Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 072, 20 pages      arXiv:1910.10686      https://doi.org/10.3842/SIGMA.2020.072
Contribution to the Special Issue on Elliptic Integrable Systems, Special Functions and Quantum Field Theory

Barnes-Ismagilov Integrals and Hypergeometric Functions of the Complex Field

Yury A. Neretin abcd
a)  Wolfgang Pauli Institut, c/o Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria
b)  Institute for Theoretical and Experimental Physics, Moscow, Russia
c)  Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Russia
d)  Institute for Information Transmission Problems, Moscow, Russia

Received April 09, 2020, in final form July 17, 2020; Published online August 02, 2020

Abstract
We examine a family ${}_pG_{q}^{\mathbb C}\big[\genfrac{}{}{0pt}{}{(a)}{(b)};z\big]$ of integrals of Mellin-Barnes type over the space ${\mathbb Z}\times {\mathbb R}$, such functions $G$ naturally arise in representation theory of the Lorentz group. We express ${}_pG_{q}^{\mathbb C}(z)$ as quadratic expressions in the generalized hypergeometric functions ${}_{p}F_{q-1}$ and discuss further properties of the functions ${}_pG_{q}^{\mathbb C}(z)$.

Key words: Mellin-Barnes integrals; Mellin transform; hypergeometric functions; Lorentz group.

pdf (540 kb)   tex (30 kb)  

References

  1. Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, Vol. 71, Cambridge University Press, Cambridge, 1999.
  2. Bazhanov V.V., Mangazeev V.V., Sergeev S.M., Exact solution of the Faddeev-Volkov model, Phys. Lett. A 372 (2008), 1547-1550, arXiv:0706.3077.
  3. Beals R., Wong R., Special functions and orthogonal polynomials, Cambridge Studies in Advanced Mathematics, Vol. 153, Cambridge University Press, Cambridge, 2016.
  4. Brychkov Yu.A., Marichev O.I., Savischenko N.V., Handbook of Mellin transforms, Advances in Applied Mathematics, CRC Press, Boca Raton, FL, 2019.
  5. Derkachov S.É., Korchemsky G.P., Manashov A.N., Noncompact Heisenberg spin magnets from high-energy QCD. I. Baxter $Q$-operator and separation of variables, Nuclear Phys. B 617 (2001), 375-440, arXiv:hep-th/0107193.
  6. Derkachov S.É., Manashov A.N., $\mathcal R$-matrix and Baxter $\mathcal Q$-operators for the noncompact ${\rm SL}(N,{\mathbb C})$ invariant spin chain, SIGMA 2 (2006), 084, 20 pages, arXiv:nlin.SI/0612003.
  7. Derkachov S.É., Manashov A.N., General solution of the Yang-Baxter equation with the symmetry group ${\rm SL}(n,{\mathbb C})$, St. Petersburg Math. J. 21 (2010), 513-577.
  8. Derkachov S.E., Manashov A.N., On complex gamma-function integrals, SIGMA 16 (2020), 003, 20 pages, arXiv:1908.01530.
  9. Derkachov S.É., Manashov A.N., Valinevich P.A., Gustafson integrals for ${\rm SL}(2,{\mathbb C})$ spin magnet, J. Phys. A: Math. Theor. 50 (2017), 294007, 12 pages, arXiv:1612.00727.
  10. Derkachov S.É., Manashov A.N., Valinevich P.A., ${\rm SL}(2,\mathbb{C})$ Gustafson integrals, SIGMA 14 (2018), 030, 16 pages, arXiv:1711.07822.
  11. Derkachov S.É., Spiridonov V.P., The $6j$-symbols for the ${\rm SL}(2,{\mathbb C})$ group, Theoret. and Math. Phys. 198 (2019), 29-47, arXiv:1711.07073.
  12. Dotsenko V.S., Fateev V.A., Four-point correlation functions and the operator algebra in $2$D conformal invariant theories with central charge $C\leq 1$, Nuclear Phys. B 251 (1985), 691-734.
  13. Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions, Vol. I, McGraw-Hill Book Company, Inc., New York - Toronto - London, 1953.
  14. Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions, Vol. II, McGraw-Hill Book Company, Inc., New York - Toronto - London, 1953.
  15. Gel'fand I.M., Graev M.I., An application of the horisphere method to the spectral analysis of functions in real and imaginary Lobatchevsky spaces, Tr. Mosk. Mat. Obs. 11 (1962), 243-308.
  16. Gel'fand I.M., Graev M.I., Retakh V.S., Hypergeometric functions over an arbitrary field, Russian Math. Surveys 59 (2004), 831-905.
  17. Gel'fand I.M., Graev M.I., Vilenkin N.Y., Generalized functions, Vol. 5, Integral geometry and representation theory, Academic Press, New York - London, 1966.
  18. Gradshteyn I.S., Ryzhik I.M., Table of integrals, series, and products, 4th ed., Academic Press, New York - London, 1965.
  19. Groenevelt W., The Wilson function transform, Int. Math. Res. Not. 2003 (2003), 2779-2817, arXiv:math.CA/0306424.
  20. Groenevelt W., Wilson function transforms related to Racah coefficients, Acta Appl. Math. 91 (2006), 133-191, arXiv:math.CA/0501511.
  21. Heckman G.J., Opdam E.M., Root systems and hypergeometric functions. I, Compositio Math. 64 (1987), 329-352.
  22. Hörmander L., The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis, Grundlehren der Mathematischen Wissenschaften, Vol. 256, Springer-Verlag, Berlin, 1983.
  23. Ismagilov R.S., On Racah operators, Funct. Anal. Appl. 40 (2006), 222-224.
  24. Ismagilov R.S., Racah operators for principal series of representations of the group ${\rm SL}(2,{\mathbb C})$, Sb. Math. 198 (2007), 369-381.
  25. Ismagilov R.S., Racah operators for the group of motions, Funct. Anal. Appl. 42 (2008), 72-74.
  26. Ismagilov R.S., Racah operators for unitary representations of groups, Mosc. Math. J. 14 (2014), 565-576.
  27. Kels A.P., New solutions of the star-triangle relation, J. Phys. A: Math. Theor. 47 (2014), 055203, 7 pages, arXiv:1302.3025.
  28. Kels A.P., New solutions of the star-triangle relation with discrete and continuous spin variables, J. Phys. A: Math. Theor. 48 (2015), 435201, 19 pages, arXiv:1504.07074.
  29. Koornwinder T.H., Jacobi functions and analysis on noncompact semisimple Lie groups, in Special Functions: Group Theoretical Aspects and Applications, Editors Askey R.A., Koornwinder T.H., Schempp W.J., Math. Appl., Reidel, Dordrecht, 1984, 1-85.
  30. Luke Y.L., The special functions and their approximations, Vol. I, Mathematics in Science and Engineering, Vol. 53, Academic Press, New York - London, 1969.
  31. Marichev O.I., Handbook of integral transforms of higher transcendental functions. Theory and algorithmic tables, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester, 1983 (translated from: A method of calculating integrals from special functions(theory and tables of formulas), Nauka i Tekhnika, Minsk, 1978).
  32. Mimachi K., Complex hypergeometric integrals, in Representation Theory, Special Functions and Painlevé equations - RIMS 2015, Adv. Stud. Pure Math., Vol. 76, Editors H. Konno, H. Sakai, J. Shiraishi, T. Suzuki, Y. Yamada, Math. Soc. Japan, Tokyo, 2018, 469-485.
  33. Molchanov V.F., Neretin Yu.A., A pair of commuting hypergeometric operators on the complex plane and bispectrality, J. Spectr. Theory, to appear, arXiv:1812.06766.
  34. Naimark M.A., Decomposition of a tensor product of irreducible representations of the proper Lorentz group into irreducible representations. I. The case of a tensor product of representations of the fundamental series, Amer. Math. Soc. Transl. Ser. 2, Vol. 36, Amer. Math. Soc., Providence, RI, 1964, 101-136 (translated from: Tr. Mosk. Mat. Obs. 8 (1959), 121-153).
  35. Naimark M.A., Decomposition of a tensor product of irreducible representations of the proper Lorentz group into irreducible representations. II. The case of a tensor product of representations of the fundamental and complementary series, Amer. Math. Soc. Transl. Ser. 2, Vol. 36, Amer. Math. Soc., Providence, RI, 1964, 137-187 (translated from: Tr. Mosk. Mat. Obs. 9 (1960), 237-282).
  36. Naimark M.A., Decomposition of a tensor product of irreducible representations of the proper Lorentz group into irreducible representations. III. The case of a tensor product of representations of the complementary series, Amer. Math. Soc. Transl. Ser. 2, Vol. 36, Amer. Math. Soc., Providence, RI, 1964, 189-229 (translated from: Tr. Mosk. Mat. Obs. 10 (1961), 181-216).
  37. Neretin Yu.A., Beta-integrals and finite orthogonal systems of Wilson polynomials, Sb. Math. 193 (2002), 1071-1089, arXiv:math.CA/0206199.
  38. Neretin Yu.A., Some continuous analogues of the expansion in Jacobi polynomials, and vector-valued orthogonal bases, Funct. Anal. Appl. 39 (2005), 106-119, arXiv:math.CA/0309445.
  39. Neretin Yu.A., An analog of the Dougall formula and of the de Branges-Wilson integral, Ramanujan J., to appear, arXiv:1812.07341.
  40. Prudnikov A.P., Brychkov Yu.A., Marichev O.I., Integrals and series. Vols. 1-5. Gordon and Breach Science Publishers, New York, 1986-1992.
  41. Prudnikov A.P., Brychkov Yu.A., Marichev O.I., Calculation of integrals and the Mellin transform, J. Soviet Math. 54 (1991), 1239-1341 (translated from: Itogi Nauki i Tekhn. Ser. Mat. Anal., 27 (1989), 3-146).
  42. Sarkissian G.A., Spiridonov V.P., The endless beta integrals, SIGMA 16 (2020), 074, 21 pages, arXiv:2005.01059
  43. Slater L.J., Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966.
  44. Titchmarsh E.C., The theory of functions, 2nd ed., Oxford University Press, Oxford, 1939.
  45. Vilenkin N.Ja., Special functions and the theory of group representations, Translations of Mathematical Monographs, Vol. 22, Amer. Math. Soc., Providence, RI, 1968.
  46. Yakubovich S.B., Index transforms, World Sci. Publ. Co., Inc., River Edge, NJ, 1996.

Previous article  Next article  Contents of Volume 16 (2020)