomial evaluated on the matriz ring Mg(K) over a quad-
ratically closed field K, then Imp is either {0}, K, sla, Ma(K), or Ma(K) \ K.

Proof. If Imp does not contain a non-scalar matrix, then p is either PI or central, and we are
done. Hence, without loss of generality we can assume that Im p contains a non-scalar matrix.
By Remark 2.7 the linear span of Imp is sly or Ma(K). We treat the characteristic 2 and
characteristic # 2 cases separately.

Case I: Char K = 2. Consider the set

© = {p(e1,...,en) where the e; are matrix units}.

If the linear span of the image is not sly, then © contains at least one non-scalar diagonal matrix
Diag{A1, A2}, so A1 # — Az (since +1 = —1). Hence by Lemma 2.11, all diagonalizable matrices
belong to Im p. Thus, Im p contains Ms(K) \f(

If the linear span of the image of p is slp, then by Lemma 1.27 the identity matrix (and
thus all scalar matrices) and ej2 (and thus all nilpotent matrices) belong to the image. On the
other hand, in characteristic 2, any matrix sl is conjugate to a matrix of the form A7 + Aaeq 2,

and we consider the invariant i—f Take x1,...,2, to be generic matrices. If p(z1,...,%m)
were nilpotent then Imp would consist only of nilpotent matrices, which is impossible. By
Example 2.2(v), p(x1,...,xmy) is not scalar and not nilpotent, and thus is a matrix from K.

Hence, K C Imp, by Remark 2.7. Thus, all trace zero matrices belong to Im p.

Case II: Char K # 2. Again assume that the image is not {0} or the set of scalar matrices.
Then e12 € Imp by Lemma 1.27. Thus all nilpotent matrices lie in Im p. If the image consists
only of matrices of trace zero, then there is at least one matrix in the image with a nonzero diag-
onal entry. By Lemma 1.27 there is a set of matrix units that maps to a nonzero diagonal matrix
which, by assumption, is of trace zero and thus is (8 _OC). By Lemma 1.46 and Example 2.2,
Im p contains all trace zero 2 x 2 matrices.

Assume that the image contains a matrix with nonzero trace. Then by Remark 2.7 the linear
span of the image is Ms(K), and together with Lemma 1.27 we have at least two diagonal linearly
independent matrices in the image. Either these matrices have ratios of eigenvalues (A1 : A2)
and (A2 : A1) for A\; # £X2 or these matrices have non-equivalent ratios. In the first case we
can use Lemma 2.11 which says that all diagonalizable matrices lie in the image. If at least one
of these matrices have ratio not equal to 41, then in the second case we also use Lemma 2.11
and obtain that all diagonalizable matrices lie in the image. If these matrices are such that the
ratios of their eigenvalues are respectively 1 and —1, then we use Lemma 2.10 and obtain that
all diagonalizable matrices with distinct eigenvalues lie in the image. By assumption, in this
case, scalar matrices also belong to the image. Therefore we obtain that for any ratio (A; : Ag)
there is a matrix A € Imp having such a ratio of eigenvalues. Using Lemmas 1.46 and 2.7, we
obtain that the image of p can be either {0}, K, sly, My(K), or Ma(K) \ K. [
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Lemma 2.13. If p is a multilinear polynomial evaluated on the matriz ring Ma(K), where K
is a quadratically closed field of characteristic 2, then Imp is either {0}, K, sla, or My (K).

Proof. In view of Lemma 2.12, it suffices to assume that the image of p is My(K) \ K. Let
Tl,.-sTm, Y1,---,Ym be generic matrices. Consider the polynomials

bi :p(xla oy Tig—15Yiy Tit1s - - '7xm)~

Let pi(x1, ..., 2m,y;) = ptr(b;) + tr(p)b;. Hence p; can be written as
pi =p(x1, .., xim1, 2 tr(b;) + yi tr(p), Ti1, -« -, Tin)-

Therefore Imp; C Im p. Also if a € Im p;, then
tr(a) = tr(p tr(b;) + tr(p) b;) = 2 tr(p) tr(b;) = 0.

Thus, Im p; consists only of trace-zero matrices which belong to the image of p. Excluding K, the
only trace zero matrices are nilpotent or scalar. Thus, for each i, p;(x1, .. ., Tm, y;) is either scalar
or nilpotent. However, the p; are the elements of the algebra of generic matrices with traces,
which is a domain. Thus, p;(z1,...,%m,y;) cannot be nilpotent. Hence for all i = 1,...,m,
pi(x1, ..., Tm,y;) is scalar. In this case, changing variables leaves the plane (p,I) invariant.
Therefore, dim(Im p) = 2, a contradiction. |

Lemma 2.14. If p is a multilinear polynomial evaluated on the matriz ring My(K) (where K
is a quadratically closed field of characteristic not 2), then Imp is either {0}, K, sla, or My(K).

The proof of Lemma 2.14 is given in Section 2.2.
Finally, Theorem 2.4 follows from Lemmas 2.13 and 2.14.

2.1.2 Images of arbitrary non-homogeneous polynomials

We consider briefly the general non-homogeneous case. One can write any polynomial p(zq, ...,
Zm) as p = hg + -+ + hy,, where the h; are semi-homogeneous polynomials of weighted degree i.

Proposition 2.15. Notation as above, assume that there are weights (w1, ..., wy,) that Imhy,
is dense in Ma(K). Then Imp is dense in May(K).

Proof. Consider
PV 21, M) = > X
i=k

One can write P = )\_"p()\ql”xl, ey )\%xm) as a polynomial in 21, ...,z and e = % The matrix
polynomial is the set of four polynomials p1 1, p1.2, p2,1, p2,2, which we claim are independent.
If there is some polynomial h in four variables such that h(pi 1, p1,2,p2,1,2,2) = 0 then h should
vanish on four polynomials of P for each ¢, in particular for € = 0, a contradiction. |

Remark 2.16. The case remains open where p(z1,...,x,,) is a polynomial for which there are
no weights (w1, ..., w,,) such that one can write p = hy+- - -+ h,,, where h; is semi-homogeneous
of weighted degree ¢ and h,, has dense image in Ma.

Example 2.17. For Char K # 2 we give an example of such a polynomial whose middle term
has dense image in My(K). Take the polynomial

f(xvy) - [x,y] + [x,y]2.
It is not hard to check that Im f is the set of all matrices with eigenvalues ¢ + ¢ and ¢ — c.
Consider p(ay, ag, f1, 52) = f(oq + 8%, az +ﬂ§). The polynomials f and p have the same images.
Now let us open the brackets. The term of degree 4 is hy = [a1, ag]? + [ﬁ%, ﬁ%] The image of hy
is all of My(K), because [a1, az]? can be any scalar matrix and [87, 83] can be any trace zero
matrix. However the image of p is the set of all matrices with eigenvalues ¢? + ¢ and ¢ — c.
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2.1.3 The cases of an arbitrary real field

Let p be a multilinear polynomial in several non-commuting variables with coefficients in an
arbitrary field K. Kaplansky conjectured that for any n, the image of p evaluated on the
set M, (K) of n by n matrices is either zero, or the set of scalar matrices, or the set sl,(K) of
matrices of trace 0, or all of M, (K). This conjecture was proved for n = 2 when K is closed
under quadratic extensions. In this section the conjecture is verified for K = R and n = 2, also
for semi-homogeneous polynomials p, with a partial solution for an arbitrary field K.

In Section 2.1.1 the field K was required to be quadratically closed. Even for the field R of
real numbers L’vov—Kaplansky’s question remained open, leading people to ask what happens
if the field is not quadratically closed? This subsection provides a positive partial answer.

2.1.4 Images of multilinear polynomials evaluated on Mz (K)

Assume that p is a multilinear polynomial evaluated on 2 x 2 matrices over any field K. Assume
also that p is neither PI nor central. Then, by Lemma 1.27 there exist matrix units aq, ..., an
such that p(aj,...,am) = ej2. Let us consider the mapping x defined on matrix units that
switches the indices 1 and 2, i.e., e11 <> €92 and eq2 <> e21. Now let us consider the mapping f
defined on m pairs T; = (¢;,75) :

f(T,...,Ty) = p(tiar + Tix(a1), taaz + ox(a2), . - -y tmam + Tmx(am))-

Now let us open the brackets. We show in the proof of Theorem 1.12 that any matrix of
the image of f can be written as ciei2 + -+ + ch—1€n—1,n + Cp€nn—1. In our case n = 2 and
the image of f contains only matrices of the type cieis + coes1. Note that the matrices eqo
and eg; both belong to the image of f since p(ai,...,an) = e12 and p(x(ai),..., x(am)) = e21.
According to Lemma 1.34 the image of f is at least 2-dimensional, and lies in the 2-dimensional
plane (ej2, e21). Therefore this plane is exactly the image of f. Now we are ready to prove the
following:

Lemma 2.18. If p is a multilinear polynomial evaluated on the matriz ring Ms(K) (for an
arbitrary field K), then Imp is either {0} or K, orsly \K C Imp.

Proof. Let A be any trace zero, non-scalar matrix. Take any vector v; that is not an eigenvector
of A. Consider the vector v9 = Av;. Note that

Avy = A%y = —det(A)vy,

and therefore the matrix A with respect to the base {vi,v2} has the form cie1a + coea;, for
some ¢;. Hence A is similar to cjejs + caeg1 € Imp, implying A € Im p. |

Remark 2.19. Note that for Char(K) # 2 (in particular for K = R),
(slo \K) U {0} =sly C Imp.

The real case. Now we assume that K = R. We already know that either p is PI, or central,
or slo C Imp. Assume that sly ; Im p. We will use the following lemma:

Lemma 2.20. Let p be any multilinear polynomial satisfying slo ; Imp. For any ¢ € R

there exist generic matrices Ti,...,Tm,Y1,---,Ym Such that for X = p(x1,...,zmy) and Y =
p(Y1,- .-, Ym) we have the following:
det X detY

2x 1= 2y
where t12 M denotes the square of the trace of M.



22 A. Kanel-Belov, S. Malev, L. Rowen and R. Yavich

Proof. We know that sly C Im p, in particular for the matrices {2 = ej; —ego and T = e12 —e9;
there exist matrices aq,...,am,b1,..., by such that p(ai,...,an,) = Q and p(by,...,bn) = Y.
Note ffzt % < q if M is close to 2 and (tif?t J\]‘g > ¢ if M is close to Y. Now we consider a very
small 0 > 0 such that for any matrices z; € Ns(a;) and y; € Ny(b;)

det X detY

n2x == 2y

where X = p(x1,...,2my) and Y = p(y1,...,Ym). Here by Ns(z) we denote a d-neighborhood

of z, under the max norm ||A|| = max |a;;|. According to Lemma 1.40 one can choose generic
i
matrices with such property. |
Now we are ready to prove that the image of g(x1,...,zm) = (ti;}tg is all of R:

Lemma 2.21. Let p be any multilinear polynomial satisfying sla ; Imp. Then for any ¢ € R
there exists a set of matrices a1,...,a;, such that

detp(ay,...,am)

=q. 2.1
tr2p(a17"'>am) ! ( )

Proof. Let ¢ be any real number. According to Lemma 2.20 there exist generic matrices
TiyeeoyTmy Yly-- -, Ym such that for X = p(x1,...,2y) and Y = p(y1,...,ym) we have the
following:

det X << detY
2y — 9= 2y
Consider the following matrices: Ay = p(Z1, z2,...,Zm), where &1 is either z; or —z1, such that

trAg > 0. Ay = p(41,22,...,Tm), where gy is either y; or —y; such that tr A; > 0. Assume
that A;, Z1, 91,...,¥; are defined. Let

Ai+1 = p(gla v 7gi7gi+1a Lit2s .- 7$m)7

where ;+1 = £y;+1 is such that tr A;41 > 0. In such a way we defined matrices A4; for 0 < i < m.
Note that for any 2 x 2 matrix M,

det M det(—M)

tr2 M tr2(—M)’

Note that Ag = £p(z1,...,2m) and A, = £p(y1, ..., Ym); hence
det Ap det A,,
tr2 Ay — 7= tr2 A,

Therefore there exists ¢ such that

det A; < det A; 1
tr2 A; 4= tr2 Ait1 .

Since A; = p(J1,- -+, Ui» Tiv1, Tiv2, .-, Tm) and Ajr1 = p(F1,. .., Jit1, Tit2, ..., Tm), We can
consider the matrix function

M(t) = (1 — t)Al =+ tAiJrl = p(?jl, - ,gi, (1 — t).TiJrl + tgi+l,55i+27 e l‘m)

Then Im M C Imp, M(0) = A;, M(1) = A;41 both M(0) and M (1) have positive trace, and M
is an affine function. Therefore for any ¢ € [0, 1] M (¢) has positive trace. Therefore the function

P(t) = ?f;%((z)) is well defined on [0,1] and continuous. Also we have ¢ (0) < ¢ < (1). Thus

there exists 7 € [0, 1] such that ¥ (7) = ¢ and thus M(7) € Im p satisfies equation (2.1). [ |
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Lemma 2.22. Let p be a multilinear polynomial satisfying sla ; Imp. Then any matriz with
distinct eigenvalues (i.e., matriz of nonzero discriminant) belongs to Im p.

Proof. Let A be any matrix with nonzero discriminant. Let us show that A € Imp. Let

__det A det A __
q_trQA' trQA_q’

where A = p(ay,...,an). Take ¢ € R such that tr (cfl) = tr A. Note cA = p(car,ag, ..., am)
belongs to Im p. Thus

det (cfl) ~ detA
tr2 (CA) 1= tr2 A’

According to Lemma 2.21 there exists a set of matrices a1, ..., a,, such that

and tr A = tr (cfl) Hence, det (cfl) = det(A). Therefore the matrices cA and A are similar
since they are not from the discriminant surface. Therefore A € Im p. |

Lemma 2.23. Let p be a multilinear polynomial satisfying sla ;Cé Imp. Then any non-scalar
matriz with zero discriminant belongs to Im p.

Proof. Let A be any non-scalar matrix with zero discriminant. Let us show that A € Imp.
The eigenvalues of A are equal, and therefore they must be real. Thus A is similar to the matrix
A= (())‘ %\) If A is nilpotent then A = 0 and A = ej, and it belongs to Im p by Lemma 1.27. If A
is not nilpotent then we need to show that at least one non-nilpotent matrix of such type belongs
to Imp, and all other are similar to it. We know that the matrices e11 — ea2 = p(ay, ..., an) and
e12 —ea1 = p(b1,...,by) for some a; and b;. Note that ej; — ego has positive discriminant and
e12 — e21 has negative discriminant. Take generic matrices x1,x2, ..., Zm, Y1,---,Ym such that
x; € Ns(a;) and y; € Ns(b;) where § > 0 is so small that p(z1, ..., %) has positive discriminant
and p(y1,. .., Ym) has negative discriminant. Consider the following matrices:

Ao =p(x1,29,. .., Tm), Ai =pY1s oy Yis Tit 1y oy T ), 1<7<m.

We know that Discr Ag > 0 and Discr A,, < 0, and therefore there exists ¢ such that Discr A; > 0
and Discr A;511 < 0. We can consider the continuous matrix function

M(t) = (1 — t)Az + tAiJrl = p(yl, e Uiy (1 — t)xzqu + tYiv1, Tiga, - -, l‘m)

We know that M (0) has positive discriminant and M (1) has negative discriminant. Therefore
for some 7, M(7) has discriminant zero. Assume there exists ¢ such that M(¢) is nilpotent. In
this case either ¢ is unique or there exists ¢’ ¢ such that M (¢') is also nilpotent. If ¢ is unique
then it equals to some rational function with respect to other variables (entries of matrices x;
and y;). In this case t can be considered as a function on matrices x; and y; and as soon as it is
invariant, according to the Proposition 1.30 ¢ is an element of UD and thus M (t) is the element
of UD. Therefore M (t) cannot be nilpotent since UD is a domain according to Remark 1.31. If
there exists ¢’ # t such that M(#') is also nilpotent then for any £ € R M (%) is the combination
of two nilpotent (and thus trace vanishing) matrices M (t) and M(t'). Hence M(0) is trace
vanishing and thus Imp C sls, a contradiction.

Recall that we proved M (7) has discriminant zero that for some 7. Note that M (7) cannot
be nilpotent. Assume that the matrix M (7) is scalar. Hence (1 — 7)A; + 7A;41 = AI where
A € R and [ is the identity matrix. Thus, 4;41 = %Ai + ¢I. Note that for any matrix M
and any ¢ € R we have Discr(M) = Discr(M + cI). Therefore the discriminant of A;11 can be
written as

2
Discr(A;4+1) = Discr (1 TAi) = <1 T) Discr(4;),

T T

a contradiction, since Discr A; > 0 and Discr(A;4+1) < 0. Therefore the matrix M (7) is similar
to A. [
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Lemma 2.24. Let p be a multilinear polynomial satisfying slo ; Imp. Then every scalar matrix
belongs to Im p.

Proof. Note that it is enough to show that at least one scalar matrix belong to the image
of p. According to Lemmas 1.27 and Remark 2.7 there are matrix units ay, ..., a, such that
p(ai,...,an) is diagonal with nonzero trace. Assume that it is not scalar, i.e., p(ai,...,am) =
Are11 + Ageao. We define again the mapping x and f(71,...,T),) as in the beginning of Sec-
tion 2.1.4 and return to the proof of Lemma 2.11 where we proved that Im f consists only
of diagonal matrices or only of matrices with zeros on the diagonal. In our case the image
of f consists only of diagonal matrices, which is a 2-dimensional variety. We know that both
plai,...,am) = Are11 + Ageg and p(x(a1),...,x(am)) = Aie22 + Aae11 belong to the image
of f, and therefore every diagonal matrix belong to the image of f, in particular every scalar
matrix. |

Now we are ready to prove a major result.

Proof of Theorem 1.15. The second part follows from Lemmas 2.18, 2.22, 2.23 and 2.24. In
the first part we need to prove that if p is neither PI nor central then sly(K) C Imp. According
to Lemma 2.18, slo(K) \ K C Imp, and therefore according to Remark 2.19 we need consider
only the case Char(K) = 2. Then we need to prove that the scalar matrices belong to the image
of p. By Lemma 1.27 and Remark 2.7 there are matrix units a1, ..., a,, such that p(ay,...,an)
is diagonal. Assume that it is not scalar. Then we consider the mappings x and f as described
in the beginning of Section 2.1.4. According to Lemma 1.34 the image of f will be the set of all
diagonal matrices, and in particular the scalar matrices belong to it. |

Remark 2.25. Assume that p is a multilinear polynomial evaluated on 2 x 2 matrices over an
arbitrary infinite field K. Then, according to Theorem 1.15, Imp is {0}, or K, or sly(K) or
sla(K) G Imp. In the last case it is clear that Imp must be Zariski dense in Ms(K), because
otherwise dim(Im p) = 3 and Imp is reducible, a contradiction.

Remark 2.26. Note that the proof of Theorem 1.15 does not work when n > 2 since for this
case we will need to take more than one function (two functions for n = 3 and more for n > 3).
In our proof we used that we have only one function: we proved that it takes values close to oo
and after that used continuity. This does not work for n > 3. However one can use this idea
for the question of possible images of trace vanishing multilinear polynomials evaluated on 3 x 3

2
matrices. In this case one function will be enough, and one can take g = % (One can find
2

the definitions of w; in the proof of Theorem 1.18.) Moreover by Lemma 1.27 there are matrix
units a; such that p(aq, ..., an) is a diagonal, trace vanishing, nonzero real matrix, which cannot
be 3-scalar since it will have three real eigenvalues. Therefore p cannot be 3-central polynomial.
However the question of possible images of p remains open.

Images of semi-homogeneous polynomials evaluated on 2 X 2 matrices with real
entries. Here we provide a classification of the possible images of semi-homogeneous polyno-
mials evaluated on 2 X 2 matrices with real entries. Let us start with the definitions.

Definition 2.27. A semi-cone of M, (R) is a subset closed under multiplication by positive
constants. An invariant semi-cone is a semi-cone invariant under conjugation. An invariant
semi-cone is irreducible if it does not contain any nonempty invariant semi-cone.

Remark 2.28. Let p be any semi-homogeneous polynomial of weighted degree d # 0 with
weights (w1, ..., wy). Thusif A = p(x1,...,Ty) then for any ¢ € R we have p(cwlxl, e cwmwm)
= ¢?A. Hence Imp is a semi-cone, for any d.
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det p
trZp”

Proof of Theorem 1.17. Consider the function g(z1,...,zn) = If this function is not

constant, then Im p is Zariski dense. Assume that it is constant; i.e., ?f;;’ = c¢. Then the ratio
A

5 =¢ of eigenvalues is also a constant. If ¢ £ —1 then we can write A1 explicitly as

A 1 1
A - _trp= —trp,
! b 141 P

= g
AL+ A2 P 1+ 22

1

Therefore A; is an element of 6\15, and Ay = trp — Ay also. According to the Hamilton—Cayley
equation, (p — A1)(p — A2) = 0 and therefore, since, by Remark 1.31, UD is a domain, one of the
terms p — A; is a PI. Therefore p is central or PI. Therefore we see that any semi-homogeneous
polynomial is either PI, or central, or trace vanishing (if the ratio of eigenvalues is —1 then
the trace is identically zero), or Imp is Zariski dense. If p is PI then Imp = {0}. If p is
central then, by Remark 2.28, Imp is a semi-cone, therefore Imp is either R>q, or R<q, or R.
If p is trace vanishing, then any trace zero matrix A € sly(R) is similar to —A. Therefore
Imp = —Imp is symmetric. Together with Remark 2.28 we have that Im p must be a cone.
The determinant cannot be identically zero since otherwise the polynomial is nilpotent, contrary
to Remark 1.31. Hence there exists some value with nonzero determinant. All the trace zero
matrices of positive determinant are pairwise similar, and all the trace zero matrices of negative
determinant are pairwise similar. Therefore in this case all possible images of p are sl >o(R),
Slgéo(R) and Slg (R) |

Example 2.29. Imp can be the set of non-negative scalars. Take any central polynomial, say
p(z,y) = [z,y]? and consider p? = [z,y]*. If one takes —p? = —[z,y]*, then its image is the
set RSO'

The question remains open of whether or not there exists an example of a trace zero polyno-
mial with non-negative (or non-positive) discriminant.

There are many polynomials with Zariski dense image which are not dense with respect to
the usual Euclidean topology. For example the image of the polynomial p(z) = 22 is the set
of matrices with two positive eigenvalues, or two complex conjugate eigenvalues; in particular
any matrix 2 has non-negative determinant. The image of the polynomial p(x,y) = [z, y]* +
[x4,y4] is the set of matrices with non-negative trace. The question of classifying possible
semi-homogeneous Zariski dense images remains open.

2.1.5 Multilinear polynomials evaluated on H

The L’vov—Kaplansky conjecture can fail for a non-simple finite dimensional algebra. In partic-
ular, it fails for the Grassmann algebra over a linear space of finite dimension more than or equal
to 4, and a field of characteristic # 2, which is a finite dimensional (but not simple) associative
algebra. In this case one can consider the multilinear polynomial p(z,y) = x Ay —y A z. Then
e1 Nea =p(1/2e1,e3) and e3 A eq both belong to the image of p, but their sum does not. Thus
the image is not a vector space.

Recently, it has been conjectured that the evaluation of any multilinear polynomial on a simple
algebra is a vector space. However, according to [80] this conjecture fails even for some (infinite
dimensional) division algebras and the polynomial p(z,y) = zy — yx. Cohn [24] constructed
a division ring D in which every element is a commutator, i.e., p(D) = D.

It is interesting to investigate the Kaplansky conjecture for finite dimensional simple algebras.
In this section we deal with quaternions. Note that the algebra of split quaternions, defined also
by 4-dimensional vector space (1,1, 7, k)gr with multiplication defined by

ij =—j1 =k, jk = —kj = —i, ki = —ik = j, 1'2:_1’ j2:k2:1,
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is isomorphic to My(R). Let us start with proving the following straightforward but important
lemmas:

Lemma 2.30. Let p be a multilinear polynomial. If a; are basic quaternions (1,1,j,k), then
plai,...,am) is ¢ q for some basic quaternion q and some scalar ¢ € R (which can equal 0).

Proof. Note that for any two basic quaternions ¢; and ¢o2, qg1g2 = £q2q1. Therefore, taking
products of m basic quaternions we obtain the same result (up to ). Thus the sum of these
results multiplied by scalars must be a basic quaternion multiplied by some scalar coefficient. W

Lemma 2.31. For any multilinear polynomial p, Imp s a self-similar cone, i.e., for any in-
vertible h € H, any scalar ¢ € R and any element o € Imp, chah™! € Im p.

Proof. If p(z1,...,Zm) = ). CoTu(1): " To(m), then
0ESm

plharh™  haoh™ o hamh ™) = ) cohagayh Tt hagmyh Tt = hp(xy, . wm) B

c€Sm
and thus p(chxlhfl, hxoh™t ... ,hxmhfl) = chah™! € Imp. |

Lemma 2.32. The set of pure quaternions V is an irreducible self-similar cone, i.e., equals all
of its conjugates.

Proof. It is enough to show that any self-similar cone including the element ¢ contains V. Take
h(y,z) = 1+ yj + zk, thus h™! = % Thus a minimal self-similar cone C' containing 4
contains all elements c-hih ™!, in particular it contains all elements (1 +yj + zk)i(1 —yj — zk) =
(1 T z2)i + 2zj — 2yk. Consider an arbitrary pure quaternion ai + bj +ck. If b=c =0

then this vector belongs to C' because it is a multiple of i. Assume that at least one of b and

. 2 2 — atVa’+b> 4 - c
¢ is nonzero. Then b + ¢© > 0, hence one can take | = 5 Y = T Ve
z= Wﬁ’ these numbers are well defined. Thus the element (1+yj+ zk)i(1 —yj—zk) =
(1 —y? — 2%)i + 2zj — 2yk = ai + bj + ck belongs to C. u

Now we are ready to prove the main theorem:

Proof of Theorem 1.25. Let us substitute basic quaternions in the polynomial p. Lemma 2.30
implies that we obtain multiples of basic quaternions. Consider the four possible cases: all these
results vanish, or among these results there are scalars only, pure quaternions only, and both
pure quaternions and scalars. The first two cases quickly lead to answers about the image of
the polynomial p: in the first case p is PI, its image is {0}, and in the second case it is central
polynomial, and its image is R. In the third case the image is V', by Lemma 2.32.

Therefore the most interesting case is the fourth one. We assume that there are basic quater-
nions 1,...,%y, and yi,...,yn such that p(xi,...,zy,) = k € R\ {0} and p(y1,...,ym) =
v € V\ {0}. We will show that in this case the image of p is the set of all the quater-
nions. For that let us consider the following m + 1 evaluations depending on y1,...,Ym: A1 =
p(x1, T2, ..., xm); A2 = p(y1, 22, ..., Tm); As = p(Y1,Y2, 23, s Tm); -« -5 A1 = D(Y1y -+, Zm)-
Note that A; is a constant taking only one possible value (which is a nonzero scalar), for
any ¢ ImA; C Im A;4y1 and Im A,,,41 = Imp includes nonscalar values. Therefore, there ex-
ists ¢ such that Im A; C R and Im A;,1 & R. Thus there exist some collection of quaternions

71,72, ..., m,r} such that p(ri,re,...,ry) =7 € R\ {0}. and p(r1,7re,...,7i—1,7, Tit1,- - Tm)
¢ R. Assume that p(ri,72,...,7-1,7,Tit1,...,7m) =a+v for a € R and v € V. Then v # 0.
Ifa=c-p(ri,re,...,mm) we can take 7; = 1} — cr;, and

P(T1,72,y ooy i1, Tiy Tig1, - -, Tm) = v € V \ {0}.
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Note that for arbitrary real numbers z and y we have an element
P(T1, 72y ooy T 1, XTG4 YTiTi T 1y -+« s Tm) = XT + YO.

Consider an arbitrary quaternion a + bi + ¢j + dk, where a,b,c,d € R. Let us take an x such
that zr = a. By Lemma 2.32, V is an irreducible self-similar cone, thus there exist h € H and
y € R such that yhvh™! = bi + ¢j + dk. Hence,

p(hrih ™ hroh ™t o i BT R(ary + yF) R BT L R )
= h(zr 4+ yv)h ™' = 2r + yhoh™! = a + bi 4 ¢j + dk.

Therefore, Imp = H. |

2.1.6 Semi-homogeneous polynomials evaluated on H

Now we can consider the semi-homogeneous case and present the proof of Theorem 1.26:

Proof of Theorem 1.26. There exists an isomorphism ®: H(R) ® Cg — Ms(C)gr such that
for any g =a+bi + ¢j + dk € H and any z € C

Blg®z) =2 [a+bi c—l—di]

—c+di a—bi
Note that ®(H ® 1¢), i.e., the set of matrices

at+bi c+di
—c+di a—bi

is Zariski dense in M>(C).

Note that there exist numbers wy, ..., w, and d # 0 such that for any ¢ € R p(cwlxl, c2xo,

.,cw'"xm) = ¢¥p(z1,...,2m). Therefore Imp must be a cone with respect to positive real
multipliers, i.e., Az € Imp for any € Imp and any A > 0.

By Theorem 2.3, the Zariski closure of the image of polynomial evaluated on 2 x 2 matrices
with complex entries must be either {0}, or C, or sla(C) or M(C).

In the first case p is PI, and its image is {0}. In the second case p is a central polynomial,
therefore the image of p being a cone with respect to positive multipliers must be either R, or R>,
or R<g. In the third case, p takes only pure quaternion values. According to Lemma 2.32 we
know that V is an irreducible self-similar cone (up to real multipliers). Hence Imp is a self-
similar cone up to positive real multipliers. Therefore Imp U (—Imp) = V, i.e., for any pure
quaternion v € V, either v, or —v belongs to Imp. Without loss of generality, assume that
i € Imp. Hence jij~' € Imp, and jij~' = —i. Hence for any ¢ € R, ¢i € V, and thus any
element v € V is conjugate to some ci, as we showed in the proof of Lemma 2.32. Therefore,
Imp = V. In the forth case an image of p is a Zariski dense subset of H. |

Let us show some interesting examples of multilinear and homogeneous polynomials:
Example 2.33.

(i) According to Amitsur—Levitsky theorem s4 evaluated on 2 x 2 matrices is a PI, and thus
is PI on quaternions, as is its multilinearization.
(ii) The Lie bracket p(x,y) = xy — yx is a Lie polynomial and its image is V.

(iii) The polynomial [z1, zo][x3, 4]+ |73, 24][1, 2], the multilinearization of [x1, z2]?, evaluated
on H, is a multilinear central polynomial.
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(iv)
(v)

(vii)

(viii)

2.2

An example where Imp = H(RR) can be constructed trivially.

The central polynomial p(z,y) = [z,y]* provides an example of complete homogeneous
polynomial evaluated of 2 x 2 matrices with real entries and taking only positive central
values I took a square of p. Note that evaluated on quaternions we do not need to take
a square. This polynomial takes only non positive values: indeed, (ai + bj + ck)? =
—a? —b*—c?, and Imp is R<g. Hence, —p(z,y) = —[z,y]? is an example of the polynomial
with image set Rx>.

The polynomial p(z,y) = [x,y]> + [LU2, y2] is the sum of two polynomials, the image of the
first term is R<g, and the second one has image V', thus Im p is the set of quaternions with
non-positive real part. Of course —p has the opposite image: the set of quaternions with
non-negative real part.

In Example 2.8(i), the polynomial g(x1,z2) = [r1,22]? has the property that g(A, B) =0
whenever A is scalar, but g can take on a non-zero value whenever A is non-scalar. Thus,
g(z1,z2)x; takes all values except scalars.

Any quaternion ¢ = a+v, a € R, v € V can be considered as a 2 X 2 matrix with complex
entries, whose eigenvalues are A\j 2 = a £ ni, where n = |[|v|| is the norm of the vector
part of the quaternion. In particular trq = 2a = 2Req and detq = a? + n? = ||q||. In
Example 2.8(ii) we provided an example of the polynomial taking all possible values except
for those where the ratio of eigenvalues belongs to some set S. However here we should
have a polynomial with real coefficients. Nevertheless this is possible: let S be any finite
subset of S? — a unit circle on the complex plane. There exists a completely homogeneous
polynomial p such that Im p is the set of all quaternions except the quaternions with ratio
of eigenvalues from S. Any ¢ € S can be written in the form ¢ = ngi for some a,b € R.
The construction of the polynomial is as follows. Consider

f@)=a- [[((a+ i)\ — (a = bi)As)((a+ bi)A2 — (a — bi)Ay),
ceS

where Aj o are eigenvalues of x and ¢ = ZJ_FZZ For each ¢ the product (a + bi)A; — (a —
bi)A2)((a+bi)da—(a—bi) A1) = —a?(A\1 —A2)2—b*(A1+A2)? is a polynomial with real coeffi-
cients in tr z and tr #2. Thus f(x) is a polynomial with traces, and by [92, Theorem 1.4.12],

one can rewrite each trace in f as a fraction of multilinear central polynomials.

After that we multiply the expression by the product of all the denominators, which we
can take to have value 1. We obtain a completely homogeneous polynomial p which image
is the cone under Im f and thus equals Im f. The image of p is the set of all quaternions
with ratios of eigenvalues not belonging to .S.

The Deligne trick

One of the strongest tools we use in our investigation is a famous trick of Deligne, given below
in Remark 2.42. We use it when we give a proof by contradiction; in some cases we obtain
an element of UD whose characteristic polynomial can be decomposed, and this contradicts to
Amitsur’s theorem. Here are some examples of when we use it.

2.2.1 Evaluations of word maps on matrix groups

It is important to investigate possible images of word maps on matrix groups, and the famous
Deligne trick technique can be used in this area. A word map w(x1,...,Z,,) is called dominant
if its image is Zariski dense. A famous theorem of Borel states:
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Theorem 2.34. Any nontrivial word map w evaluated on SLy,(K) is dominant.

Proof. Let us use induction with respect to n. The case n = 1 is trivial, since SL;j(K) is
a trivial group, and any word map (including the trivial one) is dominant. Assume that Borel’s
theorem holds for some n and let us show that it holds for n + 1. Note that SL,, < SLj41,
because one can take ¢: SL, — SL, 1 defined in the following way: for any matrix M € SL,,
we will take an (n + 1) x (n + 1) matrix from SL,1, having entries of M in the first n rows
and columns, zeros on the last row and on the last column except an entry (n + 1,n + 1)
having 1 there. Therefore the Zariski closure of the image of w evaluated on SL, 41, according
to the induction assumption, is at least Im . Note that Imw as well as its Zariski closure is
closed under conjugations, therefore it will include all matrices from SL,; having at least one
eigenvalue equal to 1. Let us show that this set cannot be Zariski closure of Imw. Assume
that it is. Note that w can be considered as an element of UD, and if 1 is its eigenvalue in
any evaluation, then its characteristic polynomial has a divisor A — 1, which is impossible, since
Xw(w) = (w—1)f(w) = 0 gives us that either w =1 (which is impossible if w is not trivial), or
f(M) =0 for all M being values of the map w. Note that deg f = n and this is impossible since
it contradicts Jordan’s theorem. Here we use the Deligne trick. |

If K is an algebraically closed field and Char K = 0 then there is a working hypothesis that
any nontrivial word map evaluated on PSL, (K) must be surjective; here we will consider it for
the case n = 2:

Conjecture 2.35. If the field K is algebraically closed of characteristic 0, then the image of
any nontrivial group word w(xy,...,xy,) on the projective linear group PSLae(K) is PSLo(K).

Remark 2.36. Note that if one takes the group SLs instead of PSLs, Conjecture 2.35 fails,

since the matrix —I + e does not belong to the image of the word map w = 2.

Example 2.37. When Char K = p > 0, the image of the word map w(z) = aP evaluated
on PSLy(K) is not PSLy(K). Indeed, otherwise the matrix I + ej2 could be written as a? for
x € PSLo(K). If the eigenvalues of x are equal, then 2z = I + n where n is nilpotent. Therefore
2P = (I +n)P =1+ pn = I. If the eigenvalues of = are not equal, then z is diagonalizable and
therefore xP is also diagonalizable, a contradiction.

Lemma 2.38 (Liebeck, Nikolov, Shalev, cf. also [10, 44]). Imw contains all matrices from
PSLy(K) which are not unipotent.

Proof. According to [16] the image of the word map w must be Zariski dense in SLa(K).
Therefore the image of trw must be Zariski dense in K. Note that trw is a homogeneous
rational function and K is algebraically closed. Hence, Im(trw) = K. For any A # +1 any
matrix with eigenvalues A and A~! belongs to the image of w since there is a matrix with
trace A + A~! in Imw and any two matrices from SLo with equal trace (except trace +2) are
similar. |

However the question of whether one of the matrices (I 4 ej2) or (—I — e12) (which are equal
in PSL9) belongs to the image of w remains open.
The following Lie-algebraic counterpart of Borel’s theorem holds:

Theorem 2.39 ([8]). Let L be a split semisimple Lie algebra, k a field. Suppose that a Lie
polynomial w(zxy, ..., x,) is not an identity of the Lie algebra sla(k). Then the image of w: L™ —
L is Zariski dense.

The proof of this Theorem uses Deligne trick.

Remark 2.40. At the best of our knowledge, the Deligne trick first appeared in the paper [28].
The Borel paper [16] was published in the same issue.
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2.2.2 Evaluations of semihomogeneous polynomials on matrix rings

Proof of Theorem 2.3. Assume that there are matrices p(z1,..., %) and p(y1, ..., Ym) with
different ratios of eigenvalues in the image of p. Consider the polynomial matrix f(¢) = p(tz1 +
(1=t)yr,tea+ (1 —t)ya, ..., txm + (1 —t)ym), and ITo f where II is defined in Remark 2.5. Write
this nonconstant rational function % in lowest terms as %, where A(t), B(t) are polynomials
of degree < 2degp in the numerator and denominator.

An element ¢ € K is in Im(II o f) iff there exists ¢ such that A — c¢B = 0 (If for some t*
A(t*) — e¢B(t*) = 0, then t* would be a common root of A and B). Let d. = deg(A — ¢B).
Then d. < max(deg A,deg B) < 2degp, and d. = max(deg A, deg B) for almost all ¢. Hence,
the polynomial A —¢B is not constant and thus there is a root. Thus the image of % is Zariski

dense, implying the image of 211;]; is Zariski dense.

Hence, we may assume that Im p consists only of matrices having a fixed ratio r of eigenvalues.
If r # +1, the eigenvalues A; and Ao are linear functions of tr p(z1, ..., x,,). Hence A\ and Ay are
the elements of the algebra of generic matrices with traces, which is a domain by Proposition 1.31.
But the two nonzero elements p — A1I and p — Aol have product zero, a contradiction. Here we
use the Deligne trick.

We conclude that = £1. First assume r» = 1. If Char K # 2, then p is a PI, by Lemma 1.32.
If Char K = 2 then the image is either sly(K) or K, by Example 2.2(v).

Thus, we may assume r = —1 and Char K # 2. Hence, Im p consists only of matrices with
A1 = —A2. By Lemma 1.32, there is a non-nilpotent matrix in the image of p. Hence, by
Example 2.2(v), Imp is either K or strictly contains it and is all of sla(K). |

2.2.3 [Evaluations of multilinear polynomials on matrix rings

Recall Lemma 2.14: If p is a multilinear polynomial evaluated on the matrixz ring Ms(K)
(where K is a quadratically closed field of characteristic not 2), then Imp is either {0}, K,
sla, or Ms(K).

Remark 2.41. Since the details are rather technical, we start by sketching the proof. We
assume that Imp = My(K) \ K. The linear change of the variable in position i gives us the line
A + tB in the image, where A = p(z1,...,2m) and B = p(z1,...,Zi—1,Yi, Titl, ..., Tm). Lake
the function that maps ¢ to f(¢) = (A1 — A2)?, where \; are the eigenvalues of A +tB. Evidently

FE) =\ = X2)? = (A1 4+ A2)? — 4\ do = (tr(A+tB))? — 4 det(A + tB),

so our function f is a polynomial of deg < 2 evaluated on entries of A + tB, and thus is
a polynomial in .

There are three possibilities: Either deg, f < 1, or f is the square of another polynomial,
or f vanishes at two different values of ¢ (say, t; and t2). (Note that here we use that the field
is quadratically closed). This polynomial f vanishes if and only if the two eigenvalues of A+ tB
are equal, and this happens in two cases (according to Lemma 2.12): A+ ¢B is scalar or A+ ¢B
is nilpotent. Thus either both A + ¢;B are scalar, or A+ t1 B is scalar and A + ¢ B is nilpotent,
or both A + t; B are nilpotent. In the first instance A and B are scalars, which is impossible.
The second case instance that the matrix A + %B € K, which is also impossible. The third
instance implies that tr A = tr B = 0 which we claim is also impossible. If deg, f < 1, then for
large t the difference Ay — Ao of the eigenvalues of A + tB, is much less than ¢, so the difference
between eigenvalues of B must be 0, a contradiction.

It follows that f(t) = (A1 — A2)? is the square of a polynomial (with respect to t). Thus
A1 — A2 = a + tb, where a and b are some functions of the entries of the matrices x1,..., Tm, Y-
Note that a is the difference of eigenvalues of A and b is the difference of eigenvalues of B, Thus

(l(l'l, o 7xTI’L)y’i) - b(l‘l, ey Li—1,Yiy i1y - - - Jlm,wi). (22)
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Note that (A; —A2)? = a®+2abt +b*t? which means that a2, b? and ab are polynomials (note that
here we use Char K # 2). Thus, § = Z—z is a rational function. Therefore there are polynomials
p1, p2 and ¢ such that a = p1,/q and b = pa,/q. Without loss of generality, ¢ does not have
square divisors. By (2.2) we have that ¢ does not depend on z; and y;. Now consider the change
of other variables. The function a is the difference of eigenvalues of A = p(z1,...,zy,) so it
remains unchanged. Thus g does not depend on other variables also. That is why A1 + Ao are two
polynomials and hence A; are polynomials. One concludes with the last paragraph of the proof.

Proof of Lemma 2.14. In view of Lemma 2.12 it suffices to prove that the image of p cannot
be My(K) \ K. Assume that the image of p is My(K) \ K. Consider for each variable z;
the line x; + ty;, t € K. Then p(z1,...,xi—1,%; + ty;i, Tit1,- .., Tm) is the line A 4+ ¢B, where
p(x1, .. @) = Aand p(z1, ..., Ti 1, Yis Tit1, - - -, Tm) = B. Thus A+tB ¢ K for any t. Since B
is diagonalizable, we can choose our matrix units e; ; such that B is diagonal. Therefore

B:/\BI+<C O), A:AAI+<‘” y).
0 —c z —x

Hence

A+tB:(>\A+t)\B)I+<x+tC Y >
z —x —tc

The matrix (xttc 2z, C) is nilpotent if and only if (z 4 tc)? +yz = 0,, which has the solution
tip = %(—:1; + \/Tyz) Thus, when yz # 0, 7(A + t;B) will be nilpotent for j = 1,2, where
m(X) = X — 1 tr X. However tr(A + t;B) is nonzero for one of these values of ¢;, implying
A+t;B € K, a contradiction.

Thus, we must have yz = 0. Without loss of generality we can assume that z = 0. Any

matrix M of the type ¢l + (15 b ) satisfies det M = ¢®> — w? and ¢ = %tr M. Thus x =

w

\/i(tr A)?2 —det A and ¢ = \/i (tr B)? — det B. Consider the matrix

Pi=cA—xB =p(x1,...,Ti-1,CT; — TYi, Tit1s---,Tm),

which must be scalar or nilpotent. It can be written explicitly algebraically in terms of the
entries of x; and y;. Also, P, = (cAp — 2A\a)l + (cy)e1a, where ejo is the matrix unit. There
are two cases. If y = 0 then the line A 4 ¢B includes a scalar matrix, and if y # 0 then
(cAp — xA4) = 0 and all matrices on the line A + ¢B have the same ratio of eigenvalues.

Let S; ={i: P, € K} and Sy = {i: P; € sly(K)}. Without loss of generality we can assume
for some k < m that S; = {1,2,...,k} and {k + 1,...,m}. The four entries of p(x1,...,zy)
are

pij(l“l,(m), T1,(1,2)) L1,(2,1) £1,(2,2)5 - -+ » ilfm,(2,2)),
polynomials in the entries of x;. Consider the scalar function

1

strp(xy,. .., Tm)

2 ) )
A, 2m) R(z1,..., )

where R(z1,...,%Tm) = \/i tr2 p(z1,. .., 2m) — det p(x1, ..., 2y). This function is defined every-
where except for those (x1,...,2;,) for which p(x1,...,x,,) is a matrix with equal eigenvalues,
because R is the half-difference of eigenvalues. The function fi(z1,...,z,) does not depend on
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Tktl,--.,Tm because for any ¢ > k + 1, substituting y; instead of x; does not change the ratio
of eigenvalues of p(x1, ..., %, ). Consider the matrix function
1
P21, Ty) — 5 trp(z1,. .., T)
Tlyeney Tm) =
Jalons e esiom) R(or,- s 2m)
This function is also defined everywhere except for those (x1,...,z,,) such that the eigenvalues
of p(x1,...,zy) are equal. The function fo(z1,...,zy) does not depend on z;, i < k, because
for any ¢ < k substituting y; instead of x; does not change the basis in which p(z1,...,zy,) is

diagonal. R? is a polynomial:

1
R? = —tr?p(z1,. .., 2m) — det p(x1, ..., Tp).

4
Write R? = r1ror3 where 71 is the product of all the irreducible factors in which only z1, ...,z
occur, 72 is the product of all the irreducible factors in which only xg1,..., 2z, occur, rs is the

product of the other irreducible factors. We have that

tr2p<l’17...,xm) _ 2
= fi(@1,....2m)
ri(ze, . Tm)r2(T1, o T )73 (X1, )
does not depend on xj1,...,Ty,. Therefore if tr? p = q1¢2q3 (again in ¢; only z1,. ..,z occur,
in gy only Zg41,...,Zy, occur and gs is all the rest) then % does not depend on xgy1,...,Tm.

Hence 12 = g2 and r3 = ¢3(up to scalar factors). As soon as q1g2¢s is a square of a polynomial

all ¢; are squares therefore ro and r3 are squares. Now consider the function %. This is the
square of the (1,2)-entry in the matrix function fs, so it does not depend on z1,...,z;. Writing
p%2 = q1g2q3(where, again, only x1,..., 2} occur in qi, only Zgy1,...,x, occur in go and g3 is
comprised of all the rest), then all the ¢; are squares and ¢; = 71, implying r; is square. Thus
the polynomial rir9r3 = R? is the square of a polynomial. Therefore R is a polynomial. We
conclude that A\ — Ay = 2R is a polynomial (where we recall that A\; and Ay are the eigenvalues
of p(x1,...,xm)). A1 + A2 = tr(p) is also a polynomial and hence \; are polynomials, which
obviously are invariant under conjugation since any conjugation is the square of some other
conjugation). Hence, \; are the polynomials of traces, by Donkin’s theorem quoted above. Now
consider the polynomials (p — A1I) and (p — AoI), which are elements of the algebra of free
matrices with traces, which we noted above is a domain. Both are not zero but their product is
zero, a contradiction. [ |

Remark 2.42. This trick (when we use that the characteristic polynomial of a non-central
element of UD cannot be decomposed) is called the Deligne trick.

2.3 Some important questions and open problems regarding evaluations
of polynomials on low rank algebras

In this section we formulate some problems that remain open.

The first and one of the most important problems in this area is the investigation of the
possible image sets of multilinear polynomials on matrix algebras. One of the main and the most
perspective conjectures answering this question is the L’vov—Kaplansky conjecture. However it
remains being an open problem. For the case of 2x2 matrices we have Theorem 1.15, nevertheless
the case when sly C Im p should be investigated, not only for K = R.

Problem 2.43. Give a full classification of all possible image sets of multilinear polynomials
evaluated on Ma(K) for arbitrary field K in the case when sly C Im p.
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Another important problem is to investigate possible images of semihomogeneous polynomials
evaluated on My (K). We some a good result when K is quadratically closed (see Theorem 1.13),
however our result for K = R does not settle the problem. For R the Zariski topology is not so
natural, and it would be much more important to investigate possible images with respect to
the standard topology. This question remains open. The question about classification of such
image sets for the arbitrary field remains being open as well. The same question can be asked
for the quaternion algebra. We have Theorem 1.26, however the problem of classification of all
possible Zariski dense images of semi-homogeneous polynomials evaluated on H remains being
open.

Problem 2.44. Give a classification of all possible image sets of semihomogeneous polynomials
evaluated on Mo(K) for arbitrary K, or at least for K = R with respect to the standard topology.
Give a classification of all possible images of semihomogeneous polynomials evaluated on H with
respect to the standard topology.

The same question can be asked for arbitrary (non-homogeneous) polynomial. Let us provide
an important example:

Example 2.45. Let h(x) be arbitrary polynomial in one variable, and consider a noncommu-
tative polynomial h([z,y]) evaluated on My(K). Note that [z,y] is trace zero matrix, so its
eigenvalues are =\ for some \. Thus, if [z, y] is not nilpotent then [z, y] is similar to the matrix
Ae1r — Aega. Hence, h([z,y]) is similar to the matrix h(\)ei; + h(—A)ea2, and its eigenvalues
are h(£A). Therefore, Im h([z,y]) is the set of all matrices having pairs of eigenvalues h(+\).

The question whether all possible images of noncommutative polynomials evaluated on My (K)
can be only {0}, K, slo(K), Ma(K) or the set of all matrices having pairs of eigenvalues h(£\)
for some polynomial h is an open problem. The same question can be asked for the evaluations
of non homogeneous polynomials on the quaternion algebra.

Problem 2.46. Give a classification of all possible image sets of non homogeneous (arbitrary)
polynomials on My(K) (and H), where K is an arbitrary field (or for some partial cases such
as K =R, K =C) K being any quadratically closed field.

Another important algebra is the algebra of Cayley numbers. This algebra is nonassociative,
and therefore polynomials evaluated on it are also nonassociative. However, it is close to asso-
ciative, and part of our tools can work. The problem is to give a classification of possible image
sets of nonassociative multilinear polynomials evaluated on the algebra of Cayley numbers and
to check whether all possible images are vector spaces.

Problem 2.47. Give a classification of all possible evaluations of multilinear polynomials on
the Cayley numbers algebra, the next step would be to consider the same question for semiho-
mogeneous and for arbitrary polynomials.

Question 2.48. Is it true for a simple 3-dimensional Lie algebra that it is possible not only to
provide a classification of possible image sets of polynomials (see Theorem 1.23) but also for any
given set S to describe the set of all polynomials whose image sets are S?

Question 2.49 (see Conjecture 2.35). If the field K is algebraically closed of characteristic 0,
then must the image of any nontrivial group word w(xy,...,Ty) on the projective linear group
PSLy(K) be PSLo(K)?

Malev and Pines [83] have established that the evaluations of multilinear polynomials on the
rock-paper-scissors algebra is a vector space.
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3 The case of matrices of rank 3

Now we turn specifically to the case n = 3 and the proof of Theorem 1.20.

Lemma 3.1. We define functions wy: M3(K) — K as follows: Given a matriz a, let \1, Aa,
A3 be the eigenvalues of a, and denote

WE = wk(a) = Z >‘i1 . )‘ik'

1<i1 <9< <1 <3

Let p(x1,...,xm) be a semi-homogeneous, trace vanishing polynomial.

Consider the rational function H(x1,...,%m) = % (taking values in K U {oo}).

If Im H is dense in K, then Imp is dense in sls.

Proof. Note that wo(p)® and ws(p)? are semi-homogeneous. Thus, Im H is dense in K iff
the image of the pair (wg(p)B,wg(p)Q) is dense in K?2. But since wy and ws are algebraically
independent, so are wa(p)® and w3(p)?, so we conclude that the image of the pair (w2 (p)?, ws(p)?)
is dense in K2. Thus, the set of characteristic polynomials of evaluations of p is dense in the
space of all possible characteristic polynomials of trace zero matrices. Therefore, the set of all
triples (A1, A2, —A\1 — \2) of eigenvalues of matrices from Im p is dense in the plane x+y+2 =0
defined in K3, implying that Imp is dense in sls. |

3.1 3 X 3 matrices over a field with a primitive cube root of 1

Let K be an algebraically closed field. For char(K) # 3 we fix a primitive cube root ¢ # 1 of 1;
when char(K) = 3 we take ¢ = 1.
The proof of Theorem 1.18 will be presented in Section 3.3.

Example 3.2. The element [z, [y, z|z[y, 2] 7] of UD takes on only 3-scalar values (see [92,
Theorem 3.2.21, p. 180]) and thus gives rise to a homogeneous polynomial taking on only 3-
scalar values.

3.2 Multilinear trace vanishing polynomials
We can characterize the possible image sets of multilinear trace vanishing polynomials.

Lemma 3.3. If p is a multilinear polynomial, not PI nor central, then there exists a collection
of matrix units (e1,ea,...,emn) such that p(ei, ea, ..., en) is a diagonal but not scalar matriz.

Proof. According to Lemma 1.27, for any matrix units e; the value p(eq, e, ..., e, ) must be
either ce; j or some diagonal matrix. In addition, let us note that according to the Remark 1.3 the
linear span of the image set (p(M3)) (being a linear span of all evaluations of p on sets of matrix
units) is one of four possible sets: either is either {0}, K, sl3(K), or M3(K). We assumed that p
is not PI nor central, hence the linear span of the image set (p(M3)) either is sl, (K), or M, (K).

Thus, the linear span of all p(e1, eq, ..., ey,) for any matrix units e; such that p(ey, ea, ..., €y,) is
diagonal, includes all Diag{z,y, —z — y}. In particular there exists a collection of matrix units
(e1,€2,...,en) such that p(ei,es, ..., ey) is a diagonal but not scalar matrix. |

The proof of Theorem 1.19 will be presented in Section 3.3.

Remark 3.4. Assume that char(K) = 3 and p is a multilinear polynomial, which is neither PI
nor central. Then, by Lemma 3.3 there exists a collection of matrix units e; such that

p(ela o 7€m) == Dia'g{avﬂ77}

is diagonal but not scalar. Without loss of generality, o # 3. Hence p3(eq, ..., en) = Diag {a3 ,
B3, 73} and o # 32 because char(K) = 3. Therefore p is not 3-scalar.
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Theorem 3.5. If p is a multilinear polynomial such that Imp does not satisfy the equation
yw1(p)? = wa(p) fory =0 ory = i, then Im p contains a matriz with two equal eigenvalues that
is not diagonalizable and of determinant not zero. If Imp does not satisfy any equation of the
form w1 (p)? = wa(p) for any =y, then the set of non-diagonalizable matrices of Imp is Zariski
dense in the set of all non-diagonalizable matrices, and Imp is dense.

Proof. If not, then by Lemma 1.34 there is at least one variable (say, z1) such that a =
p(x1,Ta,...,xy) does not commute with b = p(Z1,z2,...,xy). Consider the matrix a + tb =
p(z1 +tZ1,22,...,Ty), viewed as a polynomial in ¢.

Recall that the discriminant of a 3 x 3 matrix with eigenvalues A1, Ao, A3 is defined as

[T (A —Xj)% Thus, the discriminant of a + tb is a polynomial f(t) of degree 6. If f(t)
1<i<j<3
has g);lly one root tg, then this root is defined in terms of the entries of 1,71, %2, ..., 7m, and
invariant under the action of the symmetric group, and thus is in Amitsur’s division algebra UD.
By Lemma 1.49, a+tgb is scalar, and the uniqueness of tg implies that a and b are scalar, contrary
to assumption.

Thus, f(t) has at least two roots — say, t1 # to, and the matrices a + ¢t1b and a + t2b each
must have multiple eigenvalues. If both of these matrices are diagonalizable, then each of a +t;b
have a 2-dimensional plane of eigenvectors. Therefore we have two 2-dimensional planes in 3-
dimensional linear space, which must intersect. Hence there is a common eigenvector of both
a + t;b and this is a common eigenvector of a and b. If a and b have a common eigenspace
of dimension 1 or 2, then there is at least one eigenvector (and thus eigenvalue) of a that is
uniquely defined, implying a € UD by Remark 1.42, contradicting Lemma 1.49. If a and b have
a common eigenspace of dimension 3, then a and b commute, a contradiction.

We claim that there cannot be a diagonalizable matrix with equal eigenvalues on the line
a + tb. Indeed, if there were such a matrix, then either it would be unique (and thus an element
of [/]\l/), which cannot happen), or there would be at least two such diagonalizable matrices,
which also cannot happen, as shown above.

Assume that all matrices on the line a + tb of discriminant zero have determinant zero.
Then either all of them are of the type Diag{A, A\,0} + ej2 or all of them are of the type
Diag{0,0, u} + e12. (Indeed, there are three roots of the determinant equation det(a + tb) =
0, which are pairwise distinct, and all of them give a matrix with two equal eigenvalues, all
belonging to one of these types, since otherwise one eigenvalue is uniquely defined and thus
yields an element of U D, which cannot happen.

In the first case, all three roots of the determinant equation det(a+tb) = 0 satisfy the equation
(wi(a + tb))? = 4wo(a + tb). Hence, we have three pairwise distinct roots of the polynomial of
maximal degree 2, which can occur only if the polynomial is identically zero. It follows that also
(wi(a))? — 4wsa(a) = 0, so (wi(p))? — 4wa(p) = 0 is identically zero, which by hypothesis cannot
happen.

In the second case we have the analogous situation, but wy(p) will be identically zero, a con-
tradiction.

Thus on the line a + tb we have at least one matrix of the type Diag{\, A\, u} + e12 and
A # 0. Consider the algebraic expression puA~!. If not constant, then it takes on almost
all values, so assume that it is a constant 6. Then § # —2, since otherwise this matrix will
be the unique matrix of trace 0 on the line a 4+ tb and thus an element of UD, contrary to
Lemmas 1.49 and 1.35. Consider the polynomial ¢ = p — gig. At the same point t it takes
on the value Diag{0,0, (6 — 1)A} + e12. Hence all three pairwise distinct roots of the equation
det g(x1 +tZ1,x9,...,2m) = 0 will give us a matrix of the form Diag{0, 0, *} +e12 (otherwise we

have uniqueness and thus an element of (75), contradicting Lemma 1.35. Therefore g satisfies
an equation ws(q) = 0. Hence, p satisfies an equation wq(p)? — cwsz(p) = 0, for some constant c,
a contradiction. Hence almost all non-diagonalizable matrices belong to the image of p, and they
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are almost all matrices of discriminant 0 (a subvariety of M3(K) of codimension 1). By Amitsur’s
theorem, Im p cannot be a subset of the discriminant surface. Thus, Im p is dense in M3(K). B

Remark 3.6. Note that if w(p) is identically zero, and ws(p) is not identically zero, then Im p
contains a matrix similar to Diag{1,1, —2} + ej2. Hence Imp contains all diagonalizable trace
zero matrices (perhaps with the exception of the diagonalizable matrices of discriminant 0, i.e.,
matrices similar to Diag{c, ¢, —2c¢}), all non-diagonalizable non-nilpotent trace zero matrices,
and all matrices N for which N? = 0. Nilpotent matrices of order 3 also belong to the image
of p, as we shall see in Lemma 3.8.

3.2.1 Multilinear trace vanishing polynomials over an algebraically closed field

Lemma 3.7. A matriz is 3-scalar iff its eigenvalues are in {’7,’)/6,’7622 v € K}, where v3 € K
is its determinant. The variety Vs of 3-scalar matrices has dimension 7.

Proof. The first assertion is immediate since the characteristic polynomial is z3 —~3. Hence V3
is a variety. The second assertion follows since the invertible elements of V3 are defined by two
equations: tr(x) =0 and tr (:rfl) = 0 and thus a V3 is a variety of codimension 2. |

Lemma 3.8. Assume Char K # 3. Ifp is neither PI nor central, then the variety Vs is contained
i Imp.

Proof. According to Lemma 1.27 there exist matrix units e, es, ..., e, such that p(eq,es, ...,
em) = e1,2. Consider the mapping x described in the proof of Theorem 3.10 (see Section 3.4 for
details). For any triples T; = (t1,,t2,i,t3,), let

f(Tl, TQ, Ceey Tm) = p( ... ,tlgiei =+ tQ’ix(ei) + t3,iX2(ei)a .. )

Im f (a subset of Imp) is a subset of the 3-dimensional linear space

L = {06612 +B€23 +’Y€317 Oé,ﬁ,'}’ € K}

Since eq9, e23 and e3 belong to Im f, we see that Im f is dense in L, and hence at least one matrix
a = el + Beas + yesy for afy # 0 belongs to Im p. Note that this matrix is 3-central. Thus
the variety V3, excluding the nilpotent matrices, is contained in Im p. The nilpotent matrices of
order 2 also belong to the image of p since they are similar to ejs.

Let us show that all nilpotent matrices of order 3 (i.e., matrices similar to ejs + ea3), also
belong to Im p. We have the multilinear polynomial

f(T, Ty, ..., Ty) =q(T1, T, ..., Ty)eiz + (11, To, ..., Ty )eas + s(11, To, ..., Ty )3,

therefore ¢, r and s are three scalar multilinear polynomials. Assume there is no nilpotent matrix
of order 3 in Imp. Then we have the following: if ¢ = 0 then either rs = 0, if r = 0 then sq = 0,
and if s = 0 then gr = 0. Assume q; is the greatest common divisor of ¢ and r and ¢y = qil. Note
that both ¢; are multilinear polynomials defined on disjoint sets of variables. If g; = 0 then r =0
and if g = 0 then s = 0. Since there are no repeated factors, r = ¢’ is a multiple of ¢; and
s = @95’ is a multiple of ¢o. The polynomial r’ cannot have common devisors with go, therefore
if we consider any generic point (T4,...,T;,) on the surface ' = 0 then r(T1,...,Ty) = 0
and q(T1,...,Tmn) # 0. Hence s(11,...,T,,) = 0 for any generic (11, ...,T),) from the surface
r’ = 0. Therefore ' is the divisor of s. Remind both ¢; and ¢ are multilinear polynomials
defined on disjoint subsets of {T1,T5,...,Ty}. Without loss of generality ¢; = ¢1 (711, ..., Tk),

and ¢2 = q2(Tk+1,- .-, Tm). Therefore ' = r/(Tjy1,...,Ty) and it is divisor of s. Also remind
s = §'qa s0 qa(Tgy1,-..,T) is also divisor of s. Hence ' = cgy where ¢ is constant. Thus
r = qr’ = cqiqa = cq. However there exist (Tyy1,...,Ty,) such that g =0 and r =1 (i.e., such

that f(Tx41,...,Tm) = e23). A contradiction. |
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Remark 3.9. When Char K = 3, V3 is the space of matrices with equal eigenvalues (including
also scalar matrices). The same proof shows that all nilpotent matrices belong to the image of
p, as well as all matrices similar to ¢l 4+ e1s + e23. But we do not know how to show that scalar
matrices and matrices similar to ¢l + ej9 belong to the image of p.

Proof of Theorem 1.20. First assume that Char K # 3. According to Lemma 3.8 the va-
riety V3 is contained in Imp. Therefore Imp is either the set of 3-scalar matrices, or some
8-dimensional variety (with 3-scalar subvariety), or is 9-dimensional (and thus dense).

It remains to classify the possible 8-dimensional images. Let us consider all matrices p(e, .. .,
em) where e; are matrix units. If all such matrices have trace 0, then Im p is dense in sl3(K), by
Theorem 1.19. Therefore we may assume that at least one such matrix a has eigenvalues «, g
and ~ such that a+ 8+~ # 0. By Theorem 3.10 we cannot have a4+ 3+, a+ e +~e2 and a +
Be? + e all nonzero. Hence a either is scalar, or a linear combination (with nonzero coefficients)
of a scalar matrix and Diag {1, g, 62} (or with Diag {1, 2, e}, without loss of generality — with
Diag {1, £, 52}). By Theorem 3.5, if Imp is not dense, then p satisfies an equation of the type
(tr(p))? = vtr (p2) for some v € K. Therefore, if a scalar matrix belongs to Im p, then v = %
and Imp is the set of 3-scalar plus scalar matrices. If the matrix a is not scalar, then it is
a linear combination of a scalar matrix and Diag {1, £, 52}. Hence, by Remark 3.11, Imp is also
the set of 3-scalar plus scalar matrices. At any rate, we have shown that Imp is either {0}, K,
the set of 3-scalar matrices, the set of 3-scalar plus scalar matrices (matrices with eigenvalues
(a + B,a+ Be,a + 582)), sls(K) (perhaps lacking nilpotent matrices of order 3), or is dense
in M3 (K)

If Char K = 3, then by Remark 3.12 the multilinear polynomial p is either trace vanishing or
Im p is dense in M3(K). If p is trace vanishing, then by Theorem 1.19, Im p is one of the following:
{0}, the set of scalar matrices, the set of 3-scalar matrices, or for each triple A\; + Ao + A3 =0
there exists a matrix M € Imp with eigenvalues A\, Ao and As. |

3.3 Deligne trick for algebras of rank 3

Here we show proofs of two important theorems using the Deligne trick (for details see Sec-
tion 2.2).

3.3.1 Evaluations of semihomogeneous polynomials on 3 X 3 matrices

Proof of Theorem 1.18. We define the functions wy: M, (K) — K as in Lemma 3.1, and

consider the rational function H = % (taking values in K U {oc}).

If wa(p) = w3(p) = 0, then each evaluation of p is a nilpotent matrix, contradicting Amitsur’s
theorem. Thus, either Im H is dense in K, or H must be constant.

If Im H is dense in K, then Im p is dense in sls by Lemma 3.1.

So we may assume that H is a constant, i.e., awj(p) + Bw2(p) = 0 for some a, 8 € K not
both 0. Fix generic matrices Y7,...,Y,,. We claim that the eigenvalues A1, Ao, —A1 — A9 of
q :=pY1,...,Y,) are pairwise distinct. Otherwise either they are all equal, or two of them are
equal and the third is not, each of which is impossible by Lemmas 1.49 and 1.35 since g € UD.

Let A, X;, —A] — X, be the eigenvalues of another matrix » € Imp. Thus we have the
following:

w3 (r) + Bwi(r) = awj(q) + Awi(q) = 0.

Therefore we have homogeneous equations on the eigenvalues. Dividing by A§ and \¥ respec-

tively, we have the same two polynomial equations of degree 6 on % and %, yielding six
2

possibilities for i—é The six permutations of A1, Ao, and A3 = —A; — Ao define six pairwise
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different i—i unless (A1, A2, A3) is a permutation (multiplied by a scalar) of one of the following

triples: (1,1, -2), (1,—1,0), (1, €, 52). The first instance is impossible since the eigenvalues must
be pairwise distinct. Here we use the Deligne trick. The second instance give us an element
of Amitsur’s algebra UD with eigenvalue 0 and thus determinant 0, contradicting Amitsur’s
theorem. Here we use the Deligne trick again. In the third instance the polynomial p is 3-
scalar. Thus, either p is 3-scalar, or each matrix from Im p will have the same eigenvalues up to
permutation and scalar multiple (which also holds when p is 3-scalar).

Assume that for some i € {2,3} that trp’ is not identically zero. Then ¢, X}, and A} are three
linear functions on trp’. Hence we have the PI (polynomial identity) (pi - )\Zl) (pi - )\12) (pi — /\g)
Thus by Amitsur’s theorem, one of the factors is a PI. Hence p* is a scalar matrix. However
i # 2 by Lemma 1.35. Hence ¢ = 3, implying Imp is the set of matrices with eigenvalues
{(v,7e,7e?): v € K}. 4

Thus, we may assume that p satisfies tr(p’) = 0 for ¢ = 1,2 and 3. Now wi(p) = tr(p) =0
and 2wy(p) = (tr(p))? — tr (p?) = 0.

Hence wy = wo = 0 if char(K) # 2; in this case ws is either 0 (and hence p is PI) or not 0
(and hence p is 3-scalar).

So assume that char(K) = 2. Recall that

0=1tr(p*) =AM+ A3+ A3 = AT+ 23 + A3 — 3\ A2hs + 3h Ae s

But A 4+ A3 + A3 — 3A\1 Ao )3 is a multiple of A\; + A3 + A3 (seen by substituting —(\; + A2) for \3)
and thus equals 0. Thus, 0 = 3\ A2A\3 = A\ A2A3 = w3(p), and the Hamilton—Cayley equation
yields p3 + wop = 0. Therefore, p(p2 + (.UQ) = 0 and by Amitsur’s theorem either p is PI, or

p? = —wy (which is central), implying by Lemma 1.33 that p is central. |

3.3.2 Evaluations of multilinear trace zero polynomials on 3 X 3 matrices

Proof of Theorem 1.19. If the polynomial wy(p) (defined in the proof of Theorem 1.18) is
identically zero, then the characteristic polynomial is p? — w3(p) = 0, implying p is either
scalar (which can happen only if Char(K) = 3) or 3-scalar. Therefore we may assume that the
polynomial ws(p) is not identically zero. Let

fa,B(M) = OCWQ<M)3 + ,3(4.)3(M)2.

It is enough to show that for any «, € K there exists a non-nilpotent matrix M = p(ay,...,an)
such that f, g(p(a1,...,am)) = 0, since this will imply that the image of H (defined in Lem-
ma 3.1) contains all —g and thus K U{oo}. (For example, if &« = 0 and 3 # 0, then w3(M) =0,
implying wa(M) # 0 since wi (M) = 0 and M is non-nilpotent, and thus H = cc.) Therefore, for
any trace vanishing polynomial (i.e., a polynomial 3 + 12 + vg) there is a matrix in Im p for
which this is the characteristic polynomial. Hence whenever A1 + Ay + A3 = 0 there is a matrix
with eigenvalues \;.

We may assume that a = p(Y7,...,Y,,) and b = p(f’l, Yz ...,Yy) are not proportional, for
generic matrices Y1, Y1, ..., Yy, cf. Lemma 1.34. Consider the polynomial ©0a,8(t) = fasla+1tb).
There are three cases to consider:

Case 1. po g = 0 identically. Then f, g(a) = 0, and a is not nilpotent by Proposition 1.31.
Here we use the Deligne trick.

Case II. ¢, g is a constant 3 # 0. Then fo5(b+ta) = t6g0a’5 (t_l) = St5; thus fa,p(b) =0,
and b is not nilpotent by Proposition 1.31. Here we use the Deligne trick.

Case III. ¢, g is not constant. Then it has finitely many roots. Assume that for each
substitution ¢ the matrix a + tb is nilpotent; in particular, ws(a 4 tb) = 0. Note that wo(a + tb)
equals the sum of principal 2 x 2 minors and thus is a quadratic polynomial (for otherwise
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wa(b) = 0 which means that wy(p) is identically zero, a contradiction). Hence ws(a 4+ tb) has two
roots, which we denote as t1 and to. If {1 = t9, then ¢; is uniquely defined and thus, in view of
Remark 1.42, is a rational function in the entries of a and b, and a + t1b is a nilpotent rational
function (because we assumed that one of a + t1b and a + t9b is nilpotent, but here they are
equal.) At least one of ¢; and 2 is a root of ¢, g.

If only ¢ is a root, then ¢; is uniquely defined and thus, by Remark 1.42, is a rational function;
hence, a+1t1b is a nilpotent polynomial, contradicting Proposition 1.31. Here we use the Deligne
trick. Thus, we may assume that both ¢; and ¢y are roots of ¢, g. But ¢, g(t;) is nilpotent, and
in particular ws(a + t;b) = 0. Thus there exists exactly one more root t3 of ws(a + tb), which is
uniquely defined and thus, by Remark 1.42, is rational. Hence we may consider the polynomial
q(z1,...,Tm,T1) = a + t3b, which must satisfy the condition tr(q) = det(q) = 0. This is
impossible for homogeneous ¢ by Theorem 1.18, and also impossible for nonhomogeneous ¢ since
the leading homogenous component g; would satisfy tr(qgq) = det(¢q) = 0, a contradiction. W

3.4 The Euler graph approach

We recall the following elementary graph-theoretic Lemma 1.27: Let p be a multilinear polyno-
mial. If the a; are matriz units, then p(a1,...,an) is either 0, or ¢ - e;; for some i # j, or
a diagonal matriz.

Proof. We connect a vertex ¢ with a vertex j by an oriented edge if there is a matrix e;; in our
set {a1,a9,...,a,}. The evaluation p(ay,...,an,) # 0 only if there exists an Eulerian cycle or
an Eulerian path in the graph. There exists an Eulerian path only if the degrees of all vertices
but two are even, and the degrees of these two vertices are odd. Also we know that there exists
an Eulerian cycle only if the degrees of all vertices are even. Thus when p(ay, ..., ay) # 0, there
exists either an Fulerian path or cycle in the graph. In the first case we have exactly two vertices
of odd degree such that one of them (i) has more output edges and another (j) has more input
edges. Thus the only nonzero terms in the sum of our polynomial can be of the type ce;; and
therefore the result will also be of this type. In the second case all degrees are even. Thus there
are only cycles and the result must be a diagonal matrix. |

Theorem 3.10. If there exist o, B, and v in K such that o +  + v, a + Be + ve2 and
a + Be? + ye are nonzero, together with matriz units ey, e, . .., ey such that pler,es, ..., em)
has eigenvalues o, B and vy, then Imp is dense in Ms.

Proof. Define x to be the permutation of the set of matrix units, sending the indices 1 — 2,
2 — 3, and 3 — 1. For example, x(e12) = ez3. For triples 11, ..., Ty, (each T; = (ti1,%i2,ti3))
consider the function

F(Ty, . T) = p(tiazn + tox(z1) + tisx ' (@1), taa2e + taox(22) + tagx ™ (z2),
e tm 1T F tmax(2m) + tm73X_1(a:m)). (3.1)

Opening the brackets, we have 3" terms, each of which we claim is a diagonal matrix. Each
term is a monomial with coefficient of the type

k k k
X W(I)X 7(2) ... X 7“(7”)x7r(1)$ﬂ_(2) e l'ﬂ-(m),

where k; is —1, 0 or 1, and 7 is a permutation. Since we substitute only matrix units in p, by
Lemma 1.27 the image is either diagonal or a matrix unit with some coefficient. For each of
the three vertices v1, vg, v3 in our graph define the index ¢4, for 1 < £ < 3 to be the number of
incoming edges to vy minus the number of outgoing edges from vy,. Thus, at the outset, when
the image is diagonal, we have ¢; = 1o = 13 = 0.
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We claim that after applying x to any matrix unit the new ¢, will all still be congruent
modulo 3. Indeed, if the edge 12 is changed to 23, then tf = v+ 1 and 4 = 13+ 1, whereas
ty =19 —2 =15+ 1. The same with changing 23 to 31 and 31 to 12. If we make the opposite
change 21 to 13, then (modulo 3) we subtract 1 throughout. If we make a change of the type
it — jJ, then vy = ¢ for each .

If p(xklxl,XkaQ, ceey kaxm) = ¢;5, this means that the number of incoming edges minus
the number of outgoing edges of the vertex i is —1 (mod 3) and the number of incoming edges
minus the number of outgoing edges of j is 1 (mod 3), which are not congruent modulo 3. Thus
the values of the mapping f defined in (3.1) are diagonal matrices. Now fix 3m algebraically
independent triples T1,...,T,01,...,0,,T1,..., V. Assume that Im f is 2-dimensional.
Then Im df must also be 2-dimensional at any point. Consider the differential df at the point
(@1,Tg, e ,Tm). Thus,

f(©1,Ts,...,Ty), (T, T, ..., Tw), f(©1,09,...,T))

belong to Imdf. Thus these three matrices must span a linear space of dimension not more
than 2. Hence they lie in some plane P. Now take

f(@l’@2,T3,...,Tm), f(@17T27T37'--7Tm)7 f(@17®27637T47...,Tm).

For the same reason they lie in a plane, which is the plane P because it has two pure quaternions
from P. By the same argument, we conclude that all the matrices of the type f(©1,..., 0, Tki1,
.., T)n) lie in P. Now we see that

f(®17"‘7®m—17Tm)7 f(@h”-v@m), f(T17®27"‘7®m)
also lie in P. Analogously we obtain that also
f(Tlv"'7Tk7®k+17"'a@m) ep

for any k.
Hence for 3m algebraically independent triples

Tl,...,Tm; @1,...,@m; Tl,...,Tm,

we have obtained that f(71,...,Tx), f(©1,...,0.,) and f(Y1,...,Y,,) lie in one plane. Thus
any three values of f, in particular Diag{c, 3,v}, Diag{5,~,a} and Diag{~, «, 8}, must lie in
one plane. We claim that this can happen only if

a+B+y=0, a+fe+ye’=0, or a+pe’+ye=0

Indeed, Diag{a, 3,~}, Diag{f, v, @} and Diag{~, a, 8}, are dependent if and only if the matrix

a B v
B v «
v oa B

is singular, i.e., its determinant 3aSvy — (a3 + 33+ 73) = 0. But this has the desired three roots
when viewed as a cubic equation in ~.
We have a contradiction to our hypothesis. |

Remark 3.11. If there exist «, /3, and « such that « + § + v = 0 but («, 3,7) is not propor-
tional to (1,5,52) or (1,52,5), with matrices Ay, Ag, ..., A, such that p(A;, Ag,..., Ay) has
eigenvalues «, 8 and ~, then either all diagonalizable trace zero matrices lie in Im p, or Imp is
dense in M3(K). If a + Be +ve2 = 0 but (a, 3,7) is not proportional to (1,5,52) or (1,1,1),
then all diagonalizable matrices with eigenvalues o + 3, o + Be and a + Be? lie in Imp or Im p
is dense in M3(K).
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Remark 3.12. The proof of Theorem 3.10 works also for any field K of characteristic 3. In
this case e = 1. Hence, if there are «, 3, and v in K such that

at+pf+y#0,

together with matrix units ey, es, ..., e, such that p(eq,es,...,e,) has eigenvalues «, 8 and 7,
then Imp is dense in Ms. Therefore, for Char K = 3, any multilinear polynomial p is either
trace vanishing or Im p is dense in M3(K).

3.5 Open problems related to the rank 3 case

Problem 3.13. Does there actually exist a multilinear polynomial whose image evaluated on
3 X 3 matrices consists of 3-scalar matrices?

Problem 3.14. Does there actually exist a multilinear polynomial whose image evaluated on
3 x 3 matrices is the set of scalars plus 3-scalar matrices?

Remark 3.15. Problems 3.13 and 3.14 both have the same answer. If they both have affirmative
answers, such a polynomial would provide a counter-example to Kaplansky’s problem.

Problem 3.16. Is it possible that the image of a multilinear polynomial evaluated on 3 x 3
matrices is dense but not all of M3(K)?

Problem 3.17. Is it possible that the image of a multilinear polynomial evaluated on 3 x 3
matrices is the set of all trace vanishing matrices excluding discriminant vanishing diagonalazable
matrices?

Problem 3.18. Give a classification of all possible evaluations of homogeneous polynomials
on Ms(K) with respect to Zariski closure.

Remark 3.19. The working hypothesis is that there are 6 Zariski closures of image sets of
homogeneous polynomials: {0}, K, V3(K), sl3(K), V3+K, M3(K'). However the problem remains
open.

Problem 3.20. Investigate all possible image sets of non homogeneous polynomials in order to
obtain a zoo of interesting examples.

Example 3.21. Here are some interesting examples.

e Let p(x1,...,2zm,) be a homogeneous 3-central polynomial and h(z) be any polynomial in
one variable. Then, h(p(z1,...,2y)) is the polynomial having evaluations with triples of
eigenvalues belonging to the set (h(c), h(cg), h(ce?)) for all ¢ € K. This is a 7-dimensional
image.

e Let h(x) be again an arbitrary polynomial in one variable, and consider the polynomial
h(]z,y]). This polynomial image is the set of all matrices having triples of eigenvalues
belonging to the set (h(a), h(b), h(—a — b)) for all pairs a,b € K. This is an 8-dimensional
image.

Problem 3.22. Give a classification of all possible evaluations of multilinear polynomials on
M;3(R) with respect to the standard topology.

Remark 3.23. Although we cannot answer a question about existence of multilinear 3-central
polynomials, but we know that multilinear 3-central polynomials with real coefficients do not
exist. Indeed, according to Lemma 3.3 any multilinear polynomial has a diagonal not scalar
matrix evaluation (with real entries), and these real entries are its eigenvalues. Note that
a nonzero 3-central matrix cannot have three real eigenvalues.

Problem 3.24. Investigate possible evaluations of multilinear polynomials on the simple non
special Jordan algebra, which is denoted as H(C3) in [109] and Co7 in [100].
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4 The case of high rank

The Euler graph approach is useful also for n > 3:

4.1 The Euler graph approach for algebras of high rank
4.1.1 The idea of the method

Define x to be the permutation of the set of matrix units, sending the index ¢ — ¢ + 1 for
1<i<n-1,and n— 1. For example, x(e12) = e23, x(e57) = eps. Since we substitute only
matrix units into p, Lemma 1.27 shows that the image is either diagonal or a matrix unit with
some coefficient. Consider the corresponding graph I'. Consider the sum of (i — j) over edges
(1 — j) of T'. If the graph is an Eulerian cycle then this sum is 0, and if it is an Eulerian path
from k to ¢ then this sum equals k — ¢. Take matrix units ai,...,a, such that p(ai,...,an)
is a diagonal matrix for some o € K. We may assume that ay ---a,, = D. Writing a; = ¢;, j,,
we define t(ag) = iy — jo. Thus iy = jm, and Y i(ag) = 0. Then x*(ag) = €;,4kj,+x (taken
modulo n), implying

L(X"(ap)) = (e + k) — (o + k) = ig — jo = t(ar) (mod n).

Consider

m m
flar,oam) =p [ 3t @)oo n 32 thmX™ (am) | | (4.1)

k1=1 km=1

where the ?; , are commuting indeterminates. Opening the brackets, we have n"* terms, each of
the form

a' = x" () x

which, if nonzero, must have

t(a) = Z L(ngaﬂ(g)) = Z t(ar@ey) =0 (mod n),

/=1 (=1

implying a’ is a diagonal matrix. Hence Im f C Im p contains only diagonal matrices. This helps
us to obtain a good subset in the set of diagonal properties, in particular matrices with needed
set of eigenvalues, and each obtained matrix is an evaluation of the polynomial p.

4.1.2 Applications of the method

In this subsection we will show how this method is used in the proof of several important results:
Theorems 1.12, 1.21 and 1.22.

Proof of Theorem 1.12. Define x as in Section 4.1.1 By Lemma 1.27 there exist matrix units
ai,...,am with p(ai,...,an) = aery for some o € K. We may assume that a; -+ a,, = ejo.
Writing ay = e, j,, we define ¢(ap) =3¢ — jo. Thus iy =1 and j,, =2, and ) ¢(as) = 1. Then
x*(ar) = ei,+k j,+k (taken modulo n), implying

v(X*(a)) = (i + k) — (jo+ k) =i — jo = t(ag) (mod n).

Consider f(ai,...,an) defined in (4.1). Opening the brackets, we have n™ terms, each of
the form
d = Xkl (aﬂ'(l)) U ka (a’ﬂ'(m))a
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which, if nonzero, must have

v(a) = Z L(X an)) = Z Uaz) =1 (mod n),

/=1 /=1

implying @’ is a matrix of the form ce; ;41 or cey, 1. Hence Im f C Imp has the form

0O x 0 ...

00 x ... 0
a =

00 0 . =%

* 0 ... 0 O

Each of the starred entries of a is a polynomial with respect to ¢ ; and each of them takes nonzero
values because e, ;41 belongs to the image of f for any 1 < k < n — 1 and also e, ; € Im(f).
Therefore for generic ¢, each of the starred entries is nonzero, so the minimal polynomial of a
is A" — a for some «, implying a has eigenvalues {c,cs,...,ce" '} where c is the n-th root of
the determinant . |

Remark 4.1. Assume that K has the form F'[e], where ¢ is a primitive n-th root of 1. Let —
denote the automorphism of K sending & ~ 71,

Let us introduce the tool of “harmonic bases” of the space of diagonal matrices. There
is a base of the matrices e, for 0 < k < n — 1, where e, = Diag{l,sk,s%,...,5("_1)k}.
Assume that there exist matrix units ay, ..., a,, such that p(as,...,an) = Diag{co,...,cn—1}.
This can be written as a linear combination of the e;. If, for some k, e, appears in this sum
with nonzero coefficient, then e, belongs to the linear span of <M,X(M),X2(M), . >, where
x(Diag{A1,...,\n}) = Diag{An, A1,..., A\n—1}. Therefore if we have a set of matrix units a;
such that p(ai,...,an,) = M, then we construct a multilinear mapping f whose image will
either have at least dimension 3 or the image will be a linear set and therefore M will be a linear
combination of no more than two base elements ey.

Assume also that the image of p is at most (n2 —n+ 2)-dimensional. By Remark 1.51, the
image of f constructed in the proof of Theorem 1.12 is at most 2-dimensional and thus is a linear
space. If p(ai,...,am) = hoeg+hie1 +- -+ hp_16,—1 with hy # 0, then e belongs to the linear
span of Im f. Hence there are at most two nonzero coefficients, say, hx and h; with all of the
others zero. We can consider the scalar product

{or, . om B, B}y = D B,
i=1

We compute ({co,...,cn-1},€s}) in two ways, first as ngs and then as
—s —(n—1)s
co+cie "+ F+cp1€
since el = 71,
Proof Theorem 1.21. There exist matrix units a; such that p(ai,...,a,) = Diag{co,...,

¢n—1} is diagonal but not scalar. If at least one of the ¢; were zero, then each ¢; would
be zero and therefore this matrix is zero, a contradiction. Thus, without loss of generality
co # c1 are nonzero. Therefore there also exist matrix units a; such that p(ai,...,am) =
Diag{ci,co,co,...,cn-1}.
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Assume that the image of f as constructed in (4.1) is 1-dimensional. Then, for each i,
Diag{co, . .., cn—1} is proportional to Diag{ci, ¢it1,...,cn-1,c0,...,ci—1}. We can construct the
mappings f and f as before, and their images cannot be both 1-dimensional since otherwise

C1 C2 C3 Cp, Co

T= == —=...= = —,
€o 1 C2 Cn—1 Cn

and also 7T =2 =2 =% —... Hence, sincen—1> 3.
c1 co Cco

2_62 01_02_~_C3_

TrT=—" .= ="=7="=7
C1 Qo €o C2

Thus 7 € {0,1}. If 7 = 1 then p(ay,...,ay) is scalar, a contradiction. If 7 = 0 then ¢; = 0,
a contradiction.
We conclude that Im f is least 2-dimensional and Im p is at least (n2 —n+ 2)—dimensiona1.
Assume that the image of p is at most (n2 —n+ 2)—dimensional. As we showed in Remark 4.1,
the matrix Diag{co,...,c,—1} can be written as aey + [e;, which is not scalar. Without loss of
generality we may assume that ¢y # ¢1 (because there exists r such that ¢, # ¢,4+1), and we now
consider the matrix

Diag{cy, Cri1y- -y Cn_1€0,C1y...,Cr_1}
with its different coefficients & = e™*a and 3 = £"'p).

We define the matrices g; := Diag {5]‘3, 1,e%k &3k ,5("_1)k}. Switching the indices 1 and
2, we obtain matrix units a; such that

p(dla “ee 7dm) — Diag{cl, Cp,C2,C3, ... 7cn71} = Qg + Bql

By Remark 4.1, agy + Sq also can be written as a linear combination of two elements of the
base e, (say, aej, + Be;). Note that

(qrres) ="+ —1—F = (" = 1) (1 — &™) + (ex, es).
Thus, if k # s, then
(grres) =" +e —1-F = (" -1)(1-e7)
since (ey, e5) = 0, and if k = s then
(ryes) = (EF —1) (1 —e7*) +n.
Hence, if s ¢ {k,1} then
(agy + Bai,es) = (1 — &%) (e — 1) + B(e' = 1)).

We denote § = a(ek — 1) + B(sl — 1). Recall that ¢; # c¢g, and thus § # 0. Therefore either
s=1Fk, orelse s =1 or (aqr + Baqi,es) = 0 (and thus s is either k, or [, or 1 — 7% = 0 (and
thus s = 0) — only five possibilities. But for n > 6 there are at least three nonzero coefficients,

a contradiction.
Thus we may assume that n = 5. We have exactly five possibilities for s, which therefore

must be distinct. Therefore the k-th and I-th coefficients of aqr + Bq; will be zero, i.e.,

(1 — Efk)é—i— S5a = (1 — E*l)é—k 568 =0,
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where 6 = a(ak — 1) + B(al — 1). In particular

04_1—5*’C

g 1=l

Now let us take matrix units a, such that p(aj,...,a,,) = Diag{ca, c1, co, 3, ca}. Then ary + S
can also be written as a linear combination of two of the e, where r;, = Diag {5%, ek 1,3k, 54k}.
If & # s, then

(rhyes) = 42 —1 =72 = (M —1)(1-7).

We perform the same calculations as before, and obtain

a 1- g2k
g 1—e2
Hence
1—e " _ 1—e 2
l—el 11— 27
implying
1+e* B
1+t 7
and hence k = [, a contradiction. |

Proof of Theorem 1.22. First note that 42 — 4 + 2 = 14, so dimImp > 14. Assume that p is
a multilinear polynomial evaluated on 4 x 4 matrices with 14-dimensional image. Let aq, ..., an,
be any matrix units such that p(ai,...,a,) is diagonal but not scalar. Let p(ai,...,a;) =
Diag{co, c1, 2, cs3} and ¢y # c¢1. We use the same notation as in the proof of Theorem 1.22. Recall
that e, = Diag {1,ik,i2k,i3k} and q; = Diag {ik, 1,i2k,i3k}. As in the proof of Theorem 1.22,
(aqr + Bqr, es) = 5(1 —z'*s) if s ¢ {k,l}, or 5(1 —z'*s) +4a if s =k and 5(1 — ifs) +4pif s =1.
Therefore k and [ are nonzero (for otherwise we have two nonzero possibilities for s ¢ {k,l} and
one other nonzero coefficient would be zero: (aqx + Bq;, ep) = 4 (if we assume k = 0 without
loss of generality). Therefore p(ay,...,ay,) belongs to the linear span (e, es, e3). Hence we have
three options:

b p(alv"'aam) = ey +6€27
i p(ala“'vam) = aey +6€37
e pla,...,an) = aesz + fBes.

We will not treat the last case since its calculations are as in the first case. Let us consider the
first case p(ay,...,an) = ae; + Bea. Therefore p(as,...,an) = aqi + Bgz which can be written
explicitly as

1 1+ 1 —1 7 1 — 1
(o= T58) e hass (G 20

2 2 2 2 2

thus a € {0, (144)8, —(1+14)8}. If « = (144)p then p(ay,...,an) = S Diag{i—2,i+2, —i, —i}.
If « = —(1+14)p then p(ay,...,an) = B Diag{—i, —i,i+2,i — 2}. In both cases a« = £(1 4 1),
so there are matrix units a; such that p(ai,...,an) = Diag{—i,i + 2, —i,7 — 2} which can be
written explicitly as —ie; — ies + ies, and we have three nonzero coefficients. We conclude that
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the image is at least 15-dimensional. If o = 0, then the value p(ai,...,a,) has eigenvalues
(c,c,—c,—c) as in the conditions of the theorem.

Assume now p(ai,...,a,) = aej + Bes. Therefore p(ay,...,ay,) = Diag{x,y, —x,—y}. Then
we consider p(ay,...,a,) = Diag{x, —z,y, —y} which can be written explicitely as

(m—yl(lﬂ)eﬁx;ryeﬁ (:c—yl(l—i)

€3,

therefore x = +y and once again we have a matrix from the conditions of the theorem.
Therefore there is a set of matrix units a; with p(a,...,an) = Diag{c,¢,—c,—c}. Now
we construct the mapping f and the image will be 2-dimensional if and only if it is the set
Diag{A1, A2, —A1, —A2}. Therefore Imp contains all the matrices with such eigenvalues, which
is a 14-dimensional variety. Hence, if dim Imp = 14, then Im p is exactly this variety. |

4.1.3 Questions related to the Euler graph approach

By Lemma 1.34, the image of any multilinear polynomial either is a vector space or is at least
3-dimensional. This is why, when in Section 3.4 we considered a 3-dimensional case and we
obtained the needed result up to Zariski closure. However the question of using this approach
for dimension larger than 3 remains open:

Question 4.2. [s it possible to use this method in order to enlarge the dimension investigated?

Assume we have a periodic sequence with period n (i.e., sequence {ay} such that ayy, = ay
for all £ € N). The dimension of the space spanned by its shifts (i.e., sequences {by = ap1;},
i = n equals the number of harmonics in its discrete Fourier transform. From the other side,
using conjugation we can permute numbers in the period, obtaining different periodic sequences.

Question 4.3. What is the mazimal possible number of harmonics one can obtain for a fired
sequence?

4.2 Non-trivial images: power-central polynomials on matrices

Images of noncommutative polynomials can be nontrivial and investigation of them requires
advanced theory. As a good example of such polynomials one con consider power-central poly-
nomials.

Note that a problem of existence of 3-central polynomials occurred in Section 3.

Any multilinear non-central polynomial p (in several noncommuting variables) takes on values
of degree n in the matrix algebra M,,(F') over an infinite field F' is called power central.

These considerations motivate the following application:

Definition 4.4. A polynomial p is v-central if p” is central, for ¥ > 1 minimal such. The
polynomial p is power-central if p is v-central, for some v > 1.

Remark 4.5. The existence of a v-central polynomial is equivalent to UD containing an element
whose v-power is central, with v minimal such. On the other hand, any such element can be
specialized to an arbitrary division algebra of dimension n? over its center. Thus, to prove the
non-existence of a v-central polynomial, it suffices for suitable ¢ dividing v to construct a division
algebra with center KDK having the property that if d¥ € K then d’ € K.

Examining dimensions of images, we conclude from Theorem 1.21 that multilinear power-
central polynomials do not exist whenever n > 4. Note that it does not contradict to the
Theorem 4.7, where we will show that if a multilinear polynomial p is v-central on M,,(K) then
v = n. Both statements hold. What we can conclude that power central multilinear polynomials
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evaluated on matrix algebras M, (K) can occur only for n =2 or n = 3. For n = 2 there exists
an example (in particular, the polynomial p(x,y) = [z,y], see Example 1.6(ii) for details), for
n = 3 the question whether such polynomial exists remains being open (see Problem 3.13).

To put these results into perspective, we also consider the existence of v-central polynomials
which need not be multilinear.

Using the structure theory of division algebras, Saltman [95] proved that in characteristic 0,
v-central polynomials do not exist for odd v > 1 unless n is prime.

For n = v prime, as explained in [93, Theorem 3.2.20], this is equivalent to Amitsur’s generic
division algebra being cyclic, one of the major open questions in the theory of division algebras.
Although we have nothing more to say about this question, we have results for other cases.

Remark 4.6. A homogeneous 3-central polynomial for n = 3 was constructed in [93, Theo-
rem 3.2.21], and a homogeneous 2-central polynomial for n = 4 was constructed in [93, Propo-
sition 3.2.24].

Theorem 4.7. If a multilinear polynomial p is v-central on My (K) then v =n.

n—1

Proof. By Theorem 1.12, Im p contains a matrix M of type ¢ en 1+ Y ci€iit1 where g -+ - ¢, #
i=1

0. Hence n < v. To show that n = v, consider the continuous mapping

O: (z1,...,2m) = (A1 A1 Ay)
to the projective variety, where \; are the eigenvalues of p(z1,...,x,,). Since p is v-central,
0 is discrete and therefore constant. By Theorem 1.12 there are matrices a1, ..., a, such that
plai,...,am) = M and thus 6(ar,...,am) = (1: €: €: ---: £"71). Therefore p is n-central,
as desired. |

As a special case of Remark 1.50, if p is power-central then Imp has dimension n? —n + 1.

4.2.1 Considerations arising from division algebras

A major tool is Amitsur’s theorem (Proposition 1.31). Here is an easy consequence of the theory
of division algebras.

Lemma 4.8. If a polynomial p is v-central for M,(K) for v > 1, then v cannot be relatively
prime to n.

Proof. We can view p as an element of the generic division algebra UD of “degree n, and we
adjoin an v-root of 1 to K if necessary. Then p generates a subfield of UD, of dimension
dividing v. Hence the dimension is 1; i.e., v = 1. |

We shall need a general fact about polynomial evaluations.

Lemma 4.9. For any polynomial p(z1, ..., xy) which has an evaluation of degree n on M, (K),
there is an index i, 1 < i < m, and matrices ai,az,...,am,a, such that the evaluations
plar,...,a;—1,ai,ai41,-..,0n) and p(ai,...,ai—1,a;,ait1,...,an) do not commute.

Proof. We go back and forth to generic matrices and UD. First of all, for all generic matrices
Yi,.... Y, Y{,..., Y}, and each 4, clearly p(Y1,...,Y;, Y/ |,...,Y]) has degree n over Ky, and
thus has distinct eigenvalues, from which it follows at once that p(Y1,...,Y,,) and p(Y{,...,Y,)
do not commute (since one could diagonalize p(Y1,...,Y,,) while p(Y{,...,Y,)) remains non-
diagonal).
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But, for each i, K1(p(Y1,...,,Y5, Y/, ,...,Y,,)) has dimension n over K and thus is a max-
imal subfield of UD. It follows that p(Y1,...,Y;, Y/ {,...,Y,,) and p(Y1,...,Y; 1, j’, LY

commute iff
Ki(p(Yi, .-, Yo Y, V) = Ka(p(Ya, ..., Yj1, Y], .., VL)),
In particular, K1 (p(Y1,...,Yn)) # Ki(p(Y{,...,Y})), implying
Ky(p(Yi, .. Yo Yy, Y0 £ Ky (p(Ye,. . Yoy, Y], .. YL))

for some i, and thus p(Y1,...,Y;, Y/ ,,...,Y,,) and p(Y1,...,Y;_1,Y/ ..., Y, ) do not commute.
In other words,

p(Yi,....,Y., Y . Y ), p(Ya, ..., Yoo, Y L. Y )] #0,
implying there is a specialization
Vi ar,....Yiea, Y —a, Y = aip1,..., Y, —am
yielding [p(ai,...,ai—1, @i, Qit1, -y @), P(@1, -« ., Gi—1, A}y it 1, - - -, Q)] 7 0. |

Example 4.10. Suppose K has characteristic # 2, and n = 2='¢ where ¢ is odd, and con-

struct D to be a tensor product of “generic” symbols ()\Zu, ,uﬁ“) as in [93, Example 7.1.28 and

Theorem 7.1.29], where ny = ny = -+ = ny—1 = 2 and n; = ¢. In other words, D is the algebra of

central fractions of the skew polynomial ring R := K(g)[Aupte: 1 < u < t] where € is a primitive

q root of 1 and the indeterminates commute except for Aypy = —pAy for 1 < u <t —1 and
t

Aty = e Ae. We write a typical element of R as ai’j)\i,uj, where Al denotes 11 )\Z“. There is

u=1
a natural grade given by the lexicographic order on the exponents of the monomials, and it is

easy to see that if d¥ € K then the leading term d’ € K.

In particular, for v = 2, if d> € K then d must have the form aXyd where iy = j; = 0. On
the other hand, we claim that if d> € K and de K, then d € K. Indeed, taking d’ to be the
next leading term in d, we have

?=(d+d) =d+2dd + -,

implying d’ € K, and continuing, we conclude d € K, as desired.

It follows that if d is 2-central then d is 2-central.

Now we claim that D does not have 4-central elements. Indeed, if d is 4-central then d? is
2-central, implying d? is 2-central, and thus dis 4-central, implying d must have the form aiyd
where iy = j; = 0; we conclude that d is 2-central, implying 2 eK , and thus d?> € K by the
claim.

Theorem 4.11 (Rowen—Saltman). 4-Central polynomials do not exist.

Proof. Combine Remark 4.5 with Example 4.10. |

This leaves us to look for 2-central polynomials.
Proposition 4.12. There exist homogeneous 2-central polynomials with respect to My, (K) if
n = 2q orn = 4q for q odd.

Proof. UD is a tensor product of a division algebra D; of degree 2 or 4 and a division algebra
of degree ¢, and we observed earlier that D has a 2-central element. |

The situation for 8|n remains open, and is equivalent to another important question in division
algebras about the existence of square-central elements. The following observation might be
relevant, although we do not use it further.
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4.2.2 2-central polynomials linear in the first indeterminate

Having settled the issue for homogeneous polynomials except for n = 8¢, we turn to 1-linear
polynomials, where the story ends differently. We use the division algebra approach.

Lemma 4.13. Any division algebra D with a 2-central subspace V' of dimension 2 contains
a K-central quaternion subalgebra. In particular, n := deg(D) cannot be odd. Also, 4 does not
divide n if D also has exponent n.

Proof. Take v,v' € V. Then v?, v? € K. But also, by assumption, v+’ is also square-central,
SO

V24 ov v+ 07 = (v+0)? €K,

implying v'v = —vv'+a for some a € K. But then K+ Kv+Kv'+Kvv' is a central K-subalgebra
of D and has dimension at least 3, but has elements of degree 2, so has dimension 4.

The last assertion follows easily from the theory of finite dimensional division algebras. If D
has a quaternion division algebra then 2 must divide n and the exponent of D is the least
common multiple of 2 and 3. |

We are ready to improve Theorem 1.21(i) in certain cases.

Proposition 4.14. Ifp(z1,...,xm) is a 2-central polynomial for nxn matrices, linear in x1, and
there are non-commuting values p(/a3. csam) and p(al, ..., an) for matrices ai,al,az, ..., am,

then the generic division algebra UD of degree n has a Ki-central quaternion subalgebra. In
particular, n cannot be odd, and 4 does not divide n.

Proof. Let
w=pY1,....Y), w =p(Y{,Ys...,Y),

where the Y; and Y/ are generic matrices. Then w?, w' le K 1. But also, by definition, w +w’ =
p(Y1 +Y{,...,Y,,) is also 2-central, so

w? + ww' + ww + w'? = (w —i—w’)2 € Ky,

implying w'w = —ww' 4 « for some a € K. But then K1 + Kyjw 4+ Kjw' 4+ Kyww' is a central
Kj-subalgebra of UD and has dimension 4.

The last assertion follows since the generic division algebra UD of degree n has exponent n,
whereas if UD has a central quaternion division subalgebra, then 2 must divide n and the
exponent of UD is the least common multiple of 2 and 7. |

This conclusion is the opposite of Proposition 4.12, when n = 4q for ¢ odd. The hypothesis
clearly holds when p is multilinear. Indeed, in view of Lemma 4.9, two consecutive terms of the
chain

plat,...,am),pldy,as,...,am),...,plda),... a)

do not commute. On the other hand, it also holds when p(x1,x2,...,22) is non-central, since
we could take Y{ = V1Yo, .
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4.3 Open problems

The investigations of possible image sets may be difficult, this is the reason to try first to
construct interesting examples of polynomials with non-standard image sets:

Question 4.15. What interesting examples of evaluations of homogeneous polynomials (with
respect to Zariski topology) on high rank matriz algebras can occur?

Remark 4.16. These examples can be nontrivial (see Section 4.2) and there is a little hope
to complete description at this moment. Thus, at this moment it would be nice to provide
interesting examples and constructions.

Another famous problem is the Freiheitsatz for associative algebras in nonzero characteristic:

Freiheitsatz. For P € A = k(xy,...,x,,t) which involves t nontrivially, the algebra k{x1, ...,
xn) can be naturally embedded into the quotient k(xy,...,xy,t)/Id(P).

For Char K = 0 the Freiheitsatz was solved by Makar-Limanov [79] and generalized by
Kolesnikov [66, 67].

Working hypothesis: The Freiheitsatz is true in arbitrary characteristic.

Methods: The Freiheitsatz for associative algebras was established in the case char(k) =
0 by Makar-Limanov, as a consequence of his construction of an algebraically closed skew-
field. Later on, P. Kolesnikov developed Makar-Limanov’s ideas and, in particular, improved his
exposition. The proof is based on solvability of equations in the algebra of Malcev—von Neumann
series which are related to differential operators. The construction of the algebra in which the
corresponding equations were solved is none other than the x-operation related to Kontsevich’s
formal quantization.

Makar-Limanov has proposed proving that the co-rank of an arbitrary polynomial p on M,, (k)
is bounded by some reasonable function of n. This would yield the Freiheitsatz almost imme-
diately. The difficulty is that p need not be homogeneous. We have some information obtained
by examining generic matrices, and the hope is that they will be amenable to new geometric
techniques. Topological maps defined on Banach spaces were investigated by Bresar in [17] and
his approach can be useful in this question.

4.3.1 Images of polynomial maps and matrix equations

Let P be a noncommutative polynomial.
Suppose that for all sufficiently large n we can solve the system

(Pi(1,...,2,5,t) = 0}. (4.2)

Let &,i=1,...,s, v be a solution of (4.2). Then after substituting =; — a; + &, t — t + v, we
obtain an equation without a free term. Further, assume that after such a substitution there
appears a term B(t) linear in t. Let us regard B as an element of an operator algebra. If it
turns out that the operator B is invertible, we will be able to solve (4.2) using the method of
consecutive approximations in the product of the matrix algebra and the free algebra, and thus
see that this equation does not impose any restrictions on the original z1,..., zs.

It is worth noting that it is enough to know how to solve equations (and prove invertibility
of operators) modulo matrices of bounded rank and as n — oc.

Therefore the following question is relevant:

Problem 4.17. Give a classification of possible image sets of arbitrary (or homogeneous) poly-
nomial evaluated on matrices of rank much higher than the polynomial degree.
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For the multilinear case, one can consider the union of all ranks matrices My, (K): the set of
infinite matrices with finite number of nonzero entries. The working hypothesis of the L’vov—
Kaplansky conjecture) is quite reasonable:

Problem 4.18. Let p be any multilinear polynomial evaluated on My, (K). Then Imp is the set
of trace vanishing matrices sloo(K), if and only if p can be written as a sum of commutators;
otherwise it is the entire set Moo (K).

5 Lie polynomials and non-associative generalizations

Next we consider a Lie polynomial p. We describe all the possible images of p in My(K)
and provide an example of such p whose image is the set of non-nilpotent trace zero matrices,
together with 0. We provide an arithmetic criterion for this case. We also show that the standard
polynomial s is not a Lie polynomial, for k& > 2.

This section, which consists of two parts, studies the L’vov—Kaplansky conjecture for Lie
algebras. Even the case of Lie identities has room for further investigation, although it has
already been studied in two important books [5, 91]. In the first part we are interested in
images of Lie polynomials on M, (K), viewed as a Lie algebra, and thus denoted as gl,,(K) (or
just gl if K is understood). Since [f,g] can be interpreted as fg — ¢gf in the free associative
algebra, we identify any Lie polynomial with an associative polynomial. In this way, any set that
can arise as the image of a Lie polynomial on the Lie algebra gl,, also fits into the framework of
the associative theory of M, (K), and our challenge here is to find examples of Lie polynomials
that achieve the sets described in Sections 1.3.1 and 3.

As we shall see, this task is not so easy as it may seem at first glance. At the outset, the
situation for Lie polynomials is subtler than for regular polynomials, for the simple reason that
the most prominent polynomials in the theory, the standard polynomial s, and the Capelli
polynomial ¢,, turn out not to be Lie polynomials. We first consider Lie identities, proving that
the standard polynomial s is not a Lie polynomial for k£ > 2. A key role is played by sl,, the
Lie algebra of n x n matrices over K having trace 0.

Then we classify the possible images of Lie polynomials evaluated on 2 x 2 matrices, based
on Section 2.1.1 where the field K was required to be quadratically closed, and Section 2.1.3,
where results were provided over real closed fields, some of them holding more generally over
arbitrary fields. We also consider the 3 x 3 case (Section 3).

5.1 Homogeneous Lie polynomials on gl,, and sl,

We refine Conjecture 1.4 to Lie polynomials, and ask:

Question 5.1. What is the possible image set Im f of a Lie polynomial f on gl,, and sl, ¢ For
which Lie polynomials f do we achieve this image set? For example, what are the Lie identities
of smallest degree on gl,, and sl,, ?

In order to pass to the associative theory, we make use of the adjoint algebra ad L = {ad, :
L — L:a € L} given by ady(b) = [a,b]. Note that

dimg (ad L) < dimg Endg (L) = (dimg L)?.

The map a +— ad, defines a well-known Lie homomorphism L — ad L.

We write [a,...,a] for [a1,...,[ai—1,a]], and [a(k),at] for [a,...,a,a;] where a occurs k
times. By ad-monomial we mean a term o adx;, - --ad x;, for some o € K. By ad-polynomial
we mean a sum of ad-monomials.



52 A. Kanel-Belov, S. Malev, L. Rowen and R. Yavich

Remark 5.2.
adg, - - -adg, (a) = [a1,...,as,al.

In this way, any ad-monomial corresponds to a Lie monomial, and thus any ad-polynomial
f(adg,,...,ads,) gives rise to a Lie polynomial f(z1,...,x,y) taking on the same values, and
in which y appears of degree 1 in each Lie monomial in the innermost set of Lie brackets.

Recall that an associative polynomial f(x1,...,xx) is alternating in the last m + 1 variables
if f becomes 0 whenever two of the last m + 1 variables are specialized to the same quantity.
This yields:

Proposition 5.3. Suppose L is a Lie algebra of dimension m, and f(x1,...,x) is a multilinear
polynomial alternating in the last m 4+ 1 variables. Then

f(adzu R adl“k)(y)

corresponds to a Lie identity of L of degree deg f + 1.

Proof. The alternating property implies f(x1,...,2x) vanishes on ad L, cf. [92, Proposi-
tion 1.2.24], so every substitution of f(ad,,...,ady,)(y) vanishes. [

Since the alternating polynomial of smallest degree is the standard polynomial s,,+1, we have
a Lie identity of degree m+2 for any Lie algebra of dimension m. In particular, dim(sl,) = n?—1,
yielding:

Corollary 5.4. sl,, satisfies a Lie identity of degree n® + 1.
Corollary 5.4 gives rise to the following question:
Question 5.5. What is the minimal degree m,, of a Lie identity of sl, ¢

By Corollary 5.4, m,, < n? + 1, and in particular ms < 5. Even the answer mo = 5 given
in [91, Theorem 36.1], is not easy, although a reasonably fast combinatoric approach is given
in [5, p. 165], where it is observed that any since any Lie algebra L satisfying a Lie identity of
degree < 5 is solvable, one must have ms > 5, yielding ms = 5. Spenko [98, Proposition 7.5]
looked at this from the other direction and showed that if p is a Lie polynomial of degree < 4
then Imp = sls.

Conversely, we have:

Proposition 5.6. Suppose f(x1,...,x¢,y) is a Lie polynomial in which y appears in degree 1 in
each of its Lie monomials. Then f corresponds to an ad-polynomial taking on the same values
on L as f.

Proof. In view of Remark 5.2, it suffices to show that any Lie monomial h can be rewritten in
the free Lie algebra as a sum of Lie monomials in which y appears (in degree 1) in the innermost
set of Lie brackets. This could be done directly by means of the Jacobi identity, but here is
a slicker argument.

Write h = [h1, ha], and we appeal to induction on the degree of h. y appears say in ho. If
hi = y then we are done since h = —[hg, y| corresponds to — adj,. Likewise if hy = y. In general,
by induction, h; corresponds to some ad-monomial ad, - adzik (y) and hg corresponds to some
ad-monomial ady;  ---ady;, (y), so [h1, ko] corresponds to ady, ---adg,, ((admik+1 -+radg,, ) (y))

= adg,, ---ady,, (y) as desired. [ |

Corollary 5.7. Any homogeneous Lie polynomial of degree > 3 must be an identity (viewing
the Lie commutator [a,b] as ab — ba) of the Grassmann algebra G.
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Proof. Each term includes [z;, zj, x|, which is well known to be an identity of G. |
Example 5.8.

(i) The standard polynomial sg itself is a Lie polynomial.

(ii) s4 vanishes on sly (viewed inside the associative algebra My (K)), since sl has dimension 3.
But surprisingly, this is not the polynomial of lowest degree vanishing on sly, as we see
next.

(iii) Bakhturin [5, Theorem 5.14] points out that f = [(x129 + z221), 23] vanishes on sly. In
other words, aias + aoaq is scalar for any 2 x 2 matrices a1, as of trace 0. Indeed, a? is
scalar for i = 1,2, implying ajas + asa; is scalar unless a1, as are linearly independent, in
which case ajas + aga1 commutes with both a; and as, and thus again is scalar. But f is
not a Lie polynomial, as seen via the next lemma.

This discussion motivates us to ask when a polynomial is a Lie polynomial. Here is a very
easy criterion which is of some use.

Lemma 5.9. Any Lie polynomial which vanishes on sl is an identity of gl,,.
Proof. Immediate, since gl/, = sl/,. n

The standard polynomial s4 is not a Lie polynomial. Here are three ways of seeing this basic
fact.

(i) Confront Example 5.8 with the fact that my = 5, whereas deg so = 4.

(ii) A computational approach. We have 15 multilinear Lie monomials of degree 4, namely
%(3) = 3 of the form

[[xilvxlé]v [xi3)xi4H (5'1)
and 2(;1) = 12 of the form

[y s o], Tig)s @iy (5.2)

But

[[xil ) xiz]a [wiw xi4“ = ad[xi?),xu] ad:viQ (xll)

= ady,, ady,, ady,, (zi,) — ady,, ady,, ady,, (24,),

so we can rewrite the equations (5.1) in terms of (5.2). Furthermore, with the help of
the Jacobi identity, (5.2) can be reduced to seven independent Lie monomials, and one
can show that these do not span s4. Even though this might seem unduly complicated, it

provides a general program to verify that a given polynomial is not Lie.
(iii) The third approach is simpler and works for s, for any k > 2.

P.M. Cohn was the first to tie the standard polynomial to the infinite dimensional Grass-
mann algebra G with base ey, eg, ..., by noting that si(e1,...,ex) = kley---ex # 0 when
k! = 0.

Theorem 5.10. The standard polynomial sy is not a Lie polynomial, for any k > 2.

Proof. Otherwise, by Corollary 5.7 it would be an identity of G, contradicting Cohn’s obser-
vation (taking Char K = 0). [
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5.2 The case n = 2

Recall from Corollary 5.4 that there is a Lie identity of degree 5.

Theorem 5.11. If p is a homogeneous Lie polynomial evaluated on the matriz ring My(K),
where K is an algebraically closed field, then Im f is either {0}, or K (the set of scalar matrices),
or the set of all non-nilpotent matrices having trace zero, or sla(K), or Ma(K).

Remark 5.12. Nonzero scalar matrices can be obtained in Theorem 5.11 only when Char K = 2,
and the last case My(K) is possible only if deg f = 1.

Proof of Theorem 5.11. According to Theorem 2.3 the image of p must be either {0}, or K,
or the set of all non-nilpotent matrices having trace zero, or sla(K), or a dense subset of Ma(K)
(with respect to Zariski topology). Note that if at least one matrix having nonzero trace belongs
to the image of p, then degp = 1 and thus Imp = My (K). |

Theorem 5.13. For any algebraically closed field K of characteristic # 2, the image of any Lie
polynomial p (not necessarily homogeneous) evaluated on sla(K) is either slo(K), or {0}, or the
set of trace zero non-nilpotent matrices.

Proof. For p not a PI, we can write p = f; + fj41 + -+ + fq, where each f; is a homogeneous
Lie polynomial of degree i, and f; is not PI. Therefore for any ¢ € K we have

p(exy, cxa, ..., cxpy) :cjfj—k--'—f—cdfd.

Since fy is not PI, we can take specializations of z1,. .., z,, for which det(fy;) # 0. Fixing these
specializations, we consider det(c fi+-+ cf,;) as a polynomial in ¢ of degree j+---+d. Since
the leading coefficient is not zero and K is algebraically closed, its image is K. Thus for any
k € K there exist x1, ...,z for which det(f) = k. Hence (for Char K # 2) any matrix with
nonzero eigenvalues A and —A belongs to Im f. Therefore Im f is either sly or the set of trace
zero non-nilpotent matrices. |

Let us give examples of Lie polynomials having such images:

Example 5.14 (Alexei Kanel-Belov). If Char K = 2, then Imp = K also is possible: We take
p(x,y, 2,t) = [[z,y], [2,1]].

Any value of p is the Lie product of two trace zero matrices s; = [z, y] and so = [z,t]. Both can
be written as s; = h; + u; + v;, where the h; are diagonal trace zero matrices (which are scalar
since Char K = 2), the u; are proportional to ej2, and the v; are proportional to eg;. Thus
[s1, 2] = [u1, v2] + [ug2,v1] is scalar.

Over an arbitrary field, Imp can indeed be equal to {0}, or K, or the set of all non-nilpotent
matrices having trace zero, or sly(K), or My(K).

(i) Imz = My(K).
(ii) Imlz,y] = slo.

(iii) Next, we construct a Lie polynomial whose image evaluated on sla(K) is the set of all non-

nilpotent matrices having trace zero. We take the multilinear polynomial h(ug,...,us)
constructed in [33] by Drensky and Kasparian which is central on 3 x 3 matrices. Given
2 X 2 matrices x1,...,x9 we consider the homogeneous Lie polynomial

p('rla s 7179) = h(ad[mg,mg,...,xg,x1}7adibza ad$3a R 7ad18)(x9)'



Evaluations of Noncommutative Polynomials on Algebras 55

For any 2 x 2 matrix z, ad, is a 3 X 3 matrix since sly is 3-dimensional; hence, for any
values of x;, the value of p has to be proportional to x9. However for xg nilpotent, this
must be zero, since [:1:(3),y] = 0 for any y € sla(K) if x is nilpotent. (When we open the
brackets we have the sum of 8 terms and each term equals zFyz®~*. But for any integer k,
either £ > 2 or 3 — k > 2.) Thus the image of p is exactly the set of non-nilpotent trace
zero matrices.

Another example of a homogeneous Lie polynomial with no nilpotent values is p(x,y) =
[[[z,y], ], [[x,y],y]]. (See [8, Example 4.9] for details.)
5.3 The case n = 3

New questions arise concerning the possible evaluation of Lie polynomials on M, (K).
According to Theorem 1.18, if p is a homogeneous polynomial with trace vanishing image,
then Im p is one of the following:

{0},

the set of scalar matrices (which can occur only if Char K = 3),

a dense subset of sl3(K), or

the set of 3-scalar matrices, i.e., with eigenvalues (c, cw, cw2), where w is our cube root
of 1.

Drensky and Rashkova [35] have found several identities of slg of degree 6, but they cannot
be Lie polynomials, since otherwise they would be identities of gls and thus a multiple of sg,
which is not a Lie polynomial. Thus, one must go to higher degree.

In the associative case, the fact that th