Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 093, 22 pages      arXiv:2003.13842      https://doi.org/10.3842/SIGMA.2020.093

Feature Matching and Heat Flow in Centro-Affine Geometry

Peter J. Olver a, Changzheng Qu b and Yun Yang c
a) School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
b) School of Mathematics and Statistics, Ningbo University, Ningbo 315211, P.R. China
c) Department of Mathematics, Northeastern University, Shenyang, 110819, P.R. China

Received April 02, 2020, in final form September 14, 2020; Published online September 29, 2020

Abstract
In this paper, we study the differential invariants and the invariant heat flow in centro-affine geometry, proving that the latter is equivalent to the inviscid Burgers' equation. Furthermore, we apply the centro-affine invariants to develop an invariant algorithm to match features of objects appearing in images. We show that the resulting algorithm compares favorably with the widely applied scale-invariant feature transform (SIFT), speeded up robust features (SURF), and affine-SIFT (ASIFT) methods.

Key words: centro-affine geometry; equivariant moving frames; heat flow; inviscid Burgers' equation; differential invariant; edge matching.

pdf (7478 kb)   tex (6914 kb)  

References

  1. Andrews B., The affine curve-lengthening flow, J. Reine Angew. Math. 506 (1999), 43-83.
  2. Angenent S., Sapiro G., Tannenbaum A., On the affine heat equation for non-convex curves, J. Amer. Math. Soc. 11 (1998), 601-634.
  3. Bay H., Tuytelaars T., Van Gool L., Surf: speeded up robust features, in Computer Vision - ECCV 2006, Editors A. Leonardis, H. Bischof, A. Pinz, Springer, Berlin - Heidelberg, 2006, 404-417.
  4. Blaschke W., Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie. II. Affine Differentialgeometrie, Springer, Berlin, 1923.
  5. Cartan É., La Méthode du Repère Mobile, la Théorie des Groupes Continus, et les Espaces Généralisés, Hermann, Paris, 1935.
  6. Chou K.-S., Zhu X.-P., The curve shortening problem, Chapman & Hall/CRC, Boca Raton, FL, 2001.
  7. Cohen F.S., Huang Z., Yang Z., Invariant matching and identification of curves using B-splines curve representation, IEEE Trans. Image Process. 4 (1995), 1-10.
  8. Damelin S.B., Ragozin D.L., Werman M., On best uniform approximation of convex/concave real valued functions from ${\mathbb R}^k$, Chebyshev equioscillation and graphics, in Excursions in Harmonic Analysis, Vol. 6, In Honor of John Benedetto's 80th Birthday, Applied and Numerical Harmonic Analysis, to appear, arXiv:1812.02302.
  9. Daskalopoulos P., Sesum N., Ancient solutions to geometric flows, Notices Amer. Math. Soc. 67 (2020), 467-474.
  10. Deckelnick K., Dziuk G., Elliott C.M., Computation of geometric partial differential equations and mean curvature flow, Acta Numer. 14 (2005), 139-232.
  11. Epstein C.L., Gage M., The curve shortening flow, in Wave Motion: Theory, Modelling, and Computation, Proceedings of a Conference in Honor of the 60th Birthday of Peter D. Lax (Berkeley, Calif., 1986), Math. Sci. Res. Inst. Publ., Vol. 7, Editors A.J. Chorin, A.J. Majda, Springer, New York, 1987, 15-59.
  12. Fels M., Olver P.J., Moving coframes. II. Regularization and theoretical foundations, Acta Appl. Math. 55 (1999), 127-208.
  13. Gage M., Hamilton R.S., The heat equation shrinking convex plane curves, J. Differential Geom. 23 (1986), 69-96.
  14. Gardner R.B., Wilkens G.R., The fundamental theorems of curves and hypersurfaces in centro-affine geometry, Bull. Belg. Math. Soc. Simon Stevin 4 (1997), 379-401.
  15. Grayson M.A., The heat equation shrinks embedded plane curves to round points, J. Differential Geom. 26 (1987), 285-314.
  16. Grayson M.A., Shortening embedded curves, Ann. of Math. 129 (1989), 71-111.
  17. Hann C.E., Hickman M.S., Projective curvature and integral invariants, Acta Appl. Math. 74 (2002), 177-193.
  18. Hartigan J.A., Wong M.A., Algorithm AS 136: A k-means clustering algorithm, J. Roy. Stat. Soc. Ser. C. Appl. Stat. 28 (1979), 100-108.
  19. Hasimoto H., A soliton on a vortex filament, J. Fluid Mech. 51 (1972), 477-485.
  20. Huang Z., Cohen F.S., Affine-invariant B-spline moments for curve matching, IEEE Trans. Image Process. 5 (1996), 1473-1480.
  21. Kuwert E., Schätzle R., Gradient flow for the Willmore functional, Comm. Anal. Geom. 10 (2002), 307-339.
  22. Langer J., Perline R., Poisson geometry of the filament equation, J. Nonlinear Sci. 1 (1991), 71-93.
  23. Li C., Huang R., Ding Z., Gatenby J.C., Metaxas D.N., Gore J.C., A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI, IEEE Trans. Image Process. 20 (2011), 2007-2016.
  24. Lowe D.G., Object recognition from local scale-invariant features, in Proceedings of the Seventh IEEE International Conference on Computer Vision, Vol. 2 (Kerkyra, Greece), IEEE, 1999, 1150-1157.
  25. Mikolajczyk K., Schmid C., A performance evaluation of local descriptors, IEEE Trans. Pattern Anal. Mach. Intell. 27 (2005), 1615-1630.
  26. Mikolajczyk K., Tuytelaars T., Schmid C., Matas A.Z.J., Schaffalitzky F., Kadir T., Van Gool L., A comparison of affine region detectors, Int. J. Comput. Vis. 65 (2005), 43-72.
  27. Mokhtarian F., Suomela R., Robust image corner detection through curvature scale space, IEEE Trans. Pattern Anal. Mach. Intell. 20 (1998), 1376-1381.
  28. Mullins W.W., Two-dimensional motion of idealized grain boundaries, J. Appl. Phys. 27 (1956), 900-904.
  29. Nomizu K., Sasaki T., Affine differential geometry: geometry of affine immersions, Cambridge Tracts in Mathematics, Vol. 111, Cambridge University Press, Cambridge, 1994.
  30. Olver P.J., Equivalence, invariants, and symmetry, Cambridge University Press, Cambridge, 1995.
  31. Olver P.J., Moving frames and singularities of prolonged group actions, Selecta Math. (N.S.) 6 (2000), 41-77.
  32. Olver P.J., Invariant submanifold flows, J. Phys. A: Math. Theor. 41 (2008), 344017, 22 pages.
  33. Olver P.J., Differential invariants of maximally symmetric submanifolds, J. Lie Theory 19 (2009), 79-99.
  34. Olver P.J., Moving frames and differential invariants in centro-affine geometry, Lobachevskii J. Math. 31 (2010), 77-89.
  35. Olver P.J., Modern developments in the theory and applications of moving frames, in Impact150: Stories of the Impact of Mathematics, London Mathematical Society, London, 2015, 14-50.
  36. Olver P.J., The symmetry groupoid and weighted signature of a geometric object, J. Lie Theory 26 (2016), 235-267.
  37. Olver P.J., Sapiro G., Tannenbaum A., Differential invariant signatures and flows in computer vision: a symmetry group approach, in Geometry-Driven Diffusion in Computer Vision, Springer, Dordrecht, 1994, 255-306.
  38. Olver P.J., Sapiro G., Tannenbaum A., Affine invariant detection: edge maps, anisotropic diffusion, and active contours, Acta Appl. Math. 59 (1999), 45-77.
  39. Pekşen O., Khadjiev D., On invariants of curves in centro-affine geometry, J. Math. Kyoto Univ. 44 (2004), 603-613.
  40. Rodríguez M., Delon J., Morel J.-M., Fast affine invariant image matching, IPOL J. Image Process. Online 8 (2018), 251-281.
  41. Salvador S., Chan P., FastDTW: toward accurate dynamic time warping in linear time and space, Intellig. Data Anal. 11 (2007), 561-580.
  42. Sapiro G., Tannenbaum A., On affine plane curve evolution, J. Funct. Anal. 119 (1994), 79-120.
  43. Simon U., Affine differential geometry, in Handbook of Differential Geometry, Vol. I, North-Holland, Amsterdam, 2000, 905-961.
  44. Tuznik S.L., Olver P.J., Tannenbaum A., Equi-affine differential invariants for invariant feature point detection, European J. Appl. Math. 31 (2020), 277-296, arXiv:1803.01669.
  45. Wilkens G.R., Centro-affine geometry in the plane and feedback invariants of two-state scalar control systems, in Differential Geometry and Control (Boulder, CO, 1997), Proc. Sympos. Pure Math., Vol. 64, Editors G. Ferreyra, R. Gardner, H. Sussmann, Amer. Math. Soc., Providence, RI, 1999, 319-333.
  46. Wo W., Wang X., Qu C., The centro-affine invariant geometric heat flow, Math. Z. 288 (2018), 311-331.
  47. Yu G., Morel J.-M., ASIFT: an algorithm for fully affine invariant comparison, Image Process. Line 1 (2011), 11-38.

Previous article  Next article  Contents of Volume 16 (2020)