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Abstract. We will exhibit a group of symmetries of the simply-laced quantum connections,
generalising the quantum/Howe duality relating KZ and the Casimir connection. These sym-
metries arise as a quantisation of the classical symmetries of the simply-laced isomonodromy
systems, which in turn generalise the Harnad duality. The quantisation of the classical
symmetries involves constructing the quantum Hamiltonian reduction of the representation
variety of any simply-laced quiver, both in filtered and in deformation quantisation.
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1 Introduction and main results

In a previous paper [24] a large class of quantum connections was constructed (the simply-laced
quantum connections) that contains as special cases the KZ connection [19], the Casimir con-
nection [22] and the FMTV connection [14]. They arose by quantising the simply-laced isomon-
odromy systems of [6], each of which is a flat nonlinear connection, controlling the isomonodromy
deformations of certain meromorphic connections on the Riemann sphere. It was shown in [6]
that the simply-laced isomonodromy systems admit an SL2(C) symmetry group, obtained by
working with modules for the one-dimensional Weyl algebra, rather than meromorphic connec-
tions on the Riemann sphere, and then considering the natural symmetries of the Weyl algebra.

The aim of this paper is to show that the SL2(C) symmetry group may be lifted to the
simply-laced quantum connections.

In more detail, a nonautonomous integrable Hamiltonian system H : M×B→ CI is defined on
a certain trivial symplectic fibration in [6], and shown to control the isomonodromic deformations
of meromorphic connections on holomorphically trivial vector bundles U × CP 1 → CP 1 on the
Riemann sphere, where U is a finite dimensional complex vector space.

The meromorphic connections we consider can be written

∇ = d−

(
Az +X +

∑
i∈I′

Ri
z − ti

)
dz, (1.1)

where A,X,Ri ∈ End(U), z is the standard holomorphic coordinate on C ⊆ CP 1, and ti ∈ C
for i ∈ I ′ (a finite set). This connections has a simple pole at ti with residue Ri, and a pole
of order three at infinity when A 6= 0. One can then deform (1.1) by varying the positions
of the simple poles (regular singularities); but importantly deformations of the principal part
of the connection at infinity can be introduced as follows. Assume the space U =

⊕
j∈J ′W

j

is graded by a finite set J ′, decompose X = T + B, where T and B are the diagonal and
off-diagonal part of X in the grading, and suppose the components T j ∈ End

(
W j
)

of T be
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diagonalisable (allowing for A and T to have repeated eigenvalues). Now vary: (i) the position
of the simple poles, so that distinct ones do not coalesce; and (ii) the spectrum of T j , so that
the eigenspace decomposition of W j is not perturbed. Accordingly, one looks for deformations
of B and the Ri such that the extended monodromy (Stokes data) of (1.1) stays fixed. This is
by definition an isomonodromic deformation of ∇, and is controlled by a system of nonolinear
differential equations for the endomorphisms B, Ri as functions of ti and the spectral type of T :
the isomonodromy equations.

A geometric interpretation can be given by introducing the complex vector space M paramet-
rising the linear maps (B,Ri)i∈I′ , as well as a space of (isomonodromy) times B ⊆ CI corre-
sponding to the admissible deformations of the spectrum of T and the configuration of simple
poles. Then the isomonodromy equations are differential equations for local sections Γ of the
trivial fibration M×B→ B, and they admit a Hamiltonian interpretation: there exists a time-
dependent Hamiltonian system H : M×B→ CI so that the isomonodromy equations along the
deformation of ti become

∂Γk
∂ti

= {Hi,Γk},

where Γk and Hi are components of Γ and H respectively, and {·, ·} = ω−1 is the Poisson bracket
on M corresponding to a complex symplectic structure ω ∈ Ω2(M,C). The same holds for the
deformations along the spectral type of T .

Since the space M can be realised as the space of representation of a simply-laced graph, the
system H is called the simply-laced isomonodromy system. The integral manifolds of H define
a flat symplectic nonlinear/Ehresmann connection in the symplectic fibration M × B → B,
whose leaves are precisely isomonodromic families of the meromorphic connections (1.1): it is
thus called the isomonodromy connection, and constitutes an irregular version of the nonabelian
Gauß–Manin connection [4].

After taking symplectic quotients the isomonodromy system and the isomonodromy connec-
tion descend to a bundle of Nakajima quiver varieties over the space of admissible deforma-
tions B, whose fibre parametrise the isomorphism classes of the connections (1.1).

Note that this symplectic interpretation of isomonodromic deformations holds for arbitrary
polar divisors, surface genera and complex reductive gauge groups [7, 8]. The base B corresponds
in general to space of admissible deformations of wild Riemann surface structures, to be defined
in Section 4.1 for the case which is relevant to this article. Loosely speaking, such a structure
prescribes both the positions of the poles and a local normal form for the principal part of the
meromorphic connections at the poles, and reduces to the choice of the complex numbers ti and
the semisimple endomorphisms T j in the case treated here.

Hence in brief the fibration M × B → B with its flat Hamiltonian system generalises after
reduction to local systems M̃∗dR → B of symplectic moduli spaces of meromorphic connections
over spaces of admissible deformations of wild Riemann spheres. When a preferred global
trivialisation of the local system of moduli spaces is given, then it makes sense to try to integrate
the isomonodromy connection into a nonautonomous Hamiltonian system, as is the case of the
simply-laced isomonodromy systems.

An example of simply-laced isomonodromy system is the Schlesinger system [27] – when
A = X = 0 in (1.1) – controlling the isomonodromic deformations of Fuchsian systems on
the sphere. Moving beyond regular singularities, the Harnad duality [15] turns a logarithmic
connection into a connection with a pole order two at infinity and a unique simple pole at zero –
when A = B = 0 and |I ′| = 1 in (1.1). Then the simply-laced isomonodromy system is a dual
version of the Schlesinger system, where deformations of the positions of the simple poles are
turned into deformations of the spectrum of the irregular type at infinity, that is the spectrum
of the rational function T dz. Generalising this example to arbitrarily many simple poles yields
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the isomonodromy system of Jimbo–Miwa–Môri–Sato [17], in which the Harnad duality swaps
over the two sets of isomonodromy times, and this article deals with a quantum extension of
this involution.

Indeed more recently the quantisation of this rich geometric picture was pursued. The local
system M ×B → B of symplectic spaces dually corresponds to a bundle of commutative Pois-
son algebras A0 × B → B, where A0

∼= Sym(M∗) is the ring of polynomial functions on the
complex affine space M equipped with the symplectic Poisson bracket {·, ·}. The simply-laced
Hamiltonians Hi define algebraic sections of this bundle, and one can ask to construct a defor-
mation quantisation

(
Â, ∗

)
of (A0, {·, ·}), together with algebraic sections Ĥi of the bundle of

noncommutative CJ}K-algebras Â × B → B projecting back to the simply-laced Hamiltonians
when composed with the semiclassical limit Â→ A0.

This can indeed be done [24], and moreover in such a way that the connection

∇̂ = d− $̂, with $̂ :=
∑
i∈I

Ĥi dti, (1.2)

is strongly flat, where the Ĥi acts on the fibre Â via its commutator. The connection (1.2) is
the universal simply-laced quantum connection, a strongly integrable deformation quantisation
of the simply-laced isomonodromy system, and the equations for a local horizontal section of
the bundle Â×B are the corresponding quantum isomonodromy equations.

Hence in brief one replaces a local system of symplectic manifolds with a flat vector bun-
dle, constructed via fibrewise deformation quantisation of the rings of functions. In this view-
point (1.2) is a genus zero irregular analogue of the Hitchin connection [1, 16] in deformation
quantisation, where the base space of the quantum bundle is extended from the ordinary Rie-
mann moduli space – which would be trivial in genus zero – to a space of admissible deformations
of wild Riemann spheres, and where importantly one quantises moduli spaces of meromorphic
connections instead of nonsingular ones. For the same reasons, it is also an irregular analogue
of the connection of Witten [29], where meromorphic connections replace holomorphic connec-
tions/Higgs fields.

Instead of trying to construct other flat quantum connections out of the deformation quanti-
sation of isomonodromy systems, this article further inspects the symmetries of the simply-laced
isomonodromy systems, which involve a higher viewpoint on the aforementioned Harnad dual-
ity [15] (see Example 2.2). To introduce it let W =

⊕
i∈I′ Vi be an I ′-graded vector space

and V := W ⊕ U , where U is as in the beginning. Then matrices of differential operators
M ∈ End(V )⊗ C[∂z, z] yields differential equations for functions v : C→ V , which can in some
cases be read as meromorphic connections. For example if

M :=

(
z − T P
Q ∂z

)
, with Q : W � U :P and T ∈ End(W ),

then the equation Mv = 0 expresses the flatness of the U -component of v as a local section of
U × CP 1 → CP 1, with respect to the logarithmic connection ∇U = d−Q(z − T )−1P dz. This
still corresponds to the case A = X = 0 of (1.1), with residues Ri = QiPi given by the graded
components Qi : Vi � U :Pi, and where {ti}i∈I′ is the spectrum of T .

The Fourier–Laplace transform ∂z 7→ −z, z 7→ ∂z turns M into a new matrix M ′, and M ′v = 0
now expresses the flatness of the W -component of v as a local section of W ×CP 1 → CP 1, with
respect to the connection ∇W = d −

(
T − PQ

z

)
dz. This corresponds to the case A = B = 0

and |I ′| = 1 of (1.1), and thus the Fourier–Laplace transform recovers the Harnad duality that
swaps over the rational differential operators ∇U and ∇W – and relates the isomonodromic
deformations of connections living of different bundles.

This viewpoint makes transparent that more general transformations are allowed: the whole
of SL2(C) acts on the Weyl algebra C[∂z, z] by a symplectic reparametrisation of C2 ∼= T ∗C, and
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it turns out that the reduced simply-laced isomonodromy systems are invariant under the full
action [6]. Hence the Poisson structures on the bundles of classical algebras are split in orbits
for the SL2(C)-action. Further, the isomorphisms along one orbit become flat when the classical
Hamiltonian reduction of both the algebra A0 and the isomonodromy connection is taken. We
thus consider the quantisation of this statement, and ask:

can one quantise the classical SL2(C)-action to construct isomorphisms
of (quantum) algebras at different choices of ∗-products,

so that the reduced quantum isomonodromy equations are invariant?

This article shows that this is indeed possible, proving the following.

Theorem (Section 3.3). There exists a natural quantisation of the SL2(C)-symmetries of the
commutative Poisson algebras (A0, {·, ·}), resulting in SL2(C)-symmetries of the topologically
free CJ}K-algebras

(
Â, ∗

)
.

Theorem (Sections 7.3 and 7.4). For any choice of coadjoint orbit the quantum Hamiltonian
reductions R

(
Â, ∗

)
of the algebras

(
Â, ∗

)
can be defined in such a way that both the simply-laced

quantum connection (1.2) and the quantum SL2(C)-action can be reduced.

This theorem is obtained as a particular case of a more general construction, namely the
quantum Hamiltonian reduction of symplectic varieties of representations of simply-laced quiv-
ers. This construction is carried out in Section 7.3, and should in principle follow from [3].

Theorem (Section 8). At sufficiently generic coadjoint orbit the reduced quantum SL2(C)-action
yields flat isomorphisms of the bundles R

(
Â, ∗

)
×B, equipped with the reduced (universal) simply-

laced quantum connection.

These results generalise the use of the quantum/Howe duality [2] to relate the KZ and the
Casimir connection for gln(C), as was considered in [28]. Further, since the quantum Hamiltonian
reduction of Section 7.3 applies to any simply-laced quiver it generalises the reduction of the
simply-laced quantum connections constructed in [24] – where only the cases relevant to the KZ
connection, the Casimir connection and the dynamical connection were worked out.

Layout of the article

In Section 2 we introduce the action of the group SL2(C) on a vector space M of presentations of
modules for the one-dimensional Weyl algebra. Then in 2.3 we introduce a family of symplectic
structures ωa on M parametrised by embeddings a : J ↪→ P

(
C2
)

of a finite set J into the complex
projective line, and recall how the SL2(C)-action yields simplectomorphisms compatible with
the action on the embeddings. This finally yields a Poisson action on the bundle of commutative
Poisson algebras A0 = C[M] ∼= Sym(M∗) of functions on the symplectic vector space (M, ωa) –
over the base space of choices of symplectic structure/Poisson bracket.

In Sections 3.1 and 3.2 we construct a topologically free CJ}K-algebra Â, a formal deformation
quantisation of the commutative Poisson algebra A0 coming from a filtered quantisation via the
Rees construction; the filtered quantisation itself is the noncommutative Weyl algebra (A, ∗a)
of the Poisson space

(
M∗, ω−1

a

)
. Then in Section 3.3 we construct a quantisation of the SL2(C)-

action on the bundle of deformation algebras
(
Â, ∗a

)
– over the base space of choices of symplectic

structure/Poisson bracket.

In Section 4 we recall the definition of the simply-laced isomonodromy systems, which are
strongly integrable nonautonomous Hamiltonian systems Hi : M × B → CI . In Section 4.1 we
explain how to reduce this system to obtain the isomonodromy connection inside a symplectic
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bundle M̃∗dR → B of moduli spaces of meromorphic connections on the sphere, defined over
a space of variations of wild Riemann surfaces of genus zero.

In Section 5 we recall the definition of the classical Hamiltonian reduction of a commutative
Poisson algebra with respect to a Lie algebra action, and define both the reduction of the
simply-laced isomonodromy systems and of the (classical) SL2(C)-action. For this we introduce
the viewpoint of representation spaces for a particular class of simply-laced quivers. Then in
Section 5.3 we recall that the reduced simply-laced Hamiltonians are shifted by constants under
the reduced action, and interpret this result as the existence of a family of flat isomorphism of
bundles – equipped with (flat) reduced isomonodromy connections.

In Section 6 we recall the definition of the universal simply-laced quantum connection and the
simply-laced quantum connection (the latter is obtained from the former by specifying a level for
the deformation parameter }). In Section 6.2 we show that the quantisation of the simply-laced
isomonodromy systems is compatible with the quantum SL2(C)-action constructed in Section 3.

In Sections 7.1 and 7.2 we recall the definition of quantum Hamiltonian reduction both in
filtered and deformation quantisation. In Section 7.3 we construct the quantum Hamiltonian
reduction of the symplectic variety of representations of a simply-laced quiver, and in Section 7.4
we show that the quantum action of Section 3.3 is compatible with the quantum Hamiltonian
reduction, thereby defining the reduced quantum SL2(C)-action.

Finally, in Section 8 we put together all the previous results to prove the last theorem:
the reduced simply-laced quantum connection is invariant under the reduced quantum SL2(C)-
action, at sufficiently generic choices of coadjoint orbit. We interpret this result as the existence
of a family of projectively flat isomorphisms of bundles – equipped with (flat) reduced simply-
laced quantum connections.

All vector spaces and associative/Lie algebras are tacitly defined over C; all associative al-
gebras are unitary and finitely generated. All gradings and filtrations of algebras are over Z≥0

and all filtrations are exhaustive.

2 Classical symmetries

The moduli space of isomorphism classes of meromorphic connections (1.1) can be realised as
the complex symplectic quotient of a vector space parametrising presentations of modules for
the one-dimensional Weyl algebra. This is the higher viewpoint that makes the global SL2(C)-
symmetries explicit.

2.1 Modules for the Weyl algebra

Let V be a finite-dimensional vector space, and choose endomorphisms α, β, γ ∈ End(V ) such
that α and β are simultaneously diagonalisable with kernels intersecting only at the origin. Set
then ∂ = ∂

∂z , where z is the standard holomorphic coordinate on the complex plane, and consider
the differential operator

M = M(α, β, γ) := α∂ + βz − γ ∈ End(V )⊗A1,

where A1 is the one-dimensional Weyl algebra, that is the quotient of the free algebra on the
set {∂, z} modulo the canonical commutation relations:

A1 := C〈∂, z〉
/

(∂z − z∂ = 1). (2.1)

The space of solutions of the system Mv = 0, where v is a local V -valued holomorphic function
on the complex plane, is naturally related to the quotient (left) module

N = N (α, β, γ) := V ⊗A1

/
(V ⊗A1 ·M). (2.2)
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Hence the endomorphisms α, β, γ parametrise presentations for the A1-modules (2.2), and the
description can be simplified after a diagonalisation and a normalisation.

To this end choose a basis of simultaneous eigenvectors for α and β, so that V ∼= Cn for
some positive integer n and α = diag(α1, . . . , αn), β = diag(β1, . . . , βn) for some complex num-
bers αi, βi. Since Ker(α) ∩ Ker(β) = (0) the points aj := [−βj : αj ] are well defined in the
complex projective line P

(
C2
)
, which is identified to C ∪ {∞} by letting C be the image of the

standard affine chart sending [0 : 1] to the origin:

[−βj : αj ] 7−→

∞, αj = 0,

−βj
αj
, else.

Denote J the index set for the points a := {aj}j ⊆ C ∪ {∞}, which we equivalently think of as
an embedding a : J ↪→ C ∪ ∞. Now define W j ⊆ V as the joint eigenspace for α and β such
that the corresponding eigenvalues map to aj :

W j :=
{
v ∈ V |α(v) = λv, β(v) = µv, [−µ : λ] = aj

}
.

There is thus a J-grading V =
⊕

j∈JW
j , and assume further that the diagonal part of γ in the

decomposition

End(V ) =
⊕
i 6=j∈J

Hom
(
W i,W j

)
⊕
⊕
j∈J

End
(
W j
)

be diagonalisable.
Now one can normalise M by left multiplication with a (constant) diagonal n-by-n matrix N

so that the following two distinct cases arise according to whether ∞ ∈ a(J) or not.

Example (degenerate normal form). If the infinity does belong to the image of embedding
we denote ∞ ∈ J the element a−1(∞), so that W∞ = Ker(α) ⊆ V . Then decompose V =

W∞ ⊕ U∞, with U∞ :=
⊕

j 6=∞W
j , and accordingly α =

(
0
αII

)
, β =

(
βI

βII

)
– where an

empty nondiagonal entry signals vanishing coefficients. If one sets N =

(
β−1
I

α−1
II

)
then

NM =

(
0

IdU∞

)
∂ +

(
IdW∞

−A

)
z −

(
T∞ P
Q B + T

)
∈ End(V )⊗A1, (2.3)

where A =
⊕

j 6=∞ aj IdW j is the endomorphism acting onW j via the scalar aj , the diagonalisable

endomorphisms T∞ ∈ End(W∞) and T ∈ End(U∞) constitute the diagonal part of γ, and
(

0 P
Q B

)
the off-diagonal part of γ. Hence P ∈ Hom(U∞,W∞), Q ∈ Hom(W∞, U∞) and

B =
⊕

i 6=j∈J\{∞}

Bij , with Bij ∈ Hom
(
W j ,W i

)
.

The components P j : W j → W∞ and Qj : W∞ → W j could be written P j = B∞j , Qj = P j∞

for the sake of a uniform notation. The customary notation for positions and momenta variables
is instead used with a view towards the symplectic pairing (2.11).

Example (generic normal form). If instead ∞ 6∈ a(J) then put N = α−1 to find

NM = IdV ∂ −Az −
(
B + T

)
∈ End(V )⊗A1, (2.4)

with A, B, T defined as above.
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Thus in brief the elements A, γ ∈ End(V ) parametrise the normal forms (2.3) and (2.4) for
the presentation of the Weyl modules (2.2); more precisely (2.3) is a degenerate normal form
and (2.4) a generic normal form. The choice of the endomorphism A will be encoded in a (linear)
complex symplectic form ωa ∈ Ω2(M,C) on the vector space M :=

⊕
i 6=j∈J Hom

(
W i,W j

)
in

Section 2.3, whereas the spectral types of T∞, T will become the regular and irregular times of
the simply-laced isomonodromy systems, respectively, in Section 4.

2.2 Action on presentations for Weyl algebra modules

An element g =
(
a b
c d

)
∈ SL2(C) acts on the Weyl algebra A1 on the left by transforming the

generators via

g.

(
∂
z

)
:=

(
a∂ + bz
c∂ + dz

)
.

This turns M = α∂ + βz − γ into

g.M = (aα+ cβ)∂ + (bα+ dβ)z − γ, (2.5)

also by a left action.

It follows from (2.5) that the point aj transforms as

aj .g = [−βj : αj ].g = [−(bαj + dβj) : aαj + cβj ], (2.6)

that is via the inverse of the standard action of (P) SL2(C) as the group of automorphisms of
the Riemann sphere – since g−1 =

(
d −b
−c a

)
. In particular ∞.g = [−d : c], and thus ∞ is fixed if

c = 0. Conversely, one has aj .g =∞ for aj 6=∞ if and only if a = caj .

Hence SL2(C) acts on the space of embeddings a : J ↪→ C∪{∞} on the right (but not on the
set J). There is then an induced action on γ, defined from the change of normal forms. Namely,
one passes from NM ∈ End(V )⊗A1 to N ′(g.M) ∈ End(V )⊗A1, where N ′ is a suitable (block
diagonal) matrix putting g.M in one of the normal forms (2.3), (2.4) by left multiplication. The
overall action on γ is thus given by the left multiplication by the diagonal matrix E := N ′N−1.
We will have E =

⊕
i∈I ηi IdW i , with the numbers ηi ∈ C× depending on g and a, so that the

multiplication g.γ = Eγ yields the transformation

g : Bij 7−→ ηiB
ij , T i 7−→ ηiT

i, for i 6= j ∈ J. (2.7)

This restricts to the linear map ϕ(a) : M→M given by

ϕ(a) =
⊕
i∈J

⊕
j 6=i

ηiIij ∈ GL(M),

where Iij := IdHom(W j ,W i). Thus the pull-back ϕ∗g(a) := (ϕ(a))∗ sends linear functions to linear
functions: it is the diagonalisable endomorphism of M∗ which multiplies linear functions on
Hom(W j ,W i) ⊆M by ηi, i.e.,

ϕ∗g(a)
∣∣
M∗ =

⊕
i∈J

⊕
j 6=i

ηiI
∗
ij ∈ GL(M∗), (2.8)

where I∗ij := IdHom(W j ,W i)∗ .

We will now compute the numbers ηi with a case-by-case discussion.
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Example (switching between generic forms). Assume first that α is nonsingular and that
a 6= caj for all j ∈ J . Then {aj}j and {aj .g}j are both contained in C, and the matrices M
and g.M can both be put in generic normal forms (2.4) by suitable matrices N , N ′. As ex-
plained above N = α−1, and then N ′ = (aα+ cβ)−1 by looking at (2.5). Hence the action of g
multiplies γ on the left by

E = (aα+ cβ)−1α = diag

(
α1

aα1 + cβ1
, . . . ,

αn
aαn + cβn

)
= diag

((
aα1 + cβ1

α1

)−1

, . . . ,

(
aαn + cβn

αn

)−1
)

=
⊕
i∈J

(a− cai)−1 IdW i .

So ηi = (a− cai)−1 ∈ C× in this case.

Example (from a generic form to a degenerate one). Assume now α to be nonsingular, but
that a = caj for some (unique) j ∈ J . Then {aj}j is contained in C, and aj .g =∞. Decompose

V = W j ⊕ U j , with U j =
⊕

i 6=jW
i, and accordingly α = ( αI αII ), β =

(
βI

βII

)
. Then after

the action the space W j becomes W∞, U j becomes U∞ and α, β become

α′ =

(
0

aαII + cβII

)
, β′ =

(
bαI + dβI

bαII + dβII

)
. (2.9)

Thus the normal forms are

NM = IdV ∂ −Az − (B + T ),

before the action, and

N ′(g.M) =

(
0

IdU∞

)
∂ +

(
IdW∞

−A′
)
z −

(
T∞ P
Q B′ + T ′

)
after the action, where A′ =

⊕
i 6=j(a.gi) IdW i .

Here again N = α−1, but N ′ =
(

(bαI+dβI)−1

(aαII+cβII)−1

)
, by looking at (2.9). Hence on

the whole

E =

(
(bαI + dβI)

−1αI
(aαII + cβII)

−1αII

)
,

and one finds

ηi =

{
(b− daj)−1, i = j,

(a− cai)−1, i 6= j.

Note that b− daj 6= 0, since a = caj and b = daj together imply ad− bc = 0.

Example (from a degenerate form to a generic one). Assume here∞ ∈ a(J), c 6= 0 and a 6= caj
for all j 6= ∞. Then ∞ 6∈ a.g(J), and one can decompose again V = W∞ ⊕ U∞, α =

(
0
αII

)
,

β =
(
βI

βII

)
. After the action the infinity is mapped to −d

c ∈ C, and α, β transform to

α′ =

(
cβI

aαII + cβII

)
, β′ =

(
dβI

bαII + dβII

)
.

The normalisation matrices are thus

N =

(
β−1
I

α−1
II

)
, N ′ =

(
(cβI)

−1

(aαII + cβII)
−1

)
,
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so that

E =

(
c−1 IdW∞

(aαII + cβII)
−1αII

)
.

Then one has

ηi =

{
c−1, i =∞,
(a− cai)−1, i 6=∞.

Example (switching between degenerate forms). Assume again ∞ ∈ a(J), and consider the
following two exhaustive subcases:

1) c = 0 (whence ad = 1),

2) c 6= 0 and a = caj for some j ∈ ∞.

Suppose first c = 0, and decompose again V = W∞ ⊕ U∞, α =
(

0
αII

)
, β =

(
βI

βII

)
.

Then α, β become

α′ =

(
0

aαII

)
, β′ =

(
dβI

bαII + dβII

)
,

whence

N =

(
β−1
I

α−1
II

)
, N ′ =

(
(dβI)

−1

(aαII)
−1

)
.

This yields the simple

E =

(
a IdW∞

d IdU∞

)
,

using a−1 = d; thus in this case

ηi =

{
a, i =∞,
d, i 6=∞.

Suppose finally c 6= 0 and a = caj for some j ∈ J . Consider then the finer decomposition
V = W∞ ⊕W j ⊕ U∞,j , where U∞,j :=

⊕
i∈J\{∞,j}W

i, and accordingly

α =

0
αII

αIII

 , β =

βI βII
βIII

 .

After transforming, the roles of W∞ and W j are swapped; moreover

α′ =

cβI 0
aαIII + cβIII

 , β′ =

dβI bαII + dβII
bαIII + dβIII

 ,

since indeed W j = Ker(α′). The normalisation matrices are

N =

β−1
I

α−1
II

α−1
III

 , N ′ =

(cβI)
−1

(bαII + dβII)
−1

(aαIII + cβIII)
−1

 ,
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whence

E =

c−1

(bαII + dβII)
−1αII

(aαIII + cβIII)
−1αIII

 .

Therefore

ηi =


c−1, i =∞,
(b− daj)−1, i = j,

(a− cai)−1, i 6∈ {∞, j}.

Denoting A :=
{
{aj}j∈J | aj 6= ak for j 6= k

}
⊆ (C∪{∞})J the space of possible embeddings

a : J ↪→ C ∪ {∞}, the matrices E defined by (2.7) assemble into a function

E : SL2(C)×A −→ GL(V ),

satisfying the cocycle identities

E(gg′,a) = E(g′,a.g) · E(g,a), for g, g′ ∈ SL2(C), a ∈ A,

where a.g is the action (2.6) on the embedding. Similarly the numbers ηi of (2.7) become
functions ηi : SL2(C)×A→ C× which satisfy

ηi(gg
′,a) = ηi(g

′,a.g) · ηi(g,a), for i ∈ J. (2.10)

Example (generic case). If ∞ 6∈ a(J)∪a.g(J) and if one writes g′ =
(
a′ b′

c′ d′

)
∈ SL2(C) then the

first case of (2.7) yields

ηi(gg
′,a) = (aa′ + bc′)− (ca′ + dc′)ai, ηi(g,a) · ηi(g′,a.g) = (c− cai) · (a′ − c′ai.g),

and in this generic case (2.10) follows from

ai.g = −b− dai
a− cai

= −bαi + dβi
aαi + cβi

,

using ai = − βi
αi
∈ C.

Example (Harnad duality). It should helpful to the reader to work out the particular case of the
SL2(C)-action which corresponds to the Harnad duality for rational differential operators [15],
as mentioned in the Introduction.

Consider then the particular case of a degenerate form (2.3) with A = B = T = 0, that is
a(J) = {∞, 0} and

M =

(
0

IdU

)
∂ +

(
IdW

0

)
z −

(
T∞ P
Q 0

)
,

where V = W ⊕ U with U := U∞ and W := W∞. This differential operator acts on a local
V -valued holomorphic function v = v(z) as

Mv =

(
(z − T∞)w − Pu

∂zu−Qw

)
,

in the vector decomposition v(z) =
(
w(z)
u(z)

)
∈W ⊕ U . Then the equation Mv = 0 reads{

Pu = (z − T∞)w,

∂zu = Qw,
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which can be turned into the following system of ordinary, first-order linear differential equations
for the component u of v:

∂zu = Q(z − T∞)−1Pu.

If W =
⊕

i Vi is the eigenspace decomposition of T∞ then one has T∞ =
⊕

i ti IdVi , and

Q(z − T∞)−1P =
∑
i

Ri
z − ti

,

where Ri := QiPi and Qi : Vi � U :Pi are components of Q and P .
Hence in this case one recognises a Fuchsian system on the sphere, which can be extended to

a logarithmic connection on the trivial holomorphic vector bundle U ×CP 1 → CP 1. In general
there is an identification with meromorphic connections on the Riemann sphere with irregular
singularities at infinity (of Poincaré rank 2 if A 6= 0, see Section 4).

Now choose the element g =
(

0 1
−1 0

)
∈ SL2(C), which acts on the generators of the Weyl

algebra as ( ∂z ) 7→ ( z
−∂ ), i.e., as the Fourier–Laplace transform. Acting this way on the differential

operator M and permuting the direct summands U and W yields

g.M =

(
0
− IdW

)
∂ +

(
IdU

0

)
z −

(
0 Q
P T∞

)
,

so the roles of U and W are swapped. The new degenerate normal form is achieved by changing

the sign, i.e., via the diagonal matrix N ′ =
(

IdU
− IdW

)
. In this case N = IdV , as M was

already taken in normal form, and indeed the overall action reads

g : Q 7−→ −Q, P 7−→ P, T∞ 7−→ −T∞,

as prescribed by (2.7).
The new equations are Qw = zu and ∂w = T∞w − Pu, which can be expressed for the

component w as

∂w =

(
T∞ +

R

z

)
w,

where R := −PQ. Hence the Harnad-dual of the differential operator d − Q(z − T∞)−1P dz
appears as claimed, and it can be thought as a connection with a pole of order two at infinity
and a simple pole at zero on the vector bundle W × CP 1 → CP 1.

The duality of Remark 2.2 thus corresponds to one element inside a 3-dimensional complex
group acting on a space of presentation for Weyl algebra modules.

2.3 Symplectic structure and symplectic action

Recall from [6] that the space

M =
⊕
i 6=j∈J

Hom
(
W i,W j

)
is endowed with a complex symplectic structure ωa depending on the embedding a ∈ A. Its
formula reads

ωa =
∑

i 6=j∈J\{∞}

Tr
(
dBij ∧ dBji

)
2(ai − aj)

+
∑
i 6=∞

Tr
(
dQi ∧ dP i

)
. (2.11)



12 G. Rembado

Hence ωa only pairs nontrivially maps going in opposite directions. Moreover, it coincides with
the canonical symplectic form on the subspace

⊕
i 6=∞

(
Hom

(
W∞,W i

)
⊕Hom

(
W i,W∞

)) ∼= T ∗

⊕
i 6=∞

Hom
(
W∞,W i

) ,

where the dualities Hom
(
W∞,W i

) ∼= Hom
(
W i,W∞

)∗
are provided by the canonical nonde-

generate trace pairing

Hom
(
W∞,W i

)
⊗Hom

(
W i,W∞

)
−→ C,

(
Qi, P i

)
7−→ Tr

(
QiP i

)
.

The space M does not depend on a, but the symplectic form does. Thus an element g ∈
SL2(C) defines a linear map ϕ(a) : (M, ωa) → (M, ωa.g) between symplectic spaces according
to (2.7), where a.g is the right action (2.6) on the embedding.

Proposition 2.1 ([6, Proposition 3.1]). The map ϕ(a) : (M, ωa)→ (M, ωa.g) is symplectic.

We will prove this explicitly, and differently from [6], thereby checking the computations of
the numbers ηi of Section 2.2. To this end write (2.11) as

ωa =
∑
i 6=j

εij(a)

2
Tr
(
dBij ∧ dBji

)
, (2.12)

where the (algebraic) functions εij : A→ C× are defined by εij + εji = 0, and

εij(a) :=


1

ai − aj
, ai, aj 6=∞,

1, aj =∞.
(2.13)

Proof of Proposition 2.1. One must show that ϕ∗g(a)ωa.g = ωa for g ∈ SL2(C) and a ∈ A,
i.e., ∑

i 6=j
εij(a) Tr

(
dBij ∧ dBji

)
=
∑
i 6=j

εij(a.g)ϕ∗g(a) Tr
(
dBij ∧ dBji

)
.

Now (2.8) gives an explicit formula for the pull-back along ϕ(a), from which it follows that
the pull-back of the 2-form Tr

(
dBij ∧ dBji

)
on M equals

ϕ∗g(a) Tr
(
dBij ∧ dBji

)
= ηi(g,a) · ηj(g,a) Tr

(
dBij ∧ dBji

)
.

Hence Lemma 2.2 concludes the proof of Proposition 2.1. �

Lemma 2.2. The following identity holds for i 6= j ∈ J , a ∈ A and g ∈ SL2(C):

εij(a) = εij(a.g) · ηi(g,a) · ηj(g,a). (2.14)

Remark 2.3. This proof of Proposition 2.1 is given since Lemma 2.2 is of separate interest; it
expresses the compatibility of the cocycles ηi with the symplectic structures on M, and will imply
the compatibility of the SL2(C)-action with the comoment maps for the Hamiltonian reduction
of M (classical in Section 5; quantum in Section 7).

Proof of Lemma 2.2. Write g =
(
a b
c d

)
∈ SL2(C) and as usual a(j) = aj ∈ C ∪ {∞}, and

consider the same cases as in Section 2.2, using the following identities where necessary (plus
ad− bc = 1):

aj .g = −bαj + dβj
aαj + cβj

, if a 6= caj ,

aj .g = −b− daj
a− caj

, if further aj 6=∞. (2.15)
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Switching between generic forms

Assume aj 6=∞ 6= aj .g for j ∈ J . In this case one needs to verify that

ai − aj = (a− cai)(a− caj)(a.gi − aj .g).

Indeed using (2.15) the right-hand side becomes

(b− daj)(a− cai)− (b− dai)(a− caj)
= ad(ai − aj)− bc(ai − aj) = (ad− bc)(ai − aj) = ai − aj .

From a generic form to a degenerate one

Assume aj .g = ∞ and a 6= cai for i 6= j. Then Bij and Bji become Bi∞ = Qi and B∞i = P i

for i 6= j, respectively, and apart from the previous identities one must verify that

(a− cai)(b− daj) = ai − aj .

Indeed using a = caj the left-hand side equals

ab− adaj − bcai + cdaiaj = bcaj − adaj − bcai + adai = (ad− bc)(ai − aj) = ai − aj .

From a degenerate form to a generic one

Assume here ∞ ∈ a(J), c 6= 0 and a 6= cai for all i ∈ J \ {∞}. Then ∞.g = −d
c , and if

j := a−1(−d/c) ∈ J then Bi∞ = Qi and B∞i = P i become Bij and Bji – respectively. Then
apart from the previous identities one must show that

a.gi + d/c = c−1(a− cai)−1.

Indeed using (2.15) the left-hand side becomes

d

c
− b− dai
a− cai

=
d(a− cai)− c(b− dai)

c(a− cai)
=

ad− bc
c(a− cai)

= c−1(a− cai)−1.

Switching between degenerate forms

Assume first ∞ ∈ a(J) and c = 0. Then ∞.g = ∞, and in this case the further identities
required follow from η∞(g,a) · ηi(g,a) = ad = 1 for i 6=∞.

Assume finally ∞ ∈ a(J), c 6= 0 and a = caj for some (unique) j ∈ J \ {∞}. Then one has
∞.g = −d/c and aj .g = ∞; also Qj and P j are swapped, whereas Bij and Bji are exchanged
with Qi and P i for all i ∈ J \ {∞, j} – respectively. Hence apart from the previous identities
one must establish that

c(b− daj) = −1,

which follows from caj = a. �

Thus the action of SL2(C) on the embeddings a : J ↪→ C ∪ {∞} is lifted to an action on
the symplectic vector bundle M̃ → A, whose fibre over a is the space (M, ωa). This action is
explicitly given by the assignment ϕ : SL2(C) ×A → GL(M) sending (g,a) to ϕ(a), together
with the cocycle identities

ϕgg′(a) = ϕg′(a.g) ◦ ϕ(a), for g, g′ ∈ SL2(C), a ∈ A, (2.16)

which follow from (2.10). In particular the inverse of ϕ(a) is ϕg−1(a.g) : (M, ωa.g)→ (M, ωa).
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2.4 Action on classical algebras

Consider the commutative Poisson algebra of polynomial functions on the complex vector
space M – considered as an affine complex space:

A0 := C[M] ∼= Sym(M∗).

The Poisson bracket is {·, ·}a = ω−1
a ∈

∧2 M, uniquely determined from its restriction to linear
functions which defines a nondegenerate alternating bilinear form on M∗. The commutative
algebra structure of A0 only depends on M, whereas the Poisson structure also depends on the
embedding a.

As a corollary of Proposition 2.1 and (2.16) one gets the following.

Proposition 2.4. The pull-back of polynomial functions along the SL2(C)-action defines iso-
morphisms of Poisson algebras

ϕ∗g(a) : (A0, {·, ·}a.g) −→ (A0, {·, ·}a),

satifying

ϕ∗gg′(a) = ϕ∗g(a) ◦ ϕ∗g′(a.g), for g, g′ ∈ SL2(C), a ∈ A.

In conclusion, the action of SL2(C) on the embeddings a : J ↪→ C∪{∞} is lifted to an action
on the bundle of Poisson algebras A0 → A whose fibre over a is by definition (A0, {·, ·}a). This
is a trivial bundle of (commutative) associative algebras, which is not trivial as bundle of Poisson
algebras, and the assignment (g,a) 7→ ϕ∗g(a) for g ∈ SL2(C) and a ∈ A defines an action on the
total space which covers the one on the base.

This statement will be provided with a quantum analogue in the next section.

3 Quantisation of the action

3.1 Filtered quantisation

The following material about the filtered quantisation of the commutative Poisson algebra A0 =
Sym(M∗) is standard (see, e.g., [26]).

Definition 3.1. The Weyl algebra of the vector space M∗ equipped with the alternating bilinear
form {·, ·}a :

∧2 M∗ → C is the quotient

Aa = W (M∗, {·, ·}a) := Tens(M∗)
/
I1(a), (3.1)

where Tens(M∗) is the tensor algebra and I1(a) ⊆ Tens(M∗) the two-sided ideal generated by
the elements

f ⊗ g − g ⊗ f − {f, g}a, for f, g ∈M∗.

Hence Aa admits a set of algebra generators which do not depend on a, but the relations
among them do. In what follows we will drop the explicit dependence of Aa from a in the
notation, but keep it for the noncommutative associative product ∗a : A⊗A→ A.

Remark 3.2. Definition 3.1 is the dual description of the Weyl algebra of the symplectic vector
space (M, ωa), generalising the one-dimensional Weyl algebra A1 of Section 2.1. Using (3.1)
instead of W (M, ωa) is preferred as one wants to quantise Sym(M∗) rather then Sym(M), so
this saves a canonical symplectic identification M ∼= M∗.
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To make (3.1) into a filtered quantisation of (A0, {·, ·}a) one must choose a grading on A0

and a filtration on A, and provide an isomorphism gr(A) ∼= A0 of graded (commutative) Poisson
algebras.

Definition 3.3. The additive/Bernstein grading B0 on A0 = Sym(M∗) is defined by the family
of subspaces

(B0)k := Symk(M∗).

This is the grading by the global degree of polynomial functions on M. It corresponds to the
quotient grading on Sym(M∗) = Tens(M∗)

/
I0 induced by the additive grading

Tens(M∗) =
⊕
k≥0

(M∗)⊗k,

where I0 ⊆ Tens(M∗) is the (homogeneous) two-sided ideal generated by elements

f ⊗ g − g ⊗ f, for f, g ∈M∗.

Remark 3.4. A different grading is obtained by specifying a symplectic identification M = T ∗L,
where L ⊆M is a Lagrangian subspace. Then one can give degree zero to the linear coordinates
on L (the positions) and degree one to the linear coordinates on the cotangent fibres T ∗q L, where
q ∈ L (the momenta).

This yields the geometric grading on A0, which will not be used since the choice of a La-
grangian subspace is noncanonical and breaks the SL2(C) symmetries (cf. Remark 7.8).

Similarly there is a quotient filtration on the Weyl algebra (3.1) modulo the nonhomogeneous
ideal I1(a).

Definition 3.5. The additive/Bernstein filtration B on A is the quotient of the filtration asso-
ciated to the additive grading on Tens(M∗), modulo the ideal I1(a).

This means the Bernstein filtration on A is defined by the subspaces

B≤k := π1

(⊕
m≤k

(M∗)⊗m
)
⊆ A,

where π1 : Tens(M∗)→ A is the canonical projection.
Now a standard argument shows that the associated graded of the filtered associative alge-

bra (A,B) is isomorphic to (A0,B0) as graded Poisson algebra, so that by definition (A, ∗a,B)
is a filtered quantisation of (A0, {·, ·}a,B0).

In more detail, the associated graded of (A,B) is the graded vector space

gr(A) :=
⊕
k≥0

B≤k
/
B≤k−1,

with product defined on representatives. There are then canonical projections

σk : B≤k −→ B≤k
/
B≤k−1,

together with identifications B≤k
/
B≤k−1

∼= (B0)k ⊆ A0, and the compatibility with the Poisson
bracket is expressed by the identity{

σk(x), σl(y)
}
a

= σk+l−2

(
x ∗a y − y ∗a x

)
, for x ∈ B≤k, y ∈ B≤l.
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Moreover there is a universal embedding M∗ ↪→ A, provided by the fact that I1(a) ∩M∗ = (0)
inside Tens(M∗).

An analogous construction can be carried out for a Lie algebra g. The symmetric algebra
Sym(g) ∼= C[g∗] carries the Poisson–Lie bracket and the grading by the global degree of polyno-
mial functions on g∗. Then the universal enveloping algebra U(g) equipped with the quotient
of the filtration defined by the subspaces

⊕
m≤k g

⊗m ⊆ Tens(g) – for k ≥ 0 – is a filtered
quantisation of Sym(g) (this is one way of stating the Poincaré–Birkhoff–Witt theorem).

In what follows the filtration on g will be denoted Bg.

3.2 Rees construction and deformation quantisation

Filtered quantisation is a particular instance of deformation quantisation, as there is a universal
construction to introduce a formal deformation parameter }. This will be used to formalise the
semiclassical limit, and it allows for the deformation of nonhomogeneous ideals.

Definition 3.6. The Rees algebra of the filtered associative algebra (A,B) is the }-graded ring

Rees(A,B) :=
⊕
k≥0

B≤k · }k ⊆ A[}]. (3.2)

To allow for nonconverging power series one can embed the Rees algebra into

Â := Rees(A,B)J}K =

{∑
k≥0

fk · }k
∣∣∣∣fk ∈ B≤k, lim

k−→+∞

(
k − |fk|

)
= +∞

}
⊆ AJ}K, (3.3)

where |x| = min
{
k ∈ Z≥0

∣∣x ∈ B≤k} is the order of the element x ∈ A (see [13]).

Then there is a surjective algebra morphism σ : Â→ gr(A) ∼= A0 defined by

σ :
∑
k

fk · }k 7−→
∑
k

σk(fk). (3.4)

This map is well defined (that is, the sum on the right-hand is finite), vanishes on the ideal }Â,
and is surjective. This yields an identification Â/}Â ∼= gr(A), meaning the topologically free
CJ}K-algebra Â is a (one-parameter) formal deformation of gr(A) ∼= A0. The compatibility with
the Poisson bracket makes it into a formal deformation quantisation, and is expressed by the
identity

σ
(
[f, g] · }−2

)
=
{
σ(f), σ(g)

}
a
∈ A0, for f, g ∈ Â.

Indeed
[
B≤k,B≤l

]
⊆ Bk+l−2 implies that [f, g] ∈ }2Â for f, g ∈ Â.

Because of this, the morphism σ is called the semiclassical limit.

Remark 3.7. Equivalently, there is an isomorphism Â ∼= A0J}K of CJ}K-modules such that the
product of two elements f, g ∈ A0 expands in Â as

f ∗a g =
∑
k≥0

ck,a(f, g) · }k,

where the ck,a : A0 ⊗ A0 → A0 are bilinear maps satisfying the conditions imposed by the

associativity of the product of Â.
In this notation the alternating bilinear map c2,a|A0∧A0

is the Poisson structure {·, ·}a of A0,
whereas c1,a|A0∧A0

= 0 for all a ∈ A (which is reminiscent of the fact that {·, ·}a is a 2-shifted
Poisson structure on gr(A) ∼= A0).
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Remark 3.8. A different viewpoint on the deformation parameter } is obtaining by tur-
ning I1(a) into a homogeneous ideal inside the CJ}K-algebra Tens(M∗)J}K, which yields the
definition of the homogenised Weyl algebra W}(M∗, {·, ·}a) ⊆ AJ}K (see [26, Section 2.6]). In
what follows only the formulation with the Rees algebra (3.2) will be used, for the sake of a
uniform notation.

This material can be adapted to the universal enveloping algebra U(g) of a Lie algebra g:
there is a (polynomial) Rees algebra Rees(U(g),Bg) ⊆ U(g)[}] with an extension Û(g) ⊆ U(g)J}K
to power series following Definition 3.6 and (3.3), respectively.

Remark 3.9. The construction of the universal simply-laced quantum connections of Section 6
only involves polynomials in }, but it is sometimes important to allow for power series. For
example, a nonhomogeneous ideal deforming an ideal I ⊆ Sym(g) may exist in Û(g) and contain
power series which do not converge for particular values of } (if such an ideal exists in the
uncompleted Rees algebra this is, however, implied; cf. Remark 7.15 about the deformation of
ideals vanishing on semisimple coadjoint orbits).

3.3 Quantisation of linear symplectic actions

The following abstract fact will be essential in what follows. Let (V, ωV ) and (U, ωU ) be finite-
dimensional symplectic vector spaces, denote {·, ·}V and {·, ·}U the Poisson brackets associated
to ωV and ωU – respectively – and suppose ϕ : V → U is a linear Poisson map.

Lemma 3.10 (Contravariant functoriality). There exists a unique morphism of associative al-
gebras

ϕ̂∗ : W
(
U∗, {·, ·}U

)
−→W (V ∗, {·, ·}V ),

whose associated graded equals the pull-back ϕ∗ : Sym(U∗)→ Sym(V ∗) along ϕ. It is defined by
the equality ϕ̂∗ ◦ π1 = π1 ◦ ϕ̃∗, where ϕ̃∗ : Tens(U∗) → Tens(V ∗) is the morphism associated to
the restriction of the pull-back to linear maps. Moreover the association ϕ 7→ ϕ̂∗ is compatible
with composition.

Proof. The pull-back of linear functions yields a linear map ϕ∗ : U∗ → V ∗, since ϕ itself is
linear, so ϕ̃∗ is the unique morphism of associative algebras defined on monomials by

ϕ̃∗
(⊗

i

fi

)
=
⊗
i

ϕ∗fi, where fi ∈ U∗ for i = 1, . . . , n.

By the universal property of quotients it is then enough to show that ϕ̃(I1,U ) ⊆ I1,V inside
Tens(V ∗), where I1,U and I1,V are the nonhomogenous ideals defining the Weyl algebras as
in (3.1). But this follows from the fact that ϕ is Poisson, that is from the identity

ϕ∗{f, g}U = {ϕ∗f, ϕ∗g}V , for f, g ∈ C[U ] ∼= Sym(U∗).

Next one must prove that the associated graded map of the induced morphism ϕ̂∗ on the
Weyl algebras coincide with the pull-back ϕ∗, i.e., that σk ◦ ϕ̂∗ = ϕ∗ ◦σk on all filtration spaces.

By linearity it is enough to show that

σk ◦ π1 ◦ ϕ̃∗
(⊗

i

Xi

)
= ϕ∗ ◦ σk

(∏
i

X̂i

)
,

for all k ≥ 0 and all Xi ∈ U∗ such that
⊗

iXi is homogeneous of degree k, where we denote

π1(
⊗

iXi) =
∏
i X̂i the product in the Weyl algebra. The left-hand side equals σk

(∏
i ϕ̂
∗Xi

)
,
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which is the function
∏
i ϕ
∗Xi ∈ Sym(U∗), in the identification Sym(U∗) ∼= gr

(
W (U∗, {·, ·}U )

)
.

This is equal to the right-hand side since∏
i

ϕ∗Xi = ϕ∗
(∏

i

Xi

)
= ϕ∗ ◦ σk

(∏
i

X̂i

)
.

Finally, the compatibility with the composition follows from uniqueness. If ψ : W → V is another

morphism of linear Poisson spaces then ψ̂∗ ◦ ϕ∗ and ψ̂∗ ◦ ϕ̂∗ are both defined, and since their
associated graded both coincide with ψ∗ ◦ ϕ∗ then they must be equal. �

The morphisms of Lemma 3.10 also preserve the Bernstein filtration, hence induces a mor-
phism of Rees algebras – or the formal power series version – by CJ}K-linearity:

ϕ̂∗} :
∑
k

fk}k 7−→
∑
k

ϕ̂∗(fk)}k.

This is the unique morphism satisfying σ ◦ ϕ̂∗ = ϕ∗ ◦ σ, i.e., such that ϕ̂∗} = ϕ∗ (mod }).
Lemma 3.10 can be used to conclude that there is a quantum SL2(C)-action lifting the classical

action of Section 2.4. Choose an element g ∈ SL2(C) and fix an embedding a ∈ A.

Theorem 3.11. There exists a unique isomorphism of CJ}K-algebras ϕ̂∗g,}(a) :
(
Â, ∗a.g

)
→
(
Â, ∗a

)
which intertwines the pull-back ϕ∗g(a) : (A0, {·, ·}a.g)→ (A0, {·, ·}a) with the semiclassical limits:

(
Â, ∗a.g

) (
Â, ∗a

)

(A0, {·, ·}a.g) (A0, {·, ·}a).

	

ϕ̂∗g,}(a)

σ σ

ϕ∗g(a)

Moreover if g′ ∈ SL2(C) is another element then ϕ̂∗gg′,}(a) = ϕ̂∗g,}(a) ◦ ϕ̂∗g′,}(a.g).

Proof. It follows from the discussion of Section 2.4 that for all g ∈ SL2(C) there is a linear
symplectic map ϕg : (M, ωa) → (M, ωa.g). Using Lemma 3.10 one concludes that there exists
a morphisms of associative algebras ϕ̂∗g,}(a) : W (M∗, {·, ·}a.g) → W (M∗, {·, ·}a) which restricts

to the pull-back ϕ∗g(a) on linear functions, and then an induced morphism on the completion Â.
Finally, by linearity one finds

σ ◦ ϕ̂∗g,}(a)

(∑
k

fk}k
)

=
∑
k

σk
(
ϕ̂∗g,}(a)(fk)

)
= ϕ∗g(a)

(∑
k

σk(fk)

)
= ϕ∗g(a) ◦ σ

(∑
k

fk}k
)
,

whence indeed σ ◦ ϕ̂∗g,}(a) = ϕ∗g(a) ◦ σ. The compatibility with the product follows from the
uniqueness of Lemma 3.10 and from (2.16), since

σ ◦ ϕ̂∗gg′,}(a) = ϕ∗gg′(a) ◦ σ =
(
ϕ∗g(a) ◦ ϕ∗g′(a.g)

)
◦ σ =

(
ϕ̂∗g,}(a) ◦ ϕ̂∗g′,}(a.g)

)
◦ σ. �

Moreover, there is an explicit formula for the quantum action on monomials. To write it
choose bases of W j ⊆ V for j ∈ J and denote Bij

kl ∈M∗ the associated linear coordinates which
take the components of Bij : W j →W i.
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Definition 3.12. The Weyl quantisation of a linear function on M is its image in the universal
embedding M∗ ↪→ A.

Denote the Weyl quantisation by f 7→ f̂ ∈ B1 ⊆ A, for f ∈ M∗. Then (2.8) yields the
following formula on monomials:

ϕ̂∗g,}(a)

(∏
p

B̂
ipjp
kplp

)
· }l = η ·

∏
p

B̂
ipjp
kplp
· }l, where η :=

∏
p

ηip(g,a), (3.5)

with the functions ηip : SL2(C)×A→ C∗ defined in (2.2).
Hence on the whole the action of SL2(C) on the embeddings a : J ↪→ C∪ {∞} is lifted to an

action on the bundle of noncommutative algebras Â → A, whose fibre over a is by definition(
Â, ∗a

)
. In contrast with A0, Â is not given as a trivial bundle of associative algebras, but there

is a global trivialisation as a bundle of CJ}K-modules provided by the canonical a-independent
identifications Â ∼= A0J}K (see Remark 3.7). Further, taking fibrewise semiclassical limit defines
a map of bundles Â → A0 over the identity.

Then the assignment g 7→ ϕ̂∗g,} for g ∈ SL2(C) defines a SL2(C)-action on Â covering that on
the base, and the semiclassical limit intertwines it with the classical action on A0.

This is a quantisation of the SL2(C)-action of [6].

4 Classical isomonodromy system

The definition of the simply-laced isomonodromy systems of [6] will be recalled in this section.
As in Section 2.1 let V be a finite-dimensional vector space, and consider a differential op-

erator M = α∂ + βz − γ ∈ End(V ) ⊗ A1, where A1 = C[∂, z] is the one-dimensional Weyl
algebra (2.1). Suppose M is put in normal form, that is either the degenerate form (2.3) or
the generic form (2.4). Then the system Mv = 0 for a holomorphic V -valued function v can be
written

∂zu =
(
Az +B + T +Q(z − T∞)−1P

)
u

in the case of a degenerate normal form, and

∂zu = (Az +B + T )u

in the case of a generic form, where u is the component of v taking values in U∞ ⊆ V (whence
u = v in the generic case). This is a first-order system of linear differential equations with
rational coefficients for the function u, which can be extended to a meromorphic connection on
the trivial holomorphic vector bundle U∞ × CP 1 → CP 1. Then u becomes a local section of
the vector bundle, and the above differential equations express the fact that it is covariantly
constant.

The next step is to introduce isomonodromic deformations of such meromorphic connections,
as follows. Recall from Section 2.1 that U∞ =

⊕
j∈J\{∞}W

j is graded by a finite set J , and

that the diagonal part T̂ = (T∞, T ) ∈ End(V ) of γ consists of semisimple endomorphisms

T∞ ∈ End
(
W∞

)
, T =

⊕
j∈J\{∞}

T j ∈
⊕

j∈J\{∞}

End
(
W j
)
⊆ End

(
U∞

)
.

Introduce accordingly the finer decomposition of V by splitting W j into eigenspaces for T j :

W j =
⊕
i∈Ij

Vi,
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where Ij is a finite set indexing the spectrum of T j . Hence V =
⊕

i∈I Vi, with I :=
∐
j∈J I

j ,
and one has

T j =
⊕
i∈Ij

ti IdVi , (4.1)

where {ti}i∈Ij is the spectrum of T . The admissible variations of these spectra give the isomon-
odromy times.

Define then the space of isomonodromy times B ⊆ CI as the open set corresponding to
variations of the spectral types of T and T∞ such that the eigenspace decomposition of each W j

does not change. This means one is allowed to vary the eigenvalues so that ti 6= tk for i 6= k ∈ Ij ,
whence

B :=
∏
j∈J

CI
j \
{
{ti}i∈IJ | ti 6= tk for i 6= k

}
⊆ CI .

If the I-grading V =
⊕

i∈I Vi is fixed then the data of the semisimple endomorphisms (4.1)
corresponds to giving a point of B.

Theorem 4.1 ([6]). There exists a time-dependent Hamiltonian system H : M×B→ CI whose
flow controls the isomonodromic deformations of meromorphic connections of the form

∇ = d−
(
Az +B + T +Q(z − T∞)−1P

)
dz = d−

(
Az +B + T +

∑
i∈I∞

Ri
z − t∞i

)
dz, (4.2)

defined on the trivial holomorphic vector bundle U∞ × CP 1 → CP 1, where Ri = QiP i ∈
End(U∞). Moreover, the system is strongly flat, which means that

∂Hi

∂tj
− ∂Hj

∂ti
= 0 = {Hi, Hj}a,

for all i, j ∈ I, where Hi is the i-th component of H.

In the statement one takes the Poisson bracket of the fibrewise restriction of the time-
dependent Hamiltonians to the symplectic phase-space M. Note (4.2) simplifies to ∇ = d −
(Az +B + T )dz in the case of a generic form.

Definition 4.2. The time-dependent Hamiltonian system H is the simply-laced isomonodromy
system attached to the data of the partitioned set I =

∐
j∈J I

j , the I-graded space V =
⊕

i∈I Vi,
and the embedding a : J ↪→ C ∪ {∞} of the set of parts of I. The components of H are the
simply-laced Hamiltonians.

Setting Fa := (M, ωa)×B the canonical projection πa : Fa → B defines a trivial symplectic
fibration which constitutes the total space of the nonautonomous Hamiltonian system. The
system itself is encoded in the horizontal 1-form

$ =
∑
i∈I

Hi dti ∈ Ω0(Fa, π
∗
aT
∗B), (4.3)

which also admits an intrinsic description (see [6, equation (5.3)] and below for a coordinate
independent formula, which is not needed here).
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4.1 Moduli space of meromorphic connections on the sphere

To understand the relation of this Hamiltonian system with the moduli space of meromorphic
connections one must first set the stage for the Hamiltonian reduction of M.

The group Ĥ :=
∏
i∈I GL(Vi) acts on (M, ωa) by simultaneous conjugation in Hamiltonian

fashion, and one can take the symplectic reduction M �Ŏ Ĥ at an adjoint orbit

Ŏ ⊆ h := Lie(Ĥ) =
∏
i∈I

gl(Vi),

identifying adjoint orbits with coadjoint ones via the symmetric nondegenerate Ĥ-invariant
pairing h⊗ h→ C provided by the trace.

This in turn gives a finite-dimensional presentation for a moduli space of meromorphic con-
nections with irregular singularities on the sphere, as follows. Let H :=

∏
i∈I\I∞ GL(Vi), sub-

group of Ĥ, and choose adjoint orbits ŎH ∈ Lie(H) and Oi ∈ End(U∞) for i ∈ I∞. Set also
O := {Oi}i∈I∞ , and fix a semisimple endomorphism T̂ corresponding to a point of B as in (4.1).

Definition 4.3. The spaceM∗dR =M∗dR

(
T̂ , ŎH ,O

)
is the moduli space of isomorphism classes

of connections (4.2) admitting local normal forms

d− Λi
zi

dzi + holomorphic terms

around t∞i ∈ C, for some Λi ∈ Oi and some local coordinate zi vanishing at t∞i , and

d−
(
A

w3
+

T

w2
+

Λ

w

)
dw + holomorphic terms

around infinity, for some Λ ∈ ŎH .

Conceptually the point of the base space B singles out a wild Riemann surface structure

Σ = Σ
(
T̂
)

=
(
CP 1, {∞, t∞i }i∈I∞ , {Q∞, Qi}i∈I∞

)
(4.4)

on the Riemann sphere, with Q∞ = Az2

2 + Tz and Qi = 0 for i ∈ I∞, and where z is a holo-
morphic coordinate identifying CP 1 ∼= C∪{∞}. Recall that a wild Riemann surface is the data
of a Riemann surface with marked points and irregular types at those points. To define them in
the case at hand let m be the dimension of U∞ and choose a basis so that GL(U∞) ∼= GLm(C).

Definition 4.4. An unramified irregular type at the point p ∈ CP 1 for the group GLm(C) is
an element Q ∈ t((zp))

/
tJzpK, where zp is a local holomorphic coordinate vanishing at p and

t ⊆ glm(C) the standard Cartan subalgebra of diagonal matrices.

This means Q is the germ of a t-valued meromorphic function around p, defined up to
holomorphic terms:

Q =

kp∑
j=1

T pj z
−j
p ,

where T pj ∈ t for all j ∈ {1, . . . , kp}. Then for all choice of Λ ∈ glm(C) the differential operator

d − Λ
zp

dzp + dQ is the germ of a meromorphic connection defined on the trivial holomorphic

vector bundle Cm × CP 1 → CP 1, having a pole of order kp + 1 at p with residue Λ.
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Remark 4.5. Definition (4.4) is given in the case of a compact Riemann surface of genus zero
since this is what is needed in this paper; this definition however extends verbatim to higher
genera. See instead [5, 8] for a coordinate-free generalisation of this notion to other complex
reductive groups G, and to ramified irregular types which are not conjugated to elements in the
standard Cartan subalgebra t((zp)) ⊆ Lie(G)((zp)).

Hence one considers here the Riemann sphere with marked points at z =∞ and z = t∞i , and
the only nonvanishing irregular type is put at∞. Then the spectrum of the semisimple endomor-
phism T∞ selects the position of the simple poles in the finite part – the regular isomonodromy
times –, whereas that of T selects the irregular type at infinity – the irregular isomonodromy
times. Thus B is a space of admissible deformations of wild Riemann surface structures (4.4)
on CP 1, generalising the space of variations of pointed Riemann surface structures on the sphere,
and even further the moduli space of deformation of ordinary Riemann surface structures, which
is trivial in genus zero.

There now exists a symplectic fibration M̃∗dR = M∗dR

(
•, ŎH ,O

)
→ B whose fibre over

the wild Riemann surface Σ of (4.4) is the moduli space of Definition 4.3. Isomonodromic
families of meromorphic connections inside this fibration define the leaves of an integrable non-
linear/Ehresmann symplectic connection: the isomonodromy connection.

The symplectic geometry of these isomonodromic deformations admits in this case a Hamil-
tonian interpretation, because of the existence of a preferred global trivialisation of the bundle
M̃∗dR → B.

Theorem 4.6 ([6]). Choose a wild Riemann surface structure Σ on CP 1, as in (4.4). One can
match up the choice of Ŏ ∈ h with a choice of O ∈ End(U∞)I

∞
and ŎH ∈ Lie(H) so that there

is an identification

M �Ŏ Ĥ ∼=M
∗
dR

(
Σ, ŎH ,O

)
,

of symplectic algebraic varieties.

Moreover, stable points of M for the base-changing Ĥ-action correspond to stable connections,
i.e., connections with no proper subconnections living on trivial holomorphic vector bundles.
Restricting to the stable locus, the above identification becomes an isomorphism of holomorphic
symplectic manifolds.

The isomorphism of Theorem 4.6 yields a global trivialisation of the bundle M̃∗dR → B,
since the symplectic reduction of the space M is independent of the base point in B. Equiva-
lently, associating to each point of

(
M �Ŏ Ĥ

)
× B the isomorphism class of the meromorphic

connection (4.2) yields an identification ϕ :
(
M �Ŏ Ĥ

)
×B→ M̃∗dR.

Furthermore, the bundle
(
M �Ŏ Ĥ

)
×B → B carries an integrable nonautonomous Hamil-

tonian system: the Hamiltonian reduction of the simply-laced isomonodromy system, which is
shown to be Ĥ-invariant (cf. Section 6). The integral manifolds of this system define a flat sym-
plectic Ehresmann connection in the trivial symplectic bundle, and Theorem 4.1 states that ϕ is
a flat isomorphism: the push-forward of the reduced simply-laced isomonodromy system along ϕ
yields a nonautonomous Hamiltonian system which integrates the isomonodromy connection on
M̃∗dR → B.

5 Classical Hamiltonian reduction

To state the invariance of the reduced simply-laced Hamiltonians the algebraic formalism of
(classical) Hamiltonian reduction will be recalled in this section (see [12]).
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5.1 General theory

Consider a commutative Poisson algebra (B0, {·, ·}) equipped with an Hamiltonian action of
a Lie algebra g. There is then a morphism ρ : g→ Der(B0) of Lie algebras (the action) together
with a lift µ∗ : Sym(g)→ B0 (the comoment map) through the adjoint action of B0 on itself:

ρ(x).b = {µ∗(x), b}, for x ∈ g, b ∈ B0.

Remark 5.1. The action is uniquely determined by the comoment map. Moreover the action
is equivalently given by a Poisson morphism ρ : Sym(g) → Der(B0), where Sym(g) ∼= C[g∗] is
equipped with the Poisson–Lie bracket.

Choose now an ideal I ⊆ Sym(g).

Definition 5.2. The classical Hamiltonian reduction ofB0 with respect to the comoment map µ∗

and the ideal I is the quotient ring:

R(B0, g, I) := Bg
0

/
J g,

where Bg
0 ⊆ B0 is the ring g-invariants, J := B0µ

∗(I) ⊆ B0 is the ideal generated by µ∗(I), and
J g := J ∩Bg

0.

Note one can show that J g ⊆ Bg
0 is a Poisson ideal, and thus the reduction in Definition 5.2

is canonically a Poisson algebra.

Remark 5.3 (geometric viewpoint). This is the algebraic counterpart of the usual Marsden–
Weinstein reduction of a symplectic manifold.

Suppose indeed that B0 is the Poisson algebra of functions on a symplectic manifold M , and
that the Lie group G acts on M with moment map µ : M → g∗, where g := Lie(G). Then there
is a comoment map µ∗ : g→ B0 as above, and if O ⊆ g∗ is a coadjoint orbit then one considers
the ideal of regular functions on g∗ vanishing on the coadjoint orbit:

IO := {x ∈ Sym(g) |x|O = 0}.

If JO := B0µ
∗(IO) then the quotient B0

/
JO is the ring of functions on the level set µ−1(O).

Taking G-invariant parts is the same as taking g-invariant parts: a function is fixed under the
pull-back along the G-action if and only if it is annihilated by the infinitesimal g-action by vector
fields. Hence the invariant ring (B0

/
JO)g is canonically the ring of functions on the quotient

µ−1(O)
/
G = M �O G.

Finally, if g is reductive then (B0

/
JO)g ∼= R(B0, g, IO).

Suppose now to have two sets of data (B0, g, I) and (B′0, g
′, I ′) defining classical Hamiltonian

reductions, and let ϕ : B0 → B′0 be a ring morphism such that ϕ(Bg
0) ⊆ B′g

′

0 and ϕ(J ) ⊆ J ′.
Then by the universal property of quotients there exists a unique reduced morphism closing the
following diagram:

Bg
0 B′g

′

0

R(B0, g, I) R(B′0, g
′, I ′),

	

ϕ

πI πI′

Rϕ
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where πI and are the canonical projections. Further, if ϕ is Poisson then so is Rϕ, since by
definition the Poisson bracket of the Hamiltonian reduction is the quotient one.

This situation applies in particular to the case of Remark 5.3. Assume that B0, B′0 are the
algebras of functions on symplectic manifolds M , M ′ equipped with moment maps µ : M → g∗,
µ′ : M ′ → (g′)∗ for Hamiltonian actions of reductive Lie groups G, G′ with Lie algebras g, g′,
respectively. Choose coadjoint orbits O ⊆ g∗, O′ ⊆ (g′)∗ and define the ideals IO, IO′ , JO
and JO′ as in Remark 5.3.

Lemma 5.4. If ϕ = f∗ is the pull-back along a smooth symplectic map f : M ′ → M sending
G′-orbits inside G-orbits and such that f

(
(µ′)−1(O′)

)
⊆ µ−1(O) then the reduced morphism Rϕ

is well defined. Moreover, Rϕ coincides the pull-back along the smooth symplectic map

Rf : M ′ �O′ G′ −→M �O G

induced on the symplectic reductions in the identifications

R(B0, g, IO) ∼= C
[
M �O G

]
, R(B′0, g

′, IO′) ∼= C
[
M ′ �O′ G′

]
.

Hence in brief R(f∗) = (Rf)∗.

Proof. To see that ϕ = f∗ sends Bg
0 to B′g

′

0 , let b ∈ Bg
0 be a function which is constant on

G-orbits. Then for all x ∈M ′ and g ∈ G′ one has

ϕ(b)(g.x) = b
(
f(g.x)

)
= b
(
f(x)

)
= ϕ(b)(x),

using that f(G′.x) ⊆ G.f(x) and that b is constant on G.f(x) ⊆ M . This proves that ϕ(b) lies
in the ring of G′-invariants.

Let then x ∈ IO, so that x|O = 0. Then µ∗x vanishes on µ−1(O), and ϕµ∗(x) = f∗µ∗(x)
vanishes on f−1

(
µ−1(O)

)
. By hypothesis (µ′)−1(O′) ⊆ f−1

(
µ−1(O)

)
, and thus ϕ(µ∗(x)) ∈ JO′ .

Since x was arbitrary, and since by definition the set {µ∗(x)}x∈IO generates JO, one sees that
ϕ(JO) ⊆ JO′ .

Finally, the reduced map Rf is (well) defined by Rf(G′.x) = G.f(x) for all x ∈ (µ′)−1(O′),
and by construction the reduced morphism Rϕ acts on the class of a function by pulling back
a representative along f . Thus indeed R(f∗) = (Rf)∗. �

5.2 Classical reduction of symplectic quiver varieties

We now apply the material of Section 5.1 to the SL2(C)-action of Section 2.4, after introducing
some insightful graph-theoretic notation.

Consider as in Definition 4.2 the data of a partitioned set I =
∐
j∈J I

j , an I-graded finite-
dimensional vector space V =

⊕
i∈I Vi and an embedding a : J ↪→ C ∪ {∞}. Let then G be

the complete k-partite graph on nodes I, where k := |J |. This means G has exactly one edge
between every pair of nodes lying in different parts of I, so that in particular it is simply-laced
(without double edges or loop edges). Replacing each edge with a pair of opposite arrows yields
a quiver, also denoted by G, which plays a central role in what follows.

Remark 5.5. The results of this section could be extended to an arbitrary simply-laced quiver,
not necessarily k-parted. We will consider this type of generality only for quantum Hamiltonian
reduction in Section 7.3.

Now by definition M =
⊕

i 6=j∈I Hom(Vi, Vj) is the space of representations of G in V :

M ∼= Rep(G, V ) :=
⊕
α∈G1

Hom(Vs(α), Vt(α)),
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where G1 is the set of arrows of G and s, t : G1 → I the source and target maps with values in
the set of nodes, respectively.

The embedding a ∈ A yields a symplectic form (2.12) on M which can be written in terms
of the adjacency of the quiver G after introducing some further notation. For α ∈ G1 let α∗

be the arrow opposite to α in G, and denote Bα : Vs(α) → Vt(α) the linear map defined by
a representation. The embedding a extends to a map a : I → C∪{∞} by ai := aj for j ∈ J and
i ∈ Ij , and we define functions εα : A→ C× by εα + εα∗ = 0, and following (2.13):

εα(a) :=


1

ai − aj
, i = s(α), j = t(α) 6∈ I∞,

1, s(α) ∈ I∞.

With this notation introduced one has

ωa =
∑
α∈G1

εα(a)

2
Tr
(
dBα ∧ dBα∗

)
. (5.1)

Now there is a moment map µa : M→ h∗ ∼= h for the Ĥ-action by simultaneous base chang-
ing – using the componentwise trace duality to identify h∗ with h =

⊕
i∈I gl(Vi). Writing the

symplectic form as in (5.1) the a-dependent moment map admits the following formula (see,
e.g., [18, Theorem 10.10]):

µa(B) =
⊕
i∈I

 ∑
α∈t−1(i)

εα(a)BαBα∗

 , where B = (Bα)α∈G1 .

This defines a map of Poisson bundles µ : M̃→ h×A, as µa is a Poisson map for a ∈ A where h
is given the Poisson structure coming from h∗ under the trace duality.

This bundle-theoretic moment map is compatible with the SL2(C)-actions on M̃ and A.

Lemma 5.6. One has µa.g ◦ ϕg(a) = µa for a ∈ A and g ∈ SL2(C).

Proof. Looking at (2.7) one sees that

ϕg(a) : Bα 7−→ ηt(α)(g,a) ·Bα,

for α ∈ G1, where ηt(α) := ηj for j ∈ J and t(α) ∈ Ij .1 Hence

µa.g ◦ ϕg(a) : B 7−→
⊕
i∈I

 ∑
α∈t−1(i)

εα(a.g) · ηt(α)(g,a)ηs(α)(a.g) ·BαBα∗

 .

Then the conclusion follows from Lemma 2.2, replacing the elements i, j ∈ J with the nodes
s(α), t(α) ∈ I. �

Lemma 5.6 can be summarised by stating that the SL2(C)-action “preserves” the values of
the moment map (cf. [6, Proposition 7.5]).

The last ingredient needed for the reduction of the classical SL2(C)-action is its compatibility
with the fibrewise Ĥ-action on M̃: since the SL2(C)-action does not depend on a choice of basis
for V the map ϕg(a) commutes with the Ĥ-action. This implies that the symplectomorphism

ϕg(a) : (M, ωa)→ (M, ωa.g) sends Ĥ-orbits to Ĥ-orbits.

1Indeed by (2.7) the action of ϕg(a) only depends on the coarser decomposition V =
⊕

j∈JW
j .
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If further an orbit Ŏ ⊆ h is chosen then Lemma 5.6 yields ϕg(a)
(
µ−1
a (Ŏ)

)
⊆ µ−1

a.g(Ŏ), since
µ−1
a = ϕg(a)−1 ◦ µ−1

a.g. Hence by Lemma 5.4 there exists a reduced Poisson morphism

Rϕ∗g(a) : R(A0, {·, ·}a.g) −→ R(A0, {·, ·}a),

keeping track of the Poisson bracket on the classical algebras in the notation – but omitting the
Lie algebra and the ideal IŎ ⊆ Sym(h). This morphism coincide with the pull-back along the
symplectomorphism

Rϕg(a) : (M, ωa) �Ŏ Ĥ −→ (M, ωa.g) �Ŏ Ĥ

induced on the symplectic reductions, keeping track of the symplectic forms in the notation.
Moreover, since g ∈ SL2(C) and a ∈ A are arbitrary it follows that the morphisms Rϕ∗gg′(a)

and Rϕ∗g(a) ◦ Rϕ∗g′(a.g) are defined, and by Proposition 2.4 they coincide since they close the
same commutative diagram. In particular the morphism Rϕ∗g(a) is an isomorphism with inverse
Rϕ∗g−1(a.g), as seen by taking g′ = g−1.

Hence we have defined the classical Hamiltonian reduction of the Poisson action of Proposi-
tion 2.4. One may consider the bundle of commutative Poisson algebras R

(
A0, Ŏ

)
→ A whose

fibre over the embedding a is the classical Hamiltonian reduction of (A0, {·, ·}a) at the orbit
Ŏ ⊆ Sym(h). It is given as a trivial bundle of graded commutative algebras with a Poisson
structure that depends on the point on the base, and the assignment (g,a) 7→ Rϕ∗g(a) lifts the
action on the base to an SL2(C)-action on the total space.

5.3 Classical invariance

Since the simply-laced Hamiltonians Hi : M×B→ C are Ĥ-invariant, their fibrewise restrictions
to M live in Ah

0, and their canonical projection πŎ : Ah
0 → R

(
A0, h, IŎ

)
can be taken.

Definition 5.7. The element RHi := πŎ(Hi) is the reduced simply-laced Hamiltonian at the
node i ∈ I.

The invariance under the classical SL2(C)-action is stated as follows.

Theorem 5.8 ([6, Corollary 9.4]). For all i ∈ I and all g ∈ SL2(C) there exists a constant
ci ∈ C such that the reduced Hamiltonian at the node i transforms as

Rϕ∗g(a)RHi = RHi + ci. (5.2)

In particular the reduced isomonodromy equations are invariant under the SL2(C)-action.

Remark 5.9. The second statement follows from the fact that the reduced isomonodromy
equations are the dynamical equations for the time-evolution of classical observables with respect
to the reduced simply-laced Hamiltonians – in the Hamiltonian picture of motion in classical
mechanics, where the classical state is fixed. These equations do not change under constant
shifts.

More precisely, if H is a local section of the bundle R
(
A0, h, IŎ

)
×B→ B at the point a ∈ A,

then the reduced equations read

∂tiH = {RHi, H}a, (5.3)

where one uses the reduced Poisson bracket on the Hamiltonian reduction. Consider then the
extended bundle

R
(
A0, Ŏ

)
×B −→ A×B,
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which is by construction trivial along the variations in B. If H is a section of this bundle defined
in a neighbourhood of the SL2(C)-orbit of a ∈ A, then we want to relate the isomonodromy
equations – along the variations in B – of H and ϕ∗g(a)H for g ∈ SL2(C). But if H is a solution
of (5.3) at a.g then Theorem 5.8 yields

∂ti(Rϕ
∗
g(a)H) = Rϕ∗g(a)(∂tiH) = Rϕ∗g(a)

{
RHi, H

}
a.g

=
{
Rϕ∗gRHi, Rϕ

∗
g(a)H

}
a

=
{
RHi, Rϕ

∗
g(a)H

}
a
, (5.4)

because the SL2(C)-action does not depend on the point in the base space B, using (5.2) for the
last equality, and since Rϕ∗g(a) is a Poisson morphism. Hence ϕ∗g(a)H is a solution of (5.3) at
a ∈ A, so that a single set of isomonodromy equation at one point controls the time evolution
along the whole of the SL2(C)-orbit of a.

Conversely, if H is a solution of (5.3) in a neighbourhood of a ∈ A then dragging it along
the SL2(C)-action extends it to a solution in a neighbourhood of the orbit of a.

Geometrically this means that Rϕ∗g(a) is a flat isomorphism of vector bundles, as follows. For
a fixed embedding a ∈ A consider the trivial bundle (A0, {·, ·}a)×B→ B of Poisson algebras.
It carries the (simply-laced) isomonodromy connection

∇a = d−$,

with $ is as in (4.3) and the simply-laced Hamiltonians act via their a-dependent adjoint action,
i.e., via their Hamiltonian vector field {Hi, ·}a. The strong flatness of this connection – that is
the identities d$ = 0 = [$,$] – is equivalent to that of the simply-laced isomonodromy system.

Now take fibrewise classical Hamiltonian reduction at an orbit Ŏ ⊆ h to get a new trivial
bundle R(A0, {·, ·}a)×B→ B of Poisson algebras, keeping the notation for the Poisson bracket
and dropping the Lie algebra and the ideal. It carries the reduced (simply-laced) isomonodromy
connection R∇a, that is the flat connection defined by

R∇a := d−R$, where R$ :=
∑
i∈I

RHi dti,

where the reduced simply-laced Hamiltonians act via their (reduced) Poisson bracket. Then (5.4)
shows that the map

Rϕ∗g(a) : R
(
A0, {·, ·}a.g

)
×B −→ R

(
A0, {·, ·}a

)
×B

is a flat isomorphism of vector bundles equipped with (flat) connections.
In Section 8 we will provide a quantum analogue of this statement.

6 Universal simply-laced quantum connection

In this section we recall the definition of the universal simply-laced quantum connection, for
which the first step is recognising the classical Hamiltonians as traces of potentials on the
quiver G (see [24]).

Let then CGcycl be the vector space generated by oriented cycles in G, defined up to cyclic
permutations of their arrows. Elements of CGcycl are called potentials, and one can take trace

of them to define Ĥ-invariant functions on M. Namely, if C = αn · · ·α1 is a cycle with arrows
αi ∈ G1 then a representation of G defines an endomorphism Bαn · · ·Bα1 ∈ End(Vs(α1)), and one
sets

Tr(C) := Tr(Bαn · · ·Bα1) : M −→ C,
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which is extended by C-linearity to a map Tr: CGcycl → A0. The fact that Tr(C) is Ĥ-invariant
follows from the fact that the trace is a class function.

Now fix a node i ∈ I, and recall Hi denotes the associated component of the simply-laced
isomonodromy system of Definition 4.2.

Proposition 6.1 ([24, Section 4]). There exist a time-dependent potential Wi : B → CGcycl

such that Hi = Tr(Wi) : B → A0. Moreover, the potential Wi is a C-linear combination of the
following four types of cycles in the quiver G:

Figure 1. Isomonodromy cycles.

In particular, since the invariant part AĤ0 = Ah
0 coincides with the algebra generated by

traces of cycles [20, Theorem 1], one sees that the simply-laced Hamiltonian descend to a time-
dependent system on the symplectic fibration of moduli spaces of meromorphic connections, as
stated in Section 4.

Definition 6.2. The potential Wi is the isomonodromy potential at the node i ∈ I. The cycles
of Fig. 1 are the isomonodromy cycles; the rightmost cycle of Fig. 1 is a degenerate 4-cycle.

6.1 Traces of quantum potentials

The quantisation of the simply-laced Hamiltonians is constructed as follows. Let G be the
complete k-partite quiver of the previous section.

Definition 6.3. An anchored cycle in G is as an oriented cycle in G with the choice of a starting
arrow.

The goal is to define the trace of such a cycle in a given representation of G in V =
⊕

i∈I Vi,
so that this trace lives in the Weyl algebra A of Section 3.1. Further, this will be upgraded to
an }-deformed taking values in the Rees algebra (3.2).

Choose then bases of Vi for i ∈ I, or equivalently take a dimension vector d = (di)i∈I ∈ ZI≥0

for the quiver and let Vi := Cdi . Then the linear coordinates B 7−→ Bij
α ∈ C of a representation

B = (Bα)α∈G1 ∈
⊕
α∈G1

Hom
(
Vs(α), Vt(α)

)
= M

are defined. Putting this linear functions together in a matrix yields elements inside

Hom
(
Vs(α), Vt(α)

)
⊗M∗ ⊆ Hom(Vs(α), Vt(α))⊗A0,

and the coefficient-wise Weyl quantisation M∗ ↪→ A yields matrices with coefficients in the Weyl
algebra, that is elements

B̂α ∈ Hom
(
Vs(α), Vt(α)

)
⊗A.

Now suppose Ĉ = αn · · ·α1 is a cycle anchored at α1, where the anchor is underlined –
composing arrows as linear maps, from right to left. Then the matrix product

B̂αn · · · B̂α1 ∈ End
(
Vs(α1)

)
⊗A,
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is well defined by(
B̂α · B̂β

)
kl

:=
∑
m

B̂km
α ∗a B̂ml

β ∈ A,

using the coefficient-wise product of A for α, β ∈ G1. Then one can take a trace:

Tra(Ĉ) := Tr
(
B̂αn · · · B̂α1

)
∈ A. (6.1)

Remark 6.4. It would be equivalent to do the following. Consider matrices with coefficients
in the ring Tens(M∗), define their product, take their trace (now an element of Tens(M∗)) and
then compose with the canonical projection π1 : Tens(M∗)→ A.

The trace (6.1) is not invariant under all cyclic permutations, since the coefficients of B̂α
and B̂β need not commute inside A. Indeed they commute if and only if α is not the arrow
opposite to β, which leads to the following definition.

Definition 6.5. An admissible permutation of the arrows of an anchored cycle Ĉ = αn · · ·α1

consists of splitting the cycle in two paths A1 = αn · · ·αi, A2 = αi−1 · · ·α1 such that no arrow
of A1 has its opposite in A2, and swap them to obtain the new anchored cycle C ′ = αi−1 · · ·α1 ·
αn · · ·αi after concatenation.

Example 6.6 (admissible permutation for degenerate 4-cycles). If α and β are arrows based at
the same node, with opposite arrows α∗ and β∗ respectively, then C = β∗βα∗α is a degenerate
4-cycle (as the rightmost cycle of Fig. 1). Then C ′ = α∗αβ∗β is an admissible permutation,
whereas C ′′ = αβ∗βα∗ is not.

Let ĈGcycl be the complex vector space generated by anchored cycles, defined up to ad-

missible permutations of their arrows. The elements of ĈGcycl are called quantum potentials,

with terminology suggested by the fact that (6.1) defines a map Tra : ĈGcycl → A, which is the
analogue to Tr: CGcycl → A0.

Moreover this notion of quantum trace admits an }-deformed version given by

Tra,} : ĈGcycl −→ Rees(A,B) ⊆ Â, Tra,}
(
Ĉ
)

:= Tra
(
Ĉ
)
· }l(C),

where l(C) ≥ 0 is the length of the oriented cycle underlying Ĉ. Then forgetting the anchor pro-

vides a surjection σG : ĈGcycl → CGcycl, and the semiclassical limit σ : Â→ A0 of equation (3.4)
intertwines it with taking traces.

The upshot is that one can quantise linear combinations of traces of oriented cycles in G by
taking suitable anchors for each cycle (and this construction generalises to any quiver).

To explain the choice which produces an integrable quantum system out of (4.3) consider
again an oriented cycle C in G. The cycle defines a subquiver C = (C0, C1) of G, and the (even)
degree of each node i ∈ C0 is defined as the number of arrows e ∈ C1 adjacent to it:

deg(i) := Card{e ∈ C1 | i ∈ {s(e), t(e)}} ≥ 2.

Let then

max(C) := {i ∈ C0 | deg(i) is maximal} ⊆ C0

be the subset of nodes of maximal degree, set

m(C) := Card(max(C))

to be the number of nodes of maximal degree, and finally

deg(C) := max
i∈C0

deg(i) = max
i∈max(C)

deg(i)

the maximal degree of a node in C.
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Definition 6.7. The quantisation of the cycle C is the quantum potential Ĉ ∈ ĈGcycl defined
by

Ĉ := wC
∑

i∈max(C)

∑
e∈s−1(i)

Ĉe, (6.2)

up to admissible permutations, where Ĉe denotes the cycle obtained by anchoring C at e and
setting

wC :=
2

deg(C)m(C)
∈ Q>0.

Remark 6.8. In words one anchors C at all possible arrows whose source is a node of maximal
degree, takes the sum of that, and multiplies by the weight wC . The number of arrows starting
at a node of maximal degree is deg(C)

2 , so that w−1
C = deg(C)m(C)

2 is the overall number of arrows

starting at nodes of maximal degree; thus dividing by it assures that σG
(
Ĉ
)

= C.

Then Definition 6.7 extends to the whole of CGcycl by C-linearity, so that there is a preferred

section QG : CGcycl → ĈGcycl of the anchor forgetting map.
If in particular a cycle does not contain a pairs of opposite arrows then Definition 6.7 reduces

to take an anchor at any nodes, since all possible anchors are related by admissible permutations.
This is the case of the middle cycles of Fig. 1, whereas the 2-cycles and degenerate 4-cycles are
explicitly quantised as follows.

Definition 6.9 (from Definition 6.7). The quantisation of a degenerate 4-cycles is the quantum
cycle having the same underlying classical cycle, anchored at either of the two arrows coming

out of its centre.2 The quantisation of a two cycle C = is by definition the quantum
potential

Ĉ =
1

2

(
+

)
,

where the black nodes correspond to the source of the anchors.

Now if C is an oriented cycle one can quantise Tr(C) ∈ A0 by

Qa,} Tr(C) := Tra,}
(
QG(C)

)
∈ Rees(A,B) ⊆ Â,

since indeed

σ ◦ Qa,}
(

Tr(C)
)

= Tr
(
σG ◦ QG(C)

)
= Tr(C) ∈ A0.

Hence Qa,} is extended by C-linearity to a quantisation map defined on Tr(CGcycl) ⊆ A0, and
a quantisation of the simply-laced isomonodromy Hamiltonian Hi = Tr(Wi) ∈ C[B] ⊗ A0 is
provided by

Ĥi := Qa,} Tr(Wi) = Tra,}(QG ◦Wi) ∈ C[B]⊗ Rees(A,B) ⊆ C[B]⊗ Â.

Theorem 6.10 ([24]). The time-dependent quantum Hamiltonian system Ĥ ∈ C[B]⊗ ÂI with
components Ĥi is strongly integrable, which means that

∂Ĥi

∂tj
− ∂Ĥj

∂ti
= 0 =

[
Ĥi, Ĥj

]
, for all i, j ∈ I. (6.3)

2This follows from Example 6.6.
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The final output is thus a bundle Â×B→ B of noncommutative CJ}K-algebras equipped with
a strongly flat connection ∇̂ = d − $̂, where $̂ =

∑
i∈I Ĥi dti and the quantum Hamiltonians

act on Â by their adjoint action, i.e., their commutator. The strong flatness of the connection
is expressed by the identities d$̂ = 0 = [$̂, $̂], which are a compact version of (6.3).

Definition 6.11. The connection ∇̂ is the universal simply-laced quantum connection attached
to the data of the partitioned set I =

∐
j∈J I

j , the I-graded space V =
⊕

i∈I Vi, and the

embedding a : J ↪→ C2 ∪ {∞} of the set of parts of I. The Hamiltonians Ĥi are the universal
simply-laced quantum Hamiltonians.

The quantum connection defines linear differential equations for Â-valued functions on B,
which are by definition the quantum isomonodromy equations.

Remark 6.12. The connection of Definition 6.11 is “universal” since one can replace the quan-
tum algebra Â with any left Â-module ρ : Â → End(V), and let Ĥi act on V in the given
representation. The resulting connection in the vector bundle V × B → B is strongly flat,
and computing its monodromy provides representations of π1(B) on V – i.e., representations of
arbitrary finite products of pure braid groups.

A particular important example is obtained from the quotient modulo the ideal generated
by } − 1, which yields a surjective morphism Â → A. In this case one obtains a strongly flat
connection in the bundle A × B → B: it is the simply-laced quantum connection, generali-
sing the Knizhnik–Zamolodchikov connection [19], the Casimir connection [22] and the FMTV
connection [14], in the sense explained in [24].

6.2 Compatibility of action and quantisation

We concluce this section by showing that Qa,} is compatible with the classical and quantum
actions of SL2(C)-action of Sections 2 and 3 – respectively.

Lemma 6.13. The quantisation map intertwines the SL2(C)-actions on traces of cycles:

ϕ̂∗g,}(a) ◦ Qa,} = Qa,} ◦ ϕ∗g(a) on Tr(CGcycl), for g ∈ SL2(C), a ∈ A.

Proof. Let C be an oriented cycle in G, and C1 ⊆ G1 its set of arrows as subquiver. Then (2.8)
implies that

ϕ∗g(a) Tr(C) = ηTr(C), where η :=
∏
e∈C1

ηt(e)(g,a) ∈ C∗.

Hence the subspace Tr(CGcycl) ⊆ A0 is preserved by the action, and the composition Qa,}◦ϕ∗g(a)
is defined. Then the linearity of the quantisation map yields

Qa,} ◦ ϕ∗g(a)
(

Tr(C)
)

= ηQa,} Tr(C) = ηTra,}
(
QG(C)

)
.

Similarly, if e ∈ C1 is fixed and Ĉe is the quantum cycle anchored at e then (3.5) yields

ϕ̂∗g,}(a) Tra,}
(
Ĉe
)

= ηTra,}
(
Ĉe
)
,

with the same number η independently of the choice of the anchor. Hence by C-linearity (6.2)
gives

ϕ̂∗g,}(a) ◦ Qa,}
(

Tr(C)
)

= ϕ̂∗g,}(a) Tra,}
(
QG(C)

)
= ηTra,}

(
QG(C)

)
. �
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7 Quantum Hamiltonian reduction

We introduce in this section the algebraic formalism of quantum Hamiltonian reduction, first in
filtered quantisation and then in formal deformation quantisation (see [12]).

7.1 Reduction for filtered quantisation

Let B be an associative algebra equipped with an action of a Lie algebra g, i.e., a morphism
ρ : g→ Der(B) of Lie algebras.

Definition 7.1. A quantum comoment map for the action is a morphism µ̂∗ : U(g) → B of
associative algebras lifting ρ through the adjoint action of B on itself:

ρ(x).b =
[
µ̂∗(x), b

]
, for x ∈ g, b ∈ B.

Let now Î ⊆ U(g) be a two-sided ideal.

Definition 7.2. The quantum Hamiltonian reduction of B with respect to the quantum como-
ment µ̂∗ and the ideal Î is the quotient

R
(
B, g, Î

)
:= Bg

/
Ĵ g,

where Bg is ring of g-invariants, Ĵ ⊆ B is the two-sided ideal generated by µ̂∗
(
Î
)
, and Ĵ g :=

Ĵ ∩Bg.

One can show that Ĵ g ⊆ Bg is a two-sided ideal, and thus the reduction is canonically an
associative algebra.

This construction can then be related to filtered quantisation, as follows. Assume there exist
a grading B0 on B0 and a filtration B on B such that the associative filtered algebra (B,B) is
a filtered quantisation of the graded commutative Poisson algebra (B0,B0), and that there is
a classical comoment map µ∗ : Sym(g)→ B0.

Definition 7.3. A filtered quantisation of µ∗ is a quantum comoment µ̂∗ : U(g) → B whose
associated graded equals µ∗ in the identifications gr(B) ∼= B0 and gr

(
U(g)

) ∼= Sym(g).

This implies that the action ρ = {µ∗, ·} on B0 is quantised by the g-action ρ̂ :=
[
µ̂∗, ·

]
on B,

i.e., gr ρ̂(x) = ρ(x) ∈ Der(B0) for x ∈ g.

7.2 Reduction for formal deformation quantisation

Suppose B̂ is a deformation algebra, that is a topologically free CJ}K algebra (a formal defor-
mation of B̂

/
}B̂), equipped with an action ρ : g→ Der

(
B̂
)

of the Lie algebra g.

Definition 7.4. A quantum comoment map for the action is a morphism

µ̂∗ : U(g) −→ B̂
[
}−1
]

of associative algebras lifting ρ through the adjoint action of B̂ on itself.

One allows for negative powers of } since
[
B̂, B̂

]
⊆ }kB̂ for some minimal integer k > 0 when

B0 := B̂
/
}B̂ is commutative. This is precisely the relevant case for deformation quantisation

(for example with the algebra (3.3) one has k = 2).
Assume then further that B̂ is a deformation quantisation of the commutative Poisson algebra

(B0, {·, ·}), which means that

σ
(
[f, g] · }−k

)
=
{
σ(f), σ(g)

}
∈ B0, for f, g ∈ B̂,

where σ : B̂ → B0 is the semiclassical limit (the projection modulo the ideal generated by }),
and let µ∗ : Sym(g)→ B0 a classical comoment map.
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Definition 7.5. A quantum comoment map µ̂∗ : U(h)→ B̂
[
}−1
]

is said to be a quantisation of
the classical comoment map µ∗ if

σ
(
}kµ̂∗(x)

)
= µ∗(x), for x ∈ g.

This implies that the action ρ = {µ∗, ·} on B0 is quantised by the g-action ρ̂} :=
[
µ̂∗, ·

]
, since

for x ∈ g and b ∈ B̂ one has

σ
(
ρ̂}(x)

)
.b = σ

([
}kµ̂∗(x), b

]
}−k

)
=
{
σ
(
}kµ̂∗(x)

)
, σ(b)

}
=
{
µ∗(x), σ(b)

}
.

In this case the ring of g-invariants B̂g ⊆ B̂ is the centraliser of the image of µ̂∗, and
an analogue to Definition 7.2 is obtained by a }-deformation of the quantum comoment. To
introduce it consider the algebras Rees(B,B) ⊆ B̂ as in Section 3.2, and define µ̂∗} on Û(g) by
imposing

µ̂∗}(}) := }, µ̂∗}(x}) := µ̂∗(x)}k, for x ∈ g. (7.1)

Choose now a two-sided ideal Î} ⊆ Û(g)

Definition 7.6. The quantum Hamiltonian reduction of B̂ with respect to the }-deformed
quantum comoment µ̂∗} and the ideal Î} is the quotient

R}
(
B̂, g, Î}

)
:= B̂g

/
Ĵ g
} ,

where Ĵ} := B̂µ̂∗}
(
Î}
)

is the ideal generated by the image of Î} for the quantum comoment, and

Ĵ g
} := Ĵ} ∩ B̂g.

Finally, the material of Sections 3.1 and 3.2 can be adapted to pass from the filtered setting
to the deformation one in quantum Hamiltonian reduction.

Suppose then the formal deformation quantisation B̂ of B0 is obtained from the filtered
quantisation (B,B) via the Rees construction, and let µ̂∗ : U(g) → B be a quantisation of the
classical comoment µ∗ : Sym(g) → B0 as in Definition 7.3. If the g-action ρ̂ =

[
µ̂∗, ·

]
on B

preserves the filtration B then there is a natural induced action on B̂ by CJ}K-linearity:

ρ̂} :
∑
k≥0

fk · }k 7−→
∑
k

ρ̂(fk) · }k.

Moreover there is a natural inclusion B[}] ↪→ B̂
[
}−1
]
, writing

f · }k = f · }|f |}k−|f |, for f ∈ B, k ≥ 0,

and restricting it to B turns the quantum comoment into a map µ̂∗ : U(g) → B̂
[
}−1
]

which
generates ρ̂} via the adjoint action. Hence this is a quantum comoment in deformation quanti-
sation as in Definition 7.4, which can be }-deformed to µ̂∗} as in (7.1). This deformed quantum

comoment then takes values in B̂, because the minimal integer k ≥ 1 such that
[
B̂, B̂

]
⊆ }kB̂

coincides with the minimal integer k such that µ̂∗(g) ⊆ B≤k – else ρ̂ =
[
µ̂∗, ·

]
would not preserve

the filtration.
Hence on the whole µ̂∗} : Û(g)→ B̂ is defined by

µ̂∗}(}) = }, µ̂∗}(x}) = µ̂∗(x) · }|µ̂∗(x)|, for x ∈ g,

and it intertwines the semiclassical limits σg : Û(g)→ Sym(g) and σ : B̂ → B0 because

σ ◦ µ̂∗}(x}) = σ|µ̂∗(x)| ◦ µ̂∗(x) = µ∗(x) = µ∗
(
σg(x})

)
, for x ∈ g,

using (7.1). So this is also a deformation quantisation of the classical comoment µ∗.
Suppose finally to have two sets of data

(
B, g, Î

)
and

(
B′, g′, Î ′

)
defining quantum Hamil-

tonian reduction in the filtered setting, let B̂ and B̂′ be the CJ}K-algebras given by the Rees
construction and choose further ideals Î} ⊆ Û(g) and Î ′} ∈ Û(g′).
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Lemma 7.7. Let ϕ̂ : B → B′ be a ring morphism such that ϕ̂
(
Bg
)
⊆ B′g

′
and ϕ̂

(
Ĵ
)
⊆ Ĵ ′.

Then:

1. There exists a unique ring morphism Rϕ̂ : R
(
B, g, Î

)
→ R

(
B′, g′, Î ′

)
induced by the uni-

versal property of quotients.

2. If ϕ̂ is a filtered map then the morphism ϕ̂} : B̂ → B̂′ extended from ϕ̂ by CJ}K-linearity
satisfies ϕ̂}

(
B̂g
)
⊆ B̂′g′. If further ϕ̂}

(
Ĵ}
)
⊆ Ĵ ′} then there exists a unique ring morphism

Rϕ̂} : R}
(
B̂, g, Î}

)
→ R}

(
B̂′, g′, Î ′}

)
induced by the universal property of quotients.

Proof. The first item follows directly from the hypotheses.
For the former statement of the second item, note the Lie algebra actions on B̂ and B̂′ are

obtained by imposing CJ}K-linearity, and the morphism ϕ̂} preserves power series with invariant
coefficients; but these are precisely the invariant elements inside the deformation quantisation.
The latter statement of the second item follows directly from the hypotheses. �

This is as far as one can go with general constructions, since there is no global correspondence
between ideals of B and B̂. A partial correspondence is given by replacing elements b ∈ B with
their homogeneous version b · }|b| ∈ B̂, which yield ideals in B̂ whose semiclassical limit is
homogeneous. In particular the quantisation of nonhomogeneous ideals in B0 in power series
in } will not correspond to any of those (and such ideals do not admit filtered quantisations, cf.
Remark 7.15).

This is another motivation for introducing deformation quantisation instead of just working
with filtered quantisation – apart from formalising the semiclassical limit.

7.3 Quantum Hamiltonian reduction of symplectic quiver varieties

The material of the previous Sections 7.1 and 7.2 will now be applied to the case of the repre-
sentation variety of a simply-laced graph/quiver. We will keep the notation that was used in
the particular case of a complete k-partite quiver, since all this material will specialise to it.

Let then G = (G0 = I,G1) be a (finite) simply-laced graph, that is a graph having at most
one edge between any two distinct nodes and no loop edges. Consider it equivalently as the
quiver obtained by replacing every edge by a pair of opposite arrows, also denoted G.

The we attach finite-dimensional vector spaces Vi to the nodes i ∈ I and let M = Rep(G, V ) be
the representation space in the I-graded vector space V =

⊕
i∈I Vi. To make it into a symplectic

vector space choose a skew-symmetric function α 7→ εα : G1 → C∗, that is a function satisfying
εα + εα∗ = 0 for all α ∈ G1 where α∗ is the (unique) opposite arrow to α, and define

ωε :=
∑
α∈G1

εα
2

Tr
(
dBα ∧ dBα∗

)
∈ Ω2(M,C),

where Bα ∈ Hom(Vs(α), Vt(α)) is the linear map defined by a representation and s, t : G1 → I are
the source and target maps.

Remark 7.8. Choosing an orientation for the arrows of G, i.e., defining a partition G1 =
G+

1

∐
G−1 with the two parts swapped by the involution α 7→ α∗, yields a symplectic identification

M ∼= T ∗L, where L :=
⊕
α∈G+1

Hom(Vs(α), Vt(α)).

The subspace L is Lagrangian for the canonical symplectic structure ω =
∑

α∈G+1
Tr
(
dBα∧dBα∗

)
of the cotangent bundle. This form corresponds to defining the skew-symmetric function ε by
imposing ε = 1 on G+

1 .



Symmetries of the Simply-Laced Quantum Connection 35

A suitable change of Darboux coordinates on M turns the starting situation into this one.
However this is non canonical (and breaks the SL2(C)-symmetries in the case of a complete
k-partite quiver).

The group Ĥ =
∏
i∈I GL(Vi) acts on (M, ωε) with a moment map µε : M → h∗ ∼= h, where

h = Lie
(
Ĥ
)

is the Lie algebra and the duality is provided by the nondegenerate trace pairings
gl(Vi)⊗ gl(Vi)→ C. The moment map admits the following formula:

µε : B 7−→
⊕
i∈I

 ∑
α∈t−1(i)

εαBαBα∗

 , where B = (Bα)α∈G1 . (7.2)

Now we split (7.2) into components after introducing some notation. For i ∈ I denote µε,i
the component of µ taking values in hi := gl(Vi) and write U i :=

⊕
α∈t−1(i) Vs(α) the direct

sum of spaces on nodes adjacent to i. Then µi only depends on the linear maps inside the
GL(Vi)-Hamiltonian subspace

Mi :=
⊕

α∈t−1(i)

Hom
(
Vs(α), Vt(α)

)
⊕Hom

(
Vt(α), Vs(α)

)
= Hom

(
U i, Vi

)
⊕Hom

(
Vi, U

i
)
,

which is the space of representation of the full subquiver Gi ⊆ G on nodes

(Gi)0 := {i} ∪
{
s(α) |α ∈ t−1(i)

}
⊆ I.

This is the (full) star-shaped subquiver centred at i, e.g., Fig. 2 where an edge stands for a pair
of opposite arrows.

i
Gi =

Figure 2. A simply-laced star-shaped graph centred at i (here with 4 peripheral nodes).

Now consider the pull-back µ∗ε,i : Sym
(
h∗i
)
→ Sym(M∗i ) ⊆ A0 along µε,i, where A0 = C[M].

This map is the restriction of the global comoment µ∗ : Sym(h∗) → A0 along the inclusion
h∗i ↪→ h∗ induced by the canonical projection h→ hi, but it also the classical comoment for the
Hamiltonian GL(Vi) action on Mi equipped with the restriction of ωε. To give a formula for
it choose bases for the spaces Vi – or equivalently take a dimension vector d = (di)i∈I ∈ ZI≥0

and let Vi := Cdi – and denote
(
Λikl
)
kl

the set of linear coordinates on hi in the basis. Similarly

define the linear coordinates
(
Bkl
α

)
kl

on the subspace Hom
(
Vs(α), Vt(α)

)
for α ∈ G1.

Then (7.2) yields the following formula:

µ∗ε,i
(
Λikl
)

=
∑

α∈t−1(i)

εα
∑
m

Bkm
α Bml

α∗ , (7.3)

and we want to quantise this comoment map. To this end denote (A, ∗ε) the Weyl algebra of
the vector space M∗ equipped with the alternating bilinear form defined by the Poisson bracket
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{·, ·}ε = ω−1
ε , and abusively keep the same notation for the restriction of the bracket to M∗i .

Then there is a canonical embedding W (M∗i , {·, ·}ε) ↪→ A induced on the quotients from the ring
morphism Tens(ι), where ι : M∗i ↪→M∗ is the dual of the canonical projection M→Mi.

Lemma 7.9. The following formula defines a morphism µ̂∗ε,i : U(h∗i ) → W (M∗i , {·, ·}ε) ⊆ A of
associative algebras whose associated graded coincides with (7.3):

µ̂∗ε,i
(
Λ̂ikl
)

:=
1

2

∑
α∈t−1(i)

εα
∑
m

(
B̂km
α ∗ε B̂ml

α∗ + B̂ml
α∗ ∗ε B̂km

α

)
, (7.4)

where Λ̂ikl and B̂kl
α are the Weyl quantisations of the corresponding coordinate functions.

Proof. By the universal property of the quotient, it will be enough to show that the morphism
µ̃∗ε,i : Tens

(
h∗i
)
→ Tens(M∗i ) ⊆ Tens(M∗) defined by

µ̃∗ε,i : Λikl 7−→
1

2

∑
α∈t−1(i)

εα
∑
m

(
Bkm
α ⊗Bml

α∗ +Bml
α∗ ⊗Bkm

α

)
sends the Lie bracket of two elements of X,Y ∈ h∗i to the Poisson bracket

{
µ̃∗i (X), µ̃∗i (Y )

}
ε
.

Since the Lie bracket of the dual Lie algebra is by definition induced from that of hi by the trace
duality Tr: hi → h∗i , it is easier to prove that α := µ̃∗i ◦ Tr sends [X,Y ] ∈ hi to {α(X), α(Y )}ε
for X,Y ∈ hi. This can be checked in the chosen coordinates using the commutation relations[

eikl, e
i
k′l′
]

= δk′le
i
kl′ − δkl′eik′l

inside hi, where ekl ∈ hi is the vector sent to Tr(eikl·) = Λilk by the trace duality, as well as the
Poisson-commutation relations{

Bkl
α , B

k′l′
β

}
ε

= ε−1
α δα∗βδkl′δk′l, (7.5)

inside A0.3

Then formula (7.4) holds. The statement about the associated graded follows from the
identity

σ2

(
B̂km
α ∗ε B̂ml

α∗ + B̂ml
α∗ ∗ε B̂km

α

)
= 2Bkm

α Bml
α∗ ∈ Sym(M∗i ) ⊆ A0. �

Now collect these morphisms together into a map µ̂∗ε : U(h∗)→ A by imposing

µ̂∗ε :
⊗
i∈I

Λ̂i 7−→
∏
i∈I

µ̂∗ε,i
(
Λ̂i
)
, for Λ̂i ∈ h∗i , (7.6)

in the identification U(h∗) ∼=
⊗

i∈I U(h∗i ), and using the product of A on the right-hand side.

Lemma 7.10. The map µ̂∗ε is a morphism of associative algebras.

Proof. The point is showing that the images of µ̂∗ε,i and µ̂∗ε,j commute inside A for i 6= j in I,
as this implies that

µ̂∗ε

(⊗
i∈I

Λ̂i1 · Λ̂i2

)
=
∏
i∈I

µ̂∗ε,i
(
Λ̂i1
)
∗ε
∏
i∈I

µ̂∗ε,i
(
Λ̂i2
)
, for Λ̂i1, Λ̂

i
2 ∈ h∗i ,

where Λ̂i1 · Λ̂i2 is the product in U(h∗i ).

3These Poisson-commutation relations hold because {·, ·}ε = ω−1
ε , and since by definition

ωε

(
∂

∂(Bα)kl
,

∂

∂(Bβ)k′l′

)
= εαδα∗βδkl′δk′l,

where we take the vector fields associated to the coordinate functions (Bα)kl.
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Importantly, the commutator of the product ∗ε is determined by the adjacency of G by means
of the relations[

B̂kl
α , B̂

k′l′
β

]
= ε−1

α δα∗βδkl′δk′l, (7.7)

which in turn follow from (7.5). In particular only the quantum variables attached to opposite
arrows do not commute.

The commutativity is clear if there is no arrow between i and j: in that case one has the
stronger statement that

[
W (M∗i , {·, ·}ε),W (M∗j , {·, ·}ε)

]
= (0) in the Weyl algebra, since there

are no arrows in the full star-shaped subquiver Gi centred at i with its opposite in the full
star-shaped subquiver Gj centred at j.

Suppose instead to have a (unique) pair of antiparallel arrows between the nodes i and j,
and consider the subquiver Gij ⊆ G obtained by glueing together the full star-shaped quivers
centred at i and j at their common edge/double arrow, e.g., Fig. 3.

i
Gij =

j

Figure 3. The glueing of the star-shaped subgraphs centred at i and j (here with 4 peripheral nodes

each).

Then the morphisms µ̂∗i and µ̂∗j take values in the Weyl algebra for the representation space
of Gij . Reasoning as above, the only commutators to consider are those among the components
of µ̂∗i and µ̂∗j taking values inside the Weyl subalgebra

W (M∗ij , {·, ·}ε) ⊆W (M∗i , {·, ·}ε) ∩W (M∗j , {·, ·}ε),

where Mij := Hom(Vi, Vj)⊕Hom(Vj , Vi). Keeping the notation µ̂∗i , µ̂
∗
j for these components and

writing α the arrow from i to j yields

µ̂∗i
(
Λ̂ikl
)

=
εα∗

2

∑
m

B̂km
α∗ ∗ε B̂ml

α + B̂ml
α ∗ε B̂km

α∗ ,

and

µ̂∗j
(
Λ̂jkl
)

=
εα
2

∑
m

B̂km
α ∗ε B̂ml

α∗ + B̂ml
α∗ ∗ε B̂km

α ,

looking at (7.4). Then a direct computation shows that
[
µ̂∗i
(
Λ̂ikl
)
, µ̂∗j
(
Λ̂jk′l′

)]
= 0 for all k, l, k′, l′,

using both εα + εα∗ = 0 and the commutation relations (7.7). �

Remark 7.11. Lemmata 7.9 and 7.10 should be compared with [24, Propositions 9.4 and 9.6].
The case treated there was that of a star-shaped quiver with a function ε such that ωε is
already in canonical form. In that context there is no symmetry breaking in taking Darboux
coordinates (since a Lagrangian splitting is already given), and this allows to simply formula (7.4)
by replacing the symmetrisation with a normal ordered product.

Thus the present situation generalises that of [24, Section 9] to a generic simply-laced graph
quiver, independently of the choice of Lagrangian splitting – hence compatibly with the SL2(C)-
symmetries in the complete k-partite case.
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Now notice that since the Hamiltonian Ĥ-action on (M, ωε) is given by linear symplectomor-
phisms, one can use Lemma 3.10 to quantise it. The pull-backs along the Ĥ-action give Poisson
automorphisms of the graded commutative Poisson algebra (A0, {·, ·}ε), and one quantises them
to automorphisms of the associative algebra (A, ∗ε). It follows from the construction of the
quantisation in Lemma 3.10 that this action is still given by the simultaneous conjugation

(gi)i∈I .
(
B̂α
)
α∈G1

:=
(
g−1
t(α)B̂αgs(α)

)
α∈G1 , (7.8)

where gi ∈ GL(Vi) for i ∈ I and B̂α ∈ Hom
(
Vs(α), Vt(α)

)
⊗A is the matrix containing the Weyl

quantisation of the linear functions Bkl
α ∈M∗.

Remark 7.12. In this viewpoint it is clear that the traces of quantum potentials of Section 6.1
define Ĥ-invariant functions. Indeed if V1, V2 are finite dimensional vector spaces and one takes
elements B ∈ Hom(V1, V2)⊗A, C ∈ Hom(V2, V1)⊗A then

Tr(BC)− Tr(CB) =
∑
i,j

[Bij , Cji] ∈ A,

where Bij , Cji ∈ A are the coefficients in given bases of V1 and V2. Thus in particular one can
cyclically permute the factors inside the trace if all coefficients of B commute with those of C.
This is the case for the “quantum” base-changing action (7.8), since Ĥ conjugates with respect
to matrices with complex coefficients which lie in the centre of the Weyl algebra.

Now taking the tangent map of the action Ĥ → Aut(A) (7.8) at the identity provides an
h-action, and its composition with the trace duality yields a morphism ρ : h∗ → Der(A).

Lemma 7.13. The morphism (7.6) is a quantum comoment map for the quantum base-changing
action (7.8) on A.

Proof. According to Definition 7.1 one must show that ρ(Λ).X̂ =
[
µ̂∗(Λ), X̂

]
for Λ ∈ h∗ and

B̂ ∈ A. This can be checked locally, i.e., fixing i ∈ I and a pair α, α∗ ∈ G1 of opposite arrows
with t(α) = i. Then using the restriction (7.6) of the comoment map yields[

µ̂∗i
(
Λ̂ikl
)
, B̂qr

α

]
=
εα
2

∑
m

[
B̂km
α ∗ε B̂ml

α∗ + B̂ml
α∗ ∗ε B̂km

α , B̂qr
α

]
=
εα
2

∑
m

B̂km
α ∗ε

[
B̂ml
α∗ , B̂

qr
α

]
+
[
B̂ml
α∗ , B̂

qr
α

]
∗ε B̂km

α

= εαε
−1
α∗

∑
m

δmrδqlB̂
km
α = −δqlB̂kr

α ,

and analogously[
µ̂∗i (Λ̂

i
kl), B̂

qr
α∗
]

= δkrB̂
ql
α∗ .

This must be compared with the trace dual of the derivative of the conjugation action (7.8).
It reads(

Λi
)
i∈hi

.
(
B̂α
)
α∈G1 =

(
B̂αΛs(α) − Λt(α)B̂

α
)
α∈G1 ,

which in this local situation reduces to

Λi.
(
B̂α, B̂α∗

)
=
(
B̂α∗Λ

i,−ΛiB̂α
)
.
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Finally, if elk ∈ hi denotes the trace dual of Λikl ∈ h∗i – i.e., the standard basis vector satisfying
Tr(elk·) = Λkl – then(

−elkB̂α
)
qr

= −
∑
m

(elk)qmB̂
mr
α = −

∑
m

δqlδkmB̂
mr
α = −δqlB̂kr

α ,

and analogously(
B̂α∗elk

)
qr

= δkrB̂
ql
α∗ ,

as needed. �

Remark 7.14. Note that this proof would work verbatim for showing that (7.3) is a comoment
map for the classical Ĥ-action, replacing commutators with Poisson brackets. Indeed what is
used here is that in these computations one just needs to use the Leibnitz identity of the Poisson
bracket, and not the commutativity of the associative product.

So in conclusion (7.6) defines a quantum comoment map which moreover quantise the classical
comoment for the Ĥ-action in the filtered quantisation setting. Then Section 7.2 explains
how to obtain an }-deformed quantum comoment map µ̂∗} : Û(h∗) → Â which is a deformation
quantisation of µ∗.

Remark 7.15 (about orbit quantisation). What is left is to choose an ideal of Sym(h) ∼= Sym(h∗)
and deform it so that the quantum Hamiltonian reduction yields a deformation of the classical
Hamiltonian reduction. This ideal IŎ should be that of functions vanishing on some coadjoint

orbit Ŏ ⊆ h∗ – corresponding to an adjoint orbit under the trace duality – so that the algebraic
Hamiltonian reduction can be related to the geometric symplectic reduction M �Ŏ Ĥ as in
Remark 5.3.

Concentrating on the semisimple orbits, the ideals of functions vanishing on them are not
homogeneous. For example in the regular case they are generated by elements Di−ci ∈ Sym(h),

where Di ∈ Sym(h)Ĥ is an Ĥ-invariant functions and ci ∈ C the value of Di on the orbit. Since
the associated graded of every ideal in U(h) is homogeneous such ideals do not admit filtered
deformations, but a formal deformation exists in Û(h): consider the ideal of Û(h) generated by
the elements Ci · }|Ci| − ci, where Ci ∈ U(h) are the Casimir generators of the centre of the
universal enveloping algebra and ci the value of the principal symbol σ|Ci|(Ci) ∈ A

h
0 on the orbit

(see [10, 11] for the general semisimple case).
In the case of nilpotent orbit closures then one can a priori look for filtered deformations

in U(h) (see [9, Chapter 10] and the more recent [21]).

7.4 Reduction of the quantum action

In what follows suppose to have chosen an ideal deforming IŎ, either in U(h) or Û(h). Up to
replacing ideals of U(h) with their homogeneous versions inside the Rees algebra the }-deformed
quantum Hamiltonian reduction R}(Â, h, ÎŎ,}) is defined as in Section 7.1 and 7.2.

Now we consider again the particular case where G is a complete k-partite quiver on nodes
I =

∐
j∈J I

j , and where ε is defined by an embedding a : J ↪→ C ∪ {∞} as in (2.13). Then
the quantum SL2(C)-action is defined as in Section 3.3, and we want to reduce the morphisms
ϕ̂∗g,}(a) : (A, ∗a.g)→ (A, ∗a) for g ∈ SL2(C), a ∈ A.

Theorem 7.16. The morphism ϕ̂∗g,}(a) naturally induces a reduced morphism

Rϕ̂∗g,}(a) : R}
(
Â, ∗a.g

)
−→ R}

(
Â, ∗a

)
,

keeping track of the products in the notation – but omitting the Lie algebra and the ideal. More-
over if g′ ∈ SL2(C) is another element then Rϕ̂∗gg′,}(a) = Rϕ̂∗g,}(a) ◦Rϕ̂∗g′,}(a.g).
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Proof. It is helpful to start from filtered quantisation and show that the family of morphisms
ϕ̂∗g(a) : (A, ∗a.g)→ (A, ∗a) in filtered quantisation commutes with the Ĥ-action (7.8) and “pre-
serves” the values of the quantum comoment map (7.6).

As for the action, the statement follows from the fact that the quantum SL2(C)-action does
not depend on a choice of basis for V . This yields the inclusion ϕ̂∗g(a)

(
Ah
)
⊆ Ah, and from

Lemma 7.7 one gets ϕ̂∗g,}(a)
(
Âh
)
⊆ Âh.

As for the quantum comoment, the proof of Lemma 5.6 is easily modified as it relies on
Lemma 2.2, and the cocycles ηi : SL2(C)×A→ C× of (2.10) are the same for the classical and
quantum action. Hence one has

ϕ̂∗g(a) ◦ µ̂∗a.g = µ̂∗a, for g ∈ SL2(C), a ∈ A, (7.9)

where µ̂∗a is the quantum comoment (7.6) for the above choice of ε = ε(a).
Now (7.9) directly implies

ϕ̂∗g,}(a) ◦ µ̂∗a.g,} = µ̂∗a,}, for g ∈ SL2(C), a ∈ A,

as µ̂∗a,}
(
Λ̂}
)

= µ̂∗a
(
Λ̂
)
· }2 for Λ̂ ∈ h and ϕ̂∗g,}(a) acts as ϕ̂∗g(a) on the coefficients of power

series. Then if Î} is any ideal in Û(g) one has ϕ̂∗g,}
(
µ̂a.g,}

(
Î}
))
⊆ Ĵa,}, where Ĵa,} ⊆ Â is the

two-sided ideal generated by µ̂∗a,}
(
Î}
)
. It follows that the ideal generated by µ̂∗a,}

(
Î}
)

is also

sent inside Ĵa,}, as ϕ̂∗g,}(a) is a ring morphism.
Then the existence of the reduced morphism is assured by the second item of Lemma 7.7.

Further by uniqueness the identity in the statement of Theorem 7.16 follows from the analogous
one in the statement of Theorem 3.11. �

Remark 7.17. In particular we have shown that reduced morphisms Rϕ̂∗g(a) also exist in
filtered quantum Hamiltonian reduction for every choice of ideal in U(h). By uniqueness they
satisfy Rϕ̂∗gg′(a) = Rϕ̂∗g(a) ◦Rϕ̂∗g′(a.g). Moreover both Rϕ̂∗g(a) and Rϕ̂∗g,}(a) are isomorphisms
inverted by Rϕ̂g−1(a.g) and Rϕ̂∗g−1,}(a.g), respectively.

Consider the bundle of noncommutative CJ}K-algebras R}
(
Â, Ŏ

)
→ A whose fibre over the

embedding a is the quantum Hamiltonian reduction of (Â, ∗a) at the orbit Ŏ ⊆ Sym(h). This
is not a trivial bundle of associative algebras, but the quantum Hamiltonian reduction alwasy
defines a formal deformation of the classical Hamiltonian reduction: this yields a global trivial-
isation of R}

(
Â, Ŏ

)
as bundle of CJ}K-modules via the canonical a-independent identifications

R}(Â) ∼= R(A0)J}K. Then the assignment (g,a) 7→ Rϕ̂∗g,}(a) lifts the action on the base to one
on the total space.

An analogous statement holds for the bundle of filtered quantum Hamiltonian reductions.
Hence we have constructed the quantum Hamiltonian reduction of the action of Theorem 3.11,
both in filtered quantisation and in deformation quantisation.

8 Quantum symmetries

In this section we reduce the universal simply-laced quantum connection of Section 6, and shows
the reduction is projectively invariant under the reduced quantum action of Theorem 7.16.

By Remark 7.12 the universal simply-laced quantum Hamiltonians Ĥi are invariant for the
h-action on Â defined by (7.8), i.e., the action induced by the quantum comoment map (7.6).
Hence one can map them along the canonical projection π̂Ŏ : Âh → R}

(
Â, h, ÎŎ,}

)
.

Definition 8.1. The element RĤi := π̂Ŏ
(
Ĥi

)
is the reduction of the universal simply-laced

quantum Hamiltonian Ĥi, for i ∈ I.
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Remark 8.2. By construction the semiclassical limit of the reduced quantum Hamiltonians
equals the reduced classical Hamiltonians, since the projections to the Hamiltonian reductions
commute with semiclassical limits. Namely, if one denotes Ĵa,Ŏ,} (resp. Ja,Ŏ) the ideal generated

by µ̂∗a,}
(
ÎŎ,}

)
inside Â (resp. by µ∗a(IŎ) inside A0) then the reduction of Ĥi is by definition

RĤi = Ĥi + Ĵa,Ŏ,} ∈ R}
(
Â, h, ÎŎ,}

)
,

whose semiclassical limit is

Hi + Ja,Ŏ = RHi ∈ R
(
A0, h, IŎ

)
,

using the fact that Ĥi and Ĵa,Ŏ,} quantise Hi and JŎ, respectively.

Now the quantum analogue of Theorem 5.8 can be proved for suitable choices of (co)adjoint

orbits. To this end let f ∈ AĤ0 be the (finite) product of all traces of isomonodromy cycles of
Fig. 1, and consider the distinguished (Zariski dense) open subset D(f) := {B ∈M | f(B) 6= 0},
where M has the natural structure of complex affine space.

For a ∈ A set then Ua := µa
(
D(f)

)
⊆ h.

Lemma 8.3. The subspace Ua is Ĥ-invariant, and one has Tr(C) 6∈ Ja,Ŏ for all Ĥ-orbits

Ŏ ⊆ Ua and for all isomonodromy cycles C ∈ CGcycl. Moreover Ua only depends on the class of
the embedding a for the SL2(C)-action.

Proof. The nonempty set D(f) is Ĥ-stable, since all traces of cycles are Ĥ-invariant functions.
Then the nonempty set Ua is a union of Ĥ-orbits, since the moment map is Ĥ-equivariant.
By construction, any Ĥ-orbit Ŏ contained in Ua is such that D(f) ∩ µ−1

a (Ŏ) 6= ∅, and thus
Tr(C)|µ−1

a (Ŏ) 6= 0 for all isomonodromy cycles.

As for the second statement, by (2.8) the classical SL2(C)-action at (g,a) ∈ SL2(C) × A
multiplies the trace Tr(C) of a cycle C by the number η =

∏
e∈C1

ηt(e)(g,a) ∈ C∗, where C1 is
the set of arrows of C – as subquiver of G. Hence the function ϕ∗g(a)f is a nonzero multiple
of f , and ϕg(a) stabilises D(f) and V (f) := {B ∈ M|f(B) = 0}. Since ϕg(a) is bijective and
M = D(f)

∐
V (f) this implies ϕg(a)

(
D(f)

)
= D(f), and by Lemma (5.6)

Ua = µa
(
D(f)

)
= µa.g

(
D(f)

)
. �

Choose then a ∈ A and an orbit Ŏ ⊆ U[a], where [a] ∈ A
/

SL2(C) is the class of a. Let

Qa,} : Tr(CGcycl)→ Â be the quantisation map of Section 6.1, and define IMD ⊆ CGcycl as the
finite-dimensional vector space spanned by isomonodromy cycles and the zero-length cycles at
each node.

Corollary 8.4 (quantisation and reduction commute). There exists a reduced quantisation
map RQa,} defined on the classical Hamiltonian reduction of Tr(IMD) and taking values into the

quantum Hamiltonian reduction R}
(
Â, h, ÎŎ

)
. It sends the reduced classical simply-laced isomon-

odromy system to the reduced quantum one, and it intertwines the reduced SL2(C)-actions along
the orbit of a:

RQa,} ◦Rϕ∗g(a) = Rϕ̂g,}(a) ◦RQa,}, for g ∈ SL2(C).

Proof. If it exists, the reduced map RQa,} is defined by the identity RQa,} ◦ πŎ = π̂Ŏ ◦ Qa,}

on Tr(IMD) ⊆ Ah
0. The existence follows from Ja,Ŏ ∩ Tr(IMD) ⊆ Ker(Qa,}), which is verified

for this choice of orbit, and the defining identity assures that

RQa,}(RHi) = RQa,} ◦ πŎ(Hi) = π̂Ŏ ◦ Qa,}(Hi) = π̂Ŏ
(
Ĥi

)
= RĤi. (8.1)

The last statement follows from Lemma 6.13. �

An analogous statement holds for the quantisation map in filtered quantisation.
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8.1 Quantum invariance

Now consider the reduced quantum isomonodromy equations for a local section Ĥ of the bundle
R}
(
Â, ∗a

)
×B→ B. They read

∂tiĤ =
[
RĤi, Ĥ

]
a
, (8.2)

using the commutator for the a-dependent noncommutative product of the quantum Hamil-
tonian reduction. The differential equations (8.2) are the dynamical equations for the time-
evolution of the quantum observable Ĥ in the Heisenberg picture of motion in quantum me-
chanics – where the quantum state is fixed.

Theorem 8.5. The reduced quantum isomonodromy equations (8.2) are invariant under the
reduced quantum SL2(C)-action along the SL2(C)-orbit of a.

Proof. Putting together the previous statements yields

Rϕ̂∗g,}(a)RĤi = RĤi + ci, for i ∈ I, g ∈ SL2(C), (8.3)

where ci ∈ C is the same constant of Theorem 5.8. Indeed by Corollary 8.4 and Theorem 5.8:

Rϕ̂∗g,}(a)RĤi = Rϕ̂∗g,}(a) ◦ π̂Ŏ
(
Qa,}(Hi)

)
= Rϕ̂∗g,}(a) ◦RQa,}

(
RHi

)
= RQa,} ◦Rϕ∗g(a)

(
RHi

)
= RQa,}

(
RHi + ci

)
= RĤi + ci,

using the fact that the quantisation map and its reduction preserve constants, where C ↪→ IMD
is embedded as the sum of the zero-length cycles at each node.

Now consider the extended bundle R}
(
Â, Ŏ

)
×B→ Oa ×B, where Oa ⊆ A is the SL2(C)-

orbit of a. This bundle is by construction trivial along the variations in B, and if Ĥ is a local
section then we want to relate the reduced quantum isomonodromy equations for of Ĥ and
Rϕ̂∗g(a)Ĥ for g ∈ SL2(C). Assuming that Ĥ is a solution of (8.2) at a then:

∂ti
(
Rϕ̂∗g,}(a)Ĥ

)
= Rϕ̂∗g,}(a)∂tiĤ = Rϕ̂∗g,}(a)

[
RĤi, Ĥ

]
a.g

=
[
ϕ̂∗g,}(a)RĤi, Rϕ̂

∗
g,}(a)Ĥ

]
a

=
[
RĤi, Rϕ̂

∗
g,}(a)Ĥ

]
a
,

because the SL2(C)-action does not depend on the point in the base space B, using (8.3) for the
last equality, and since Rϕ̂∗g,}(a) is a morphism of associative algebras. �

Remark 8.6. Hence ϕ̂∗g,}(a)Ĥ is a solution of (8.2) at a ∈ A, so that a single set of quantum
isomonodromy equation at one point controls the time evolution along the whole of the SL2(C)-
orbit of a.

Analogous statements hold in filtered quantisation.

Theorem 8.5 can be geometrically rephrased in terms of flat isomorphisms of vector bun-
dles, as follows. Fix a point a ∈ A, and consider the trivial bundle of noncommutative CJ}K-
algebras

(
Â, ∗a

)
× B → B, equipped with the universal simply-laced quantum connection ∇̂a

of Theorem 6.10. Taking fibrewise quantum Hamiltonian reduction at a choice of coadjoint
orbit Ŏ ⊆ U[a] yields a new trivial bundle R}

(
Â, ∗a

)
×B→ B. This bundle carries the reduced

simply-laced quantum connection, that is the strongly flat connection defined by

R∇̂a = d−R$̂, where R$̂ :=
∑
i∈I

RĤi dti,
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with the reduced quantum Hamiltonian acting via their commutator. Then Theorem 8.5 states
that the reduced morphism

Rϕ̂∗g,}(a) : R}
(
Â, ∗a.g

)
×B −→ R}

(
Â, ∗a

)
×B

is a flat isomorphism of vector bundles equipped with (flat) connections.

Hence in brief the quantisation of the symmetries of the reduced isomonodromy connection
yields symmetries of the reduced universal simply-laced quantum connection. A similar state-
ment holds for the simply-laced quantum connection in filtered quantisation.

Future directions

It was shown in [6] that the SL2(C) symmetry group can be used to obtain Kac–Moody Weyl
group symmetries, generalising the Okamoto symmetries of the Painlevé equations IV, V and VI.
Indeed all Painlevé equations can be written as nonautonomous Hamiltonian systems, with the
cases IV, V and VI all within the scope of the simply-laced isomonodromy systems, and the
results of this paper yield quantum version of the resulting Kac–Moody Weyl group symmetries.
This generalises some results of [23], and will be studied in future work.

Also, the quantisation of Section 6.1 goes in the direction of the quantisation of the necklace
Lie algebra of a quiver, independently from [25] which considers a more refined Hopf algebra
quantisation. It should in principle be possible to relate these constructions.
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