Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 102, 13 pages      arXiv:2004.06035      https://doi.org/10.3842/SIGMA.2020.102

Triangle Groups: Automorphic Forms and Nonlinear Differential Equations

Sujay K. Ashok a, Dileep P. Jatkar b and Madhusudhan Raman c
a) Institute of Mathematical Sciences, Homi Bhabha National Institute (HBNI), IV Cross Road, C.I.T. Campus, Taramani, Chennai 600 113, India
b) Harish-Chandra Research Institute, Homi Bhabha National Institute (HBNI), Chhatnag Road, Jhunsi, Allahabad 211 019, India
c) Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai 400 005, India

Received April 21, 2020, in final form October 05, 2020; Published online October 11, 2020; Acknowledgments corrected July 08, 2021

Abstract
We study the relations governing the ring of quasiautomorphic forms associated to triangle groups with a single cusp, thereby extending our earlier results on Hecke groups. The Eisenstein series associated to these triangle groups are shown to satisfy Ramanujan-like identities. These identities in turn allow us to associate a nonlinear differential equation to each triangle group. We show that they are solved by the quasiautomorphic weight-2 Eisenstein series associated to the triangle group and its orbit under the group action. We conclude by discussing the Painlevé property of these nonlinear differential equations.

Key words: triangle groups; Chazy equations; Painlevé analysis.

pdf (374 kb)   tex (20 kb)         [previous version:  pdf (372 kb)   tex (20 kb)  

References

  1. Ablowitz M.J., Chakravarty S., Hahn H., Integrable systems and modular forms of level 2, J. Phys. A: Math. Gen. 39 (2006), 15341-15353, arXiv:math.NT/0609210.
  2. Ablowitz M.J., Ramani A., Segur H., A connection between nonlinear evolution equations and ordinary differential equations of $P$-type. II, J. Math. Phys. 21 (1980), 1006-1015.
  3. Ashok S.K., Dell'Aquila E., Lerda A., Raman M., S-duality, triangle groups and modular anomalies in ${\mathcal N}=2$ SQCD, J. High Energy Phys. 2016 (2016), no. 4, 118, 52 pages, arXiv:1601.01827.
  4. Ashok S.K., Jatkar D.P., Raman M., Aspects of Hecke symmetry: anomalies, curves, and Chazy equations, SIGMA 16 (2020), 001, 26 pages, arXiv:1810.07919.
  5. Başar G., Dunne G.V., Ünsal M., Quantum geometry of resurgent perturbative/nonperturbative relations, J. High Energy Phys. 2017 (2017), no. 5, 087, 56 pages, arXiv:1701.06572.
  6. Bureau F.J., Sur des systèmes différentiels non linéaires du troisième ordre et les équations différentielles non linéaires associées, Acad. Roy. Belg. Bull. Cl. Sci. (5) 73 (1987), 335-353.
  7. Cheng M.C.N., Dabholkar A., Borcherds-Kac-Moody symmetry of ${\mathcal N}=4$ dyons, Commun. Number Theory Phys. 3 (2009), 59-110.
  8. Clarkson P.A., Olver P.J., Symmetry and the Chazy equation, J. Differential Equations 124 (1996), 225-246.
  9. Conte R., Fordy A.P., Pickering A., A perturbative Painlevé approach to nonlinear differential equations, Phys. D 69 (1993), 33-58.
  10. Cosgrove C.M., Higher-order Painlevé equations in the polynomial class. II. Bureau symbol $P1$, Stud. Appl. Math. 116 (2006), 321-413.
  11. Doran C.F., Gannon T., Movasati H., Shokri K.M., Automorphic forms for triangle groups, Commun. Number Theory Phys. 7 (2013), 689-737, arXiv:1307.4372.
  12. Fordy A., Pickering A., Analysing negative resonances in the Painlevé test, Phys. Lett. A 160 (1991), 347-354.
  13. Huber T., Differential equations for cubic theta functions, Int. J. Number Theory 7 (2011), 1945-1957.
  14. Jatkar D.P., Sen A., Dyon spectrum in CHL models, J. High Energy Phys. 2006 (2006), no. 4, 018, 32 pages, arXiv:hep-th/0510147.
  15. Maier R.S., Nonlinear differential equations satisfied by certain classical modular forms, Manuscripta Math. 134 (2011), 1-42, arXiv:0807.1081.
  16. Matsuda K., Differential equations involving cubic theta functions and Eisenstein series, Osaka J. Math. 57 (2020), 521-542, arXiv:1609.07481.
  17. Milnor J., On the $3$-dimensional Brieskorn manifolds $M(p,q,r)$, in Knots, Groups, and 3-Manifolds (Papers dedicated to the memory of R.H. Fox), Ann. of Math. Studies, Vol. 84, Princeton University Press, 1975, 175-225.
  18. Nehari Z., Conformal mapping, Courier Corporation, 2012.
  19. Persson D., Volpato R., Fricke S-duality in CHL models, J. High Energy Phys. 2015 (2015), 156, 55 pages, arXiv:1504.07260.
  20. Pikering A., Painlevé hierarchies and the Painlevé test, Theoret. and Math. Phys. 137 (2003), 1733-1742.
  21. Ramamani V., On some algebraic identities connected with Ramanujan's work, in Ramanujan International Symposium on Analysis (Pune, 1987), Macmillan of India, New Delhi, 1989, 277-291.
  22. Raman M., Aspects of Hecke symmetry I: Ramanujan identities and inversion formulas, arXiv:1803.10224.
  23. Raman M., Bala Subramanian P.N., Chebyshev wells: periods, deformations, and resurgence, Phys. Rev. D 101 (2020), 126014, 18 pages, arXiv:2002.01794.
  24. Takhtajan L.A., A simple example of modular forms as tau-functions for integrable equations, Theoret. and Math. Phys. 93 (1992), 1308-1317.
  25. Tsanov V.V., Triangle groups, automorphic forms, and torus knots, Enseign. Math. 59 (2013), 73-113, arXiv:1011.0461.
  26. Zagier D., Quantum modular forms, in Quanta of Maths, Clay Math. Proc., Vol. 11, Amer. Math. Soc., Providence, RI, 2010, 659-675.

Previous article  Next article  Contents of Volume 16 (2020)