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Abstract. Several types of generically-nondegenerate Poisson structures can be effectively
studied as symplectic structures on naturally associated Lie algebroids. Relevant examples
of this phenomenon include log-, elliptic, bk-, scattering and elliptic-log Poisson structures.
In this paper we discuss topological obstructions to the existence of such Poisson structures,
obtained through the characteristic classes of their associated symplectic Lie algebroids. In
particular we obtain the full obstructions for surfaces to carry such Poisson structures.
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1 Introduction

Generically-nondegenerate Poisson structures have recently seen an intense increase in interest.
The main reason for this has been the ability to effectively study them using Lie algebroids.
Namely, in several instances it is possible to, given a Poisson structure π ∈ Poiss(X), define
a Lie algebroid A → X adhering to the same mild degeneracies as π, such that π is in a precise
sense dual to a symplectic structure in A, i.e., a closed nondegenerate A-two-form.

Symplectic Lie algebroids were first considered in [26], and have more recently been studied
especially when the anchor map ρA : A → TX is generically an isomorphism. This class includes
log- [4, 10, 11, 18, 19], elliptic [5, 6], bk- [12, 24, 25, 27] and scattering symplectic structures [16].
Through the use of symplectic Lie algebroids, powerful symplectic techniques can be brought to
bear to study the associated Poisson structures, leading to various results.

In this paper we are interested in obtaining obstructions to the existence of a symplectic
structure on a Lie algebroid, and thus to their underlying Poisson structures. While we focus in
this paper primarily on Lie algebroids and their symplectic structures, these should be thought
of as tools to make statements about interesting classes of Poisson structures.

A symplectic manifold inherits a natural orientation, and is further almost-complex. Analo-
gous statements hold for any symplectic Lie algebroid A → X (see Proposition 2.1), or indeed
any symplectic vector bundle (without integrability condition). The existence of an orientation
and complex structure on A is determined by the underlying vector bundle, and is obstructed by
its characteristic classes. Much of this paper consists of the computation of characteristic classes
for several specific Lie algebroids A. Before we can state our results (Theorems 1.7 and 1.9) we
must first recall how these Lie algebroids can be constructed.

1.1 Lie algebroids from divisors

One of the tools we use is the language of (real) divisors on smooth manifolds [6, 15]. A (real)
divisor on X is a pair (U, σ) consisting of a real line bundle with a section σ ∈ Γ(U) that has
nowhere dense zero set Zσ = σ−1(0). Through evaluation via the map σ : Γ(U∗) → C∞(X)
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we obtain a divisor ideal Iσ ⊆ C∞(X). A divisor ideal determines a divisor up to line bundle
isomorphism and multiplication by a nonvanishing smooth function, allowing us to mostly work
with divisor ideals.

In this paper we will use the following three examples of divisors (see [5, 6, 15]):

� log divisors, denoted as (L, s), where s has transverse zeroes. Here Z := Zs is a codimen-
sion-one hypersurface, and IZ := Is is its vanishing ideal, locally we have IZ = 〈z〉 with
Z = {z = 0}, so that the log divisor (and IZ) is determined by Z.

� elliptic divisors, denoted as (R, q), where q along its smooth codimension-two zero set
D := Zq has definite Hessian Hess(q) ∈ Γ

(
D; Sym2N∗D ⊗R

)
. Its divisor ideal is denoted

I|D| := Iq, and is locally given by I|D| =
〈
r2
〉

with r a radial distance in ND;

� elliptic-log divisors (L, s)⊗(R, q), obtained as the product of a log and elliptic divisor such
that D ⊆ Z. Its divisor ideal is IW = IZ · I|D|, and locally IW =

〈
r3 cos θ

〉
.

Note that elliptic and elliptic-log divisors are not determined by their underlying zero sets.
Regardless, we will write (X,Z), (X, |D|) and (X,W ) for log, elliptic, and elliptic-log pairs for
manifold pairs equipped with the above three divisor types respectively, and denote by LZ the
line bundle of the log divisor associated to the pair (X,Z).

An immediate consequence of the definition is the following, which we will use later.

Lemma 1.1. Let (X,Z) be a log pair. Then we have w1(LZ) = PDZ2 [Z] ∈ H1(X;Z2).

Here w1 is the first Stiefel–Whitney class, and PDZ2 is the Poincaré dual with Z2-coefficients.
This follows because the section s ∈ Γ(LZ) can be used to determine the Euler class of LZ ,
which equals the top Stiefel–Whitney class (in this case w1) after reduction modulo two.

Remark 1.2. Note that PDZ2 [Z] = 0 if and only if Z separates X. That is, if and only if Z
has a global defining function f : X → R, with 0 a regular value of f and Z = f−1(0).

The next step is to recall that a Lie algebroid is a vector bundle A → X equipped with
an anchor map ρA : A → TX and a Lie bracket [·, ·]A on Γ(A) which satisfies [v, fw]A =
f [v, w]A + LρA(v)f · w for all v, w ∈ Γ(A) and f ∈ C∞(X). Divisor ideals are an effective tool
to construct Lie algebroids generically isomorphic to TX, as we now explain.

Let I ⊆ C∞(X) be a divisor ideal and Γ(TX)I = {V ∈ Γ(TX) : LV I ⊆ I} ⊆ Γ(TX) be
the involutive submodule of vector fields preserving I. When Γ(TX)I is projective it specifies
uniquely a Lie algebroid AI → X such that Γ(AI) ∼= Γ(TX)I by the Serre–Swan theorem.

Definition 1.3 ([15]). Let I ⊆ C∞(X) be a divisor ideal for which Γ(TX)I is projective. Then
the Lie algebroid AI → X with Γ(AI) ∼= Γ(TX)I is called the ideal Lie algebroid of I.

Examples of this construction include:

� The log-tangent bundle AZ = TX(− logZ) associated to IZ [21];

� The elliptic tangent bundle A|D| = TX(− log |D|) associated to I|D| [5];

� The elliptic-log tangent bundle AW = TX(− logW ) associated to IW [15].

Note that the latter has natural morphisms onto AD and AZ via the section module inclusion.
These Lie algebroids all have the property that their anchor ρA : A → TX is an isomorphism on
a dense open set, which is the complement of their degeneracy locus. For these Lie algebroids
the anchor map gives a divisor div(A) = (det(TX)⊗ det(A∗), det(ρA)) with divisor ideal IA.

One can also obtain Lie algebroids by modifying a given Lie algebroid using a Lie subalgebroid
supported on a hypersurface Z. This process is called (lower) elementary modification [10, 17]
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or rescaling [16, 21]. This can be extended to divisor ideals I ⊆ C∞(X) supported on smooth
submanifolds other than log ideals IZ (see [15]), but we will not use this here.

Before we can provide the definition, recall that a Lie subalgebroid of A → X is a Lie
algebroid B → Z with Z ⊆ X carrying an injective Lie algebroid morphism covering an injective
immersion: (ϕ, i) : (B, Z) ↪→ (A, X). Here a Lie algebroid morphism over varying base is most
succinctly defined as a vector bundle morphism ϕ : B → A intertwining their differentials, i.e.,
such that dB ◦ ϕ∗ = ϕ∗ ◦ dA.

Definition 1.4. Let (X,Z) be a log pair and (B, Z) ⊆ (A, X) a Lie subalgebroid. The lower
elementary modification or (B, Z)-rescaling of A along B is the Lie algebroid [A:B] defined by

Γ([A:B]) ∼= {v ∈ Γ(A) : v|Z ∈ Γ(B)}.

Elementary modification can also be performed purely at the level of vector bundles.

Remark 1.5. Given a Lie algebroid A → X and a hypersurface Z ⊆ X, one can always perform
(0, Z)-rescaling. The resulting Lie algebroid [A:0] is isomorphic to the tensor product A ⊗ LZ
as a vector bundle.

Example 1.6. Let (X,Z) be a log pair. The following are examples of modifications [21, 22]:

� the log-tangent bundle AZ = [TX:TZ], locally given by Γ(AZ) = 〈z∂z, ∂xi〉;
� the zero tangent bundle BZ = [TX:0], locally given by Γ(BZ) = 〈z∂z, z∂xi〉;
� the scattering tangent bundle CZ = [AZ :0], locally given by Γ(CZ) = 〈z2∂z, z∂xi〉.

Given a log pair (X,Z) and k ≥ 1 we can define a Lie algebroid AkZ → X as follows.
Using the inclusion ιZ : Z ↪→ X and the vanishing ideal sheaf IZ for Z, consider the sheaf
J kZ := ι−1Z

(
C∞X /I

k+1
Z

)
. Denote its space of global sections by JkZ , and fix j ∈ Jk−1Z , which is

called a (k− 1)-jet. Given a smooth function f defined in a neighbourhood of Z, we write f ∈ j
if f represents j. Assume that j is represented by local defining functions for Z, making it a
defining (k − 1)-jet (we suppress this from our notation). With this, we define AkZ by setting

Γ
(
AkZ
) ∼= {V ∈ Γ(TX) : LV f ∈ IkZ for all f ∈ j

}
.

This is the bk-tangent bundle [27], and is locally given by Γ
(
AkZ
)

=
〈
zk∂z, ∂xi

〉
for a local z ∈ j.

When k = 1 the jet data is vacuous, so that A1
Z = AZ , the log-tangent bundle.

1.2 Poisson structures on Lie algebroids

Poisson structures are readily linked to divisors and the Lie algebroids built from them (see [15]).
Let π ∈ Poiss

(
X2n

)
be a Poisson structure, and consider its Pfaffian, ∧nπ ∈ Γ(det(TX)). If π

is generically nondegenerate this defines a divisor (det(TX),∧nπ) and hence a divisor ideal Iπ.
We say π is of I-divisor-type if Iπ = I.

Poisson structures on a Lie algebroid A → X are defined as those sections πA ∈ Γ
(
∧2A

)
such that [πA, πA]A = 0. These specify underlying Poisson structures π = ρA(πA) ∈ Poiss(X).
In [15] we showed that if π ∈ Poiss(X) is of I-divisor-type, and I is such that its ideal Lie
algebroid AI exists, then π admits an AI-lift : there exists a (unique) AI -Poisson structure πAI
such that π = ρAI (πAI ). We say that a divisor ideal I is standard if its ideal Lie algebroid
satisfies IAI = I. As noted in [15], log, elliptic, and elliptic-log divisor ideals are standard. If
the divisor ideal I is standard, then the lifted Poisson structure πAI is nondegenerate.

A Lie algebroid A → X of even rank is symplectic if it carries a nondegenerate closed A-two-
form ωA (after [26]). Such an A-symplectic structure corresponds to a nondegenerate A-Poisson
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structure πA via the relation π]A =
(
ω[A
)−1

. Due to this, if we wish to study Poisson structures
of I-divisor-type, we can study AI -symplectic geometry instead.

Summarizing the above definitions, if we have a log pair (X,Z), an elliptic pair (X, |D|) or
an elliptic-log pair (X,W ), we can define and study the following classes of Poisson structures
and symplectic Lie algebroids:

� log-Poisson structures, where π is of IZ-divisor-type. These are also log-symplectic struc-
tures, associated to the Lie algebroid AZ [11, 19], also [4, 10, 18] and others;

� elliptic Poisson structures, where π is of I|D|-divisor-type. These are also elliptic symplectic
structures, associated to the Lie algebroid A|D| [5], also [6];

� elliptic-log Poisson structures, where π is of IW -divisor-type. These are related to elliptic-
log symplectic structures, associated to the Lie algebroid AW [15];

More directly defined through their symplectic Lie algebroids, we have:

� zero symplectic structures, associated to BZ (cf. [16], and Remark 2.11);

� scattering symplectic structures, associated to CZ [16];

� bk-symplectic structures, associated to AkZ [27], also [12].

Each of these has an underlying Poisson structure, which can often be characterized intrinsically.
It is not our intent to describe the geometry of these Poisson structures in great detail here.
While the remainder of this paper uses Lie algebroids and Lie algebroid objects, these are viewed
as tools to make statements about generically-nondegenerate Poisson structures.

With this in mind we can state our results.

1.3 Results

Our first result is the following (Theorem 3.1), regarding orientability. Recall that a manifold X
is orientable if and only if the first Stiefel–Whitney class of its tangent bundle vanishes, i.e.,
w1(TX) = 0 ∈ H1(X;Z2). The following are analogues of this.

Theorem 1.7. Let A → Xn be a symplectic Lie algebroid. Then in H1(X;Z2) we have:

� w1(TX) + kPDZ2 [Z] = 0 if A = AkZ , the bk-tangent bundle;

� w1(TX) = 0 if A = BZ , the zero tangent bundle;

� w1(TX) + PDZ2 [Z] = 0 if A = CZ , the scattering tangent bundle;

� w1(TX) = 0 if A = A|D|, the elliptic tangent bundle;

� w1(TX) + PDZ2 [Z] = 0 if A = AW , the elliptic-log tangent bundle.

Here w1 is the first Stiefel–Whitney class, and PDZ2 is the Poincaré dual with Z2-coefficients.

This result provides the full obstruction for a surface to be A-symplectic. This latter state-
ment is because the integrability condition (closedness) is immediate, so that only a nondegen-
erate A-two-form is required, which exists if and only if A satisfies w1(A) = 0, i.e., if and only
if its first Stiefel–Whitney class vanishes in H1(X;Z2).

Remark 1.8. If we combine Theorem 1.7 with Remark 1.2, we see that the singular locus Z
of a log-symplectic or scattering-symplectic manifold X admits a global defining function if and
only if X is orientable, and similarly for bk-symplectic structures when k is odd.

Our second result draws consequences from the required complex structure on the Lie alge-
broids in dimension four (see Theorems 3.5 and 3.9). It is the analogue of Noether’s formula [9,
Theorem 1.4.13] that exists for regular symplectic four-manifolds.
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Theorem 1.9. Let
(
X4, Z

)
be a compact oriented bk-symplectic or scattering-symplectic four-

manifold, with k odd. Then b+2 (X) + b1(X) + f(X,Z) is odd, where 2f(X,Z) = e(AZ)− e(TX).

In the above, b1(X) is the first Betti number of X, and b+2 (X) is the dimension of a maximal
positive definite subspace on H2(X;R) with respect to the natural quadratic form present on
H2(X;R) in dimension four. Finally, for an oriented vector bundle En → Xn, its Euler class is
denoted by e(E) ∈ Hn(X;Z).

2 Computing characteristic classes

We start towards obtaining homotopical obstructions to the existence of A-symplectic structures
on a given closed manifold X. More precisely, we focus on the following simple facts.

Proposition 2.1. Let A → X be a symplectic Lie algebroid. Then:

� A must be orientable, i.e., it must satisfy w1(A) = 0 ∈ H1(X;Z2);

� A must be complex, i.e., there must exist a JA ∈ End(A) with J2
A = −id.

These properties both follow from the linear algebra of having a nondegenerate A-two-form.
Indeed, they hold for any symplectic vector bundle (e.g., [20]), as they do not use integrability.

Proof. Let ωA be an A-symplectic structure. Then rank(A) = 2m is necessarily even, and
ωmA ∈ Γ(det(A∗)) is nonvanishing. Thus det(A∗) is trivial, and w1(A) = w1(det(A∗)) = 0. To
see A must admit a complex structure, follow the standard proof for A = TX (e.g., [20]). �

Note that when bothA and X are four-dimensional, a classical result by Wu [28] (see also [13])
can be used, characterizing when an oriented vector bundle admits a complex structure.

Theorem 2.2 ([28]). Let E4 → X4 be an oriented Euclidean rank-four vector bundle over
a compact oriented four-manifold. Then E admits a complex structure if and only if there exists
a class c ∈ H2(X;Z) such that c mod 2 ≡ w2(E) ∈ H2(X;Z2) and c2 = p1(E) + 2e(E).

To make effective use of these observations, it is clear that we must determine the relevant
characteristic classes of the bundle A → X. We do this via stable bundle isomorphisms.

2.1 Stable bundle isomorphisms

For the bk-tangent bundles we can establish a stable bundle isomorphism, relating AkZ to TX.
Denote by R→ X the trivial real line bundle.

Proposition 2.3. Let
(
Xn, Z

)
be a log pair with a defining (k − 1)-jet j at Z. Then we have

AkZ ⊕ LZ ∼= TX ⊕ R if k is odd. Moreover, for any k ≥ 3 we have AkZ ⊕ R ∼= Ak−2Z ⊕ R.

We emphasize that these are vector bundle isomorphisms, and not of Lie algebroids.

Remark 2.4. When k = 1, Proposition 2.3 reduces to the statement that

AZ ⊕ LZ ∼= TX ⊕ R.

This was noted in [2, 3] when X is orientable without proof, and they state that in general one
has AZ ⊕ R ∼= TX ⊕ LZ . When Z is separating, so that LZ is trivial (see Lemma 1.1), these
two statements are equivalent; for example, when (X,Z) is log-symplectic and X is orientable.
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Proof. From the (k− 1)-jet j at Z, we can choose a compatible log divisor (LZ , s) such that in
any local trivialization, the section s represents j. We will first prove the first assertion, hence
assume that k is odd. Over X\Z, the line bundle LZ is trivial, and moreover AkZ ∼= TX via the
anchor map ρ, so that there we have a clear choice of isomorphism ϕ : AkZ ⊕ LZ → TX ⊕ R. In
matrix form ϕ becomes as follows, using the evaluation 〈s,−〉 : Γ(LZ)→ Γ(R) induced by s:

ϕ =

(
ρ 0
0 〈s,−〉

)
.

Near Z we define a bundle isomorphism extending the one above as follows.
Choose a tubular neighbourhood embedding of Z. Then, within its image (which we suppress

from our notation), choose a trivializing open cover {Uα}α around Z on which LZ is trivial with
nonvanishing sections τα ∈ Γ(LZ |Uα). We then shrink the open cover so that the associated
opens Vα := Uα ∩ Z on Z are such that TZ|Vα is also trivial.

The given section s ∈ Γ(LZ) vanishes transversally, which by definition means that its normal

derivative provides an isomorphism dνs : NZ
∼=→ LZ |Z . Because of this, if we use the resulting

trivialization for NZ on Vα, we have now that Uα ∼= Vα × (−1, 1), say, with the coordinate zα
of the second factor also being such that sα = zατα. We define the transition functions for LZ
by the relation τα = gβατβ on Uα ∩ Uβ. Due to these choices, then, we have that

Γ
(
Uα;AkZ

)
=
〈
zkα∂zα , {vα,i}ni=2

〉
, and Γ(Uα;TX) =

〈
∂zα , {vα,i}ni=2

〉
,

with zα ∈ j in the given (k − 1)-jet. Generic sections of AkZ ⊕ LZ and TX ⊕ R on Uα can then
expressed respectively as the tuples( ∑

2≤i≤n
λi · vα,i + λ1 · zkα∂zα , λn+1 · τα

)
and

( ∑
2≤i≤n

µi · vα,i + µ1 · ∂zα , µn+1 · 1
)
,

where λi, µi ∈ C∞(Uα). Choose a bundle metric on NZ and a radial bump function ψ whose
support is contained in a disk bundle around Z of the tubular neighbourhood embedding, and
which equals 1 on Z. Denote by Aα : Γ(Uα;LZ) → Γ(Uα;TX) the map sending τα to ∂zα , and
similarly let Bα : Γ

(
Uα;AkZ

)
→ Γ(Uα;R) be the map sending zkα∂zα to 1.

In the given tubular neighbourhood we now define the map ϕ : AkZ ⊕ LZ → TX ⊕ R on
sections to be in matrix form given by

ϕ =

(
ρ ψAα

−ψBα 〈s,−〉

)
=

In−1 0 0
0 zkα ψ
0 −ψ zα

 ,

where In−1 is the (n−1)×(n−1) identity matrix. The maps Bα are well-defined because the local
sections zkα∂zα together define a nowhere-vanishing section in the kernel of ρ|Z : AkZ |Z → TM |Z
as described in [27, Proposition 2.3] (for k = 1 this can also be found in [11] and follows directly).
For well-definedness of the maps Aα, note that on intersections Uα ∩ Uβ we have that

sα = zατα = zαg
β
ατβ = zβτβ = sβ,

so that zαg
β
α = zβ, from which ∂zα = gβα∂zβ follows, and hence well definedness is clear:

∂zα = Aα(τα) = Aβ
(
gβατβ

)
= gβα∂zβ .

To see that ϕ is an isomorphism, we merely note that in matrix form the map ϕ has determinant
equal to zk+1

α + ψ2 on Uα, which is always nonvanishing because k is odd, showing invertibility.
It is clear that the thus defined bundle map ϕ extends the one on X\Z described before.
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Next, let k ≥ 3 be given and consider the Lie algebroid morphism ρk−2k : AkZ → A
k−2
Z induced

from the natural map of viewing a (k − 1)-jet as a (k − 3)-jet. We use the same trivializations
and bump function ψ as above, and define a map ϕ′ : AkZ ⊕ R→ Ak−2Z ⊕ R in matrix form by

ϕ′ =

(
ρk−2k ψCα
−ψDα id

)
=

In−1 0 0
0 z2α ψ
0 −ψ 1

 ,

with Cα : R→ Ak−2Z the map 1 7→ zk−2α ∂zα and Dα : AkZ → R the map zkα∂zα → 1. These maps
are both well-defined as these four sections are global. The determinant of ϕ′ is seen to equal
z2α + ψ2 in these local coordinates, which is always non-vanishing, showing invertibility. �

Remark 2.5. One can not readily change this proof to instead show that AZ ⊕R ∼= TX ⊕LZ ,
as per Remark 2.4, as in general there is no nonzero map from AZ to LZ . The crucial ingredient
in the proof is the existence of the map from LZ to TX. The map ϕ used in the proof also exists
for k even, but then is not an isomorphism.

A similar result holds more generally for (B, Z)-rescalings of A of higher corank, for which
the quotient vector bundle A|Z/B is a sum of line bundles. This is proven by an induction-like
adaptation of the same method, because we obtain a flag of subbundles B ⊆ Bk−1 ⊆ · · · ⊆ B1 ⊆
A|Z with corank(Bi) = i. This gives a bundle isomorphism similar to Proposition 2.6.

Proposition 2.6. Let A → X be a vector bundle and Z ⊆ X a hypersurface. Consider a (B, Z)-
rescaling [A:B] of A with corank(B) = k, and assume that the quotient bundle A|Z/B → Z is
a sum of line bundles. Then using k copies of LZ and R we have

[A:B]⊕ LZ ⊕ · · · ⊕ LZ ∼= A⊕ R⊕ · · · ⊕ R.

We stress that the number of copies depends on the corank of the vector subbundle.

2.2 Computing characteristic classes

In this section we compute relevant characteristic classes of the Lie algebroids we have intro-
duced. We will mainly be interested in the first and second Stiefel–Whitney classes w1, w2 ∈
H i(X;Z2), and in the first Pontryagin class p1 ∈ H4(X;Z). We recall several properties of these
characteristic classes (see, e.g., [23]).

Proposition 2.7. Let Em, Fn → X be real vector bundles. Denote the full Stiefel–Whitney and
Pontryagin classes by w : Vect(X)→ H•(X;Z2) and p : Vect(X)→ H•(X;Z). Then:

i) w(E ⊕ F ) = w(E) ∪ w(F ), and w1(E ⊗ F ) = nw1(E) +mw1(F );

ii) w2(E ⊗ F ) = w2(E) + w1(F ) ∪ w1(E) if m = 4 and n = 1.

iii) 2p(E ⊕ F ) = 2p(E) ∪ p(F ), and p(E ⊗ F ) = p(E) if n = 1;

We now determine the relevant characteristic classes for the Lie algebroids AkZ , BZ , and CZ .

Proposition 2.8. Let
(
Xn, Z

)
be a log pair with Lie algebroids AkZ , BZ , and CZ , with k odd.

Then:

for AkZ :

� w1

(
AkZ
)

= w1(TX) + w1(LZ),

� w2

(
AkZ
)

= w2(TX) + w1(LZ) ∪ w1(TX),

� p1
(
AkZ
)

= p1(TX) if X is orientable and four-dimensional;
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for BZ :

� w1(BZ) = w1(TX) + nw1(LZ),

� w2(BZ) = w2(TX) + w1(LZ) ∪ w1(TX) if X is four-dimensional;

for CZ :

� w1(CZ) = w1(TX) + (n+ 1)w1(LZ),

� w2(CZ) = w2(TX) if X is four-dimensional,

� p1(CZ) = p1(TX) if X is orientable and four-dimensional.

Remark 2.9. The fact that w(AZ) = w(TX)(1 + PDZ2 [Z]) can be found in [3], as this would
also be what follows from the stable isomorphism relation noted by them, see Remark 2.4.

Proof. For AkZ : By Proposition 2.3 we have AkZ⊕LZ ∼= TX⊕R, hence due to Proposition 2.7(i)
we get w

(
AkZ
)
∪ (1 +w1(LZ)) = w(TX). In degree one this gives w1

(
AkZ
)

= w1(TX) +w1(LZ)
as desired. In degree two it follows that w2

(
AkZ
)

= w2(TX) + w1(LZ) ∪ w1(TX). We see that
2p1
(
AkZ
)

= 2p1(TX), as p ≡ 1 for line bundles. If X is orientable and four-dimensional we know
that H4(X;Z) ∼= Z, which in particular has no two-torsion, so that p1

(
AkZ
)

= p1(TX).
For BZ : This follows from Proposition 2.7 after using Remark 1.5 that BZ ∼= TX ⊗ LZ .
For CZ : By Remark 1.5 we have CZ ∼= AZ ⊗ LZ , so that from Proposition 2.6 for A = AZ

we obtain CZ ⊕ L2
Z
∼= BZ ⊕ LZ . As L2

Z is canonically trivial, using Proposition 2.7(i) this gives
w(CZ) = (1 + w1(LZ)) ∪ w(BZ). In degree one this results in (using the case of BZ above):

w1(CZ) = w1(BZ) + w1(LZ) = w1(TX) + (n+ 1)w1(LZ).

In degree two we see similarly that if X is four-dimensional that

w2(CZ) = w2(BZ) + w1(LZ) ∪ w1(BZ)

= w2(TX) + w1(LZ) ∪ w1(TX) + w1(LZ) ∪ (w1(TX) + 4w1(LZ)) = w2(TX).

Assuming also orientability of X, Proposition 2.7 and the case of AZ determine p1(CZ). �

We can compute these characteristic classes somewhat more generally for rescalings.

Proposition 2.10. Let A → X be a vector bundle and Z ⊆ X a hypersurface. Let [A:B]→ X
be a corank-k (B, Z)-rescaling of A and assume that A|Z/B is a sum of line bundles. Then:

� w1([A:B]) = w1(A) + kw1(LZ);

� w2([A:B]) = w2(A) + kw1(LZ) ∪ w1(A) + k(k−1)
2 w1(LZ)2;

� p1([A:B]) = p1(A), if X is orientable and four-dimensional.

Proof. By Proposition 2.6 we have that [A:B]⊕ kLZ ∼= A⊕ kR using the shorthand notation
kL = L ⊕ · · · ⊕ L with k copies. This implies using Proposition 2.7.i) by k-fold induction that

w([A:B])∪ (1 +w1(LZ))k = w(A)∪ 1k. We have (1 +w1(LZ))k ≡ 1 + kw1(LZ) + k(k−1)
2 w1(LZ)2

up to degree two. In degree one this gives w1([A:B]) = w1(A) + kw1(LZ) as desired, while in

degree two it instead gives w2([A:B]) = w2(A) + kw1(LZ) ∪ w1(A) + k(k−1)
2 w1(LZ)2. The last

property follows because by Proposition 2.7.iii) we have 2p1([A:B]) = 2p1(A) ∈ H4(X;Z), and
the hypothesis ensures that H4(X;Z) ∼= Z has no two-torsion (cf. Proposition 2.8). �

Remark 2.11. We will have no direct use for w2(BZ) and p1(BZ) (when X is four-dimensional),
as by [16, Proposition 2.21] we know that BZ does not admit Lie algebroid symplectic structures
when dimX ≥ 4. This follows from studying the ring structure of the space Ω•(BZ).
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For the bk-tangent bundles we can give an alternate proof to determine the first Stiefel–
Whitney class, which does not require the assumption that k is odd.

Proposition 2.12. Let (X,Z) be a log pair with a defining (k − 1)-jet j at Z. Then we have
w1

(
AkZ
)

= w1(TX) + kw1(LZ).

Proof. From the local description of the Lie algebroid AkZ , we see that the anchor map ρ : AkZ →
TX leads to a divisor

(
det(TX)⊗ det

(
AkZ
)∗
,det(ρ)

)
, which is isomorphic to (LkZ , s

k), the kth
power of a log divisor. Thus w1

(
AkZ
)
−w1(TX) = kw1(LZ), and hence the conclusion follows. �

We can further determine the first Stiefel–Whitney class of the bundles A|D| and AW . This
is rather simple, because of the fact that closed submanifolds of codimension two arise.

Proposition 2.13. Let (X, |D|) and (X ′,W ) be an elliptic and elliptic-log pair. Then:

� w1(AD) = w1(TX);

� w1(AW ) = w1(AZ) = w1(TX) + w1(LZ), if IW = IZ ⊗ I|D′|.

To prove this we first turn to an auxilliary lemma regarding triviality of line bundles.

Lemma 2.14. Let L→ X be a real line bundle with a section vanishing only on a submanifold
of codimension at least two. Then L is trivial, i.e., w1(L) = 0 ∈ H1(X;Z2). Consequently, if
(ϕ, idX) : E → F is a base-preserving vector bundle morphism which is an isomorphism outside
a submanifold of codimension at least two in X, then w1(E) = w1(F ).

Proof. Let N ⊆ X be that submanifold and let ι : X\N ↪→ N be the inclusion. By a standard
fact (see [8, Theorem 2.3, p. 146]), the group homomorphism ι∗ : π1(X\N, x) → π1(X,x) is
a surjection between fundamental groups, where x ∈ X\N . This implies by abelianization (using
the Hurewicz theorem) and dualizing that the map ι∗ : H1(X)→ H1(X\N) is an injection. As L
is trivial on X\N by hypothesis, we have w1(L|X\N ) = 0, so that w1(L) = 0.

The condition on ϕ being generically an isomorphism implies that rank(E) = rank(F ). Equiv-
alently, using det(ϕ) : det(E) → det(F ), the pair (det(F ) ⊗ det(E)∗,det(ϕ)) is a divisor, and
det(ϕ) vanishes only on a submanifold of codimension at least two by hypothesis. The first part
then implies that w1(det(F )⊗ det(E)∗) = 0, from which the conclusion follows. �

Proof of Proposition 2.13. The natural maps ρA|D| : A|D| → TX and ϕAW : AW → AZ are
both isomorphisms outside of D and D′ respectively, both of which are of codimension two.
Consequently Lemma 2.14 applies, hence the result follows (using Proposition 2.8 for AZ). �

3 Homotopical obstructions

3.1 Obstructions from orientability

In this section we discuss orientability for the Lie algebroids AkZ , BZ and CZ associated to log
pairs (X,Z), and for the Lie algebroids A|D| and AW given elliptic and elliptic-log pairs (X, |D|)
and (X,W ). This settles when these Lie algebroids admit symplectic structures in dimension
two, and gives an obstruction to their existence in arbitrary dimensions, noting Proposition 2.1.
They moreover characterize the existence of A-Nambu structures of highest degree (i.e., nonva-
nishing sections Π ∈ Γ(det(A)).

Given a Lie algebroid A → X, note that it admitting an orientation does not depend on
the Lie algebroid structure of A, and happens if and only if w1(A) = 0. From our earlier
computations we can readily conclude the following (Theorem 1.7):

Theorem 3.1. Let A → Xn be a symplectic Lie algebroid. Then in H1(X;Z2) we have:
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� If A = AkZ , then w1(TX) + kPDZ2 [Z] = 0 (cf. [24, 25]);

� If A = BZ , then w1(TX) = 0;

� If A = CZ , then w1(TX) + PDZ2 [Z] = 0;

� If A = A|D|, then w1(TX) = 0;

� If A = AW , then w1(TX) + PDZ2 [Z] = 0.

Proof. If the Lie algebroid A is symplectic, by Proposition 2.1 it must be orientable, so that
we see that w1(A) = 0. The result then follows from Proposition 2.8, Proposition 2.12 and
Proposition 2.13, noting that n is even. We moreover use Lemma 1.1 for the fact that w1(LZ) =
PDZ2 [Z] ∈ H1(X;Z2). �

3.2 Obstructions from complex structures

In this section we discuss when some Lie algebroids of interest can admit a complex structure.
For this we use Theorem 2.2 together with our earlier computations of characteristic classes (see
Proposition 2.8). Due to Proposition 2.1 this provides obstructions to when these Lie algebroids
can be symplectic.

Let
(
X4, Z

)
be a four-dimensional log pair with X oriented. Consider a defining (k − 1)-jet

for Z with k odd, and its bk-tangent bundle AkZ , which recall includes the log-tangent bundle if
k = 1. Assume that an orientation for AkZ is given. Then we can define the following:

Definition 3.2. Given orientations on the bundles AkZ and TX, the integer fk(X,Z) of Z is
defined as the difference 2fk(X,Z) := e

(
AkZ
)
− e(TX) ∈ H4(X;Z) ∼= Z.

Lemma 3.3. In the situation above the integer fk(X,Z) is well-defined, i.e., the difference in
Euler classes of AkZ and TX is even. Further, we have fk(X,Z) ≡ f1(X,Z) (mod 2).

We will henceforth write f(X,Z) := f1(X,Z).

Proof. Recall that the Euler class of an oriented vector bundle reduces mod 2 to its top Stiefel–
Whitney class. Because both AkZ and TX are oriented, we have w1

(
AkZ
)

= w1(TX) = 0, hence
w1(LZ) = 0 by Proposition 2.8. This means that LZ is trivial, so that by Proposition 2.3 we
have that AkZ ⊕ R ∼= TX ⊕ R. Using Proposition 2.7(i) this implies that w

(
AkZ
)

= w(TX), so
that in particular e

(
AkZ
)
≡ e(TX) (mod 2) as desired.

For the second statement, we remark that there is a more geometric description of fk(X,Z).
If AkZ is oriented and X is orientable, any choice of orientation for TX does not agree with the
orientation on the isomorphism locus X\Z induced by AZ if and only if k is odd. This follows
from the local description of the bundle AkZ (cf. [7] for when k = 1). If k is odd, because Z
is then separating due to Proposition 2.8, after a choice of orientation on TX, we can write
X\Z = X+ tX−, where X± denote the subsets where the orientations from TX and AkZ do or
do not agree. Then we see that

fk(X,Z) = −〈e(TX), [X−]〉 = −χ(X−).

We see here that the right-hand side does not depend on k, nor does the decomposition of X\Z
into X±. It follows that in fact fk(X,Z) = f1(X,Z) if k is odd. �

We can now state our obstruction to the existence of an AkZ-almost-complex structure.

Theorem 3.4. Let
(
X4, Z

)
be a compact oriented AkZ-almost-complex log pair, with k odd.

Then we have
〈[
c21
(
AkZ
)]
, [X]

〉
= 3σ(X) + 2χ(X) + 4fk(X,Z), and b+2 (X) + b1(X) + fk(X,Z)

is odd.
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Here χ(X) is the Euler characteristic, and σ(X) = b+2 (X)−b−2 (X) is the signature of X. The
following proof is similar to the case when Z = ∅, see [9, Theorem 1.4.13].

Proof. By Theorem 2.2 we have, using the definition of fk(X,Z), that

c21
(
AkZ
)

= p1
(
AkZ
)

+ 2e
(
AkZ
)

= p1
(
AkZ
)

+ 2e(TX) + 4fk(X,Z).

Using the other part of Theorem 2.2 together with Proposition 2.8 we get (as w1(LZ) = 0)

c1
(
AkZ
)

mod 2 ≡ w2

(
AkZ
)

= w2(TX) ∈ H2(X;Z2),

so that c1
(
AkZ
)

is characteristic, i.e., it reduces modulo two to w2(TX). By Van der Blij’s
lemma [9, Lemma 1.2.20] we obtain c21

(
AkZ
)
≡ σ(X) mod 8. Using Proposition 2.8 again we

have p1
(
AkZ
)

= p1(TX), which integrates to 3σ(X) by the Hirzebruch signature theorem. This
implies that σ(X) + χ(X) + 2fk(X,Z) ≡ 0 mod 4, from which the conclusion follows. �

Out of this we can draw the following consequence (the first part of Theorem 1.9).

Theorem 3.5. Let
(
X4, Z

)
be a compact oriented bk-symplectic manifold, with k odd. Then:

b+2 (X) + b1(X) + f(X,Z) is odd.

Proof. Because AkZ is a symplectic Lie algebroid, it is also complex by Proposition 2.1. Due
to this (X,Z) has an AkZ-almost-complex structure, so that the result follows from Theorem 3.4
and applying Lemma 3.3 to replace fk(X,Z) by f(X,Z) after reducing modulo two. �

We would like to stress again that this obstruction, if k is even, agrees with that for X to
admit an almost-complex structure in the usual sense (see [9, Theorem 1.4.13]). A similar thing
can be done for the scattering tangent bundle CZ , as we now discuss. Consider again a four-
dimensional oriented log pair

(
X4, Z

)
, and assume that an orientation for CZ is given. There is

an analogous difference in Euler classes here, similar to Definition 3.2.

Definition 3.6. Given orientations on the bundles CZ and TX, the integer fsc(X,Z) of Z is
defined as the difference 2fsc(X,Z) := e(CZ)− e(TX) ∈ H4(X;Z) ∼= Z.

In fact, we can quickly relate the integer fsc(X,Z) to f(X,Z) defined previously.

Lemma 3.7. Let
(
X2n, Z

)
be a log pair, and choose orientations on CZ and TX. Then AZ is

naturally oriented, and we have the equality fsc(X,Z) ≡ f(X,Z) (mod 2).

Proof. The natural Lie algebroid morphism ϕ : CZ → AZ can be used to orient AZ . Note that
because the dimension of X is even, we have that w1(CZ) = w1(AZ) by Proposition 2.8. From
the fact that the divisor ideal of ϕ is given by Iϕ = I2nZ , or by the local description of CZ , it
readily follows that as for AZ , the orientation on X\Z induced by CZ similarly cannot match
the one induced from TX everywhere, from which the result follows. �

Using this we can obtain an obstruction to the existence of a CZ-almost-complex structure.

Theorem 3.8. Let
(
X4, Z

)
be a compact oriented CZ-almost-complex log pair. Then we have〈[

c21(CZ)
]
, [X]

〉
= 3σ(X) + 2χ(X) + 4fsc(X,Z), and b+2 (X) + b1(X) + f(X,Z) is odd.

Proof. The proof follows the along the same lines as that of Theorem 3.4. The first statement
follows by definition of fsc(X,Z). Further, here Proposition 2.8 provides

c1(CZ) mod 2 ≡ w2(CZ) = w2(TX),

showing again that c1(CZ) is characteristic. Proposition 2.8 also gives p1(CZ) = p1(TX), which
implies that σ(X) + χ(X) + 2fsc(X) ≡ 0 mod 4. By Lemma 3.7 we can replace fsc(X,Z)
by f(X,Z) after reduction modulo two. �



12 R.L. Klaasse

As for Theorem 3.5, we can draw the following consequence (second part of Theorem 1.9).

Theorem 3.9. Let
(
X4, Z

)
be a compact oriented scattering-symplectic manifold. Then:

b+2 (X) + b1(X) + f(X,Z) is odd.

In other words, we see that the obstruction for scattering symplectic structures obtained via
the existence of almost-complex structures is identical to that of log-symplectic structures.

Proof. Because CZ is a symplectic Lie algebroid, it is also complex by Proposition 2.1. Due to
this (X,Z) has a CZ-almost-complex structure, hence the result follows from Theorem 3.8. �

Remark 3.10. One wonders whether Proposition 2.1 can be used effectively for other symplectic
Lie algebroids in dimension four, for example the elliptic tangent bundle A|D|. Note that elliptic
symplectic structures (of zero elliptic residue) can exist on A|D| both in cases when X is and is
not almost-complex (cf. [1]), depending on the coorientability of D as measured by w1(ND) ∈
H1(D;Z2). We see there is nontrivial dependence on the locus D in this case.

To illustrate Theorem 3.4, we determine the parity of f(X,Z) in the following situation. As is
explained in the proof of Lemma 3.3, if both X and AZ are oriented, then Z must be separating
and decompose X\Z = X+ tX− according to whether the orientations agree.

Corollary 3.11. Let (X,Z) be a compact oriented four-dimensional log pair which is AZ-
almost-complex, such that X is not almost-complex. Then f(X,Z) is odd, and the log pair(
X− ∪

(
X+#CP 2

)
, Z
)

does not admit an AZ-symplectic structure.

Proof. If X is not almost-complex, then b+2 (X) + b1(X) ≡ 0 (mod 2), while because (X,Z) is
AZ-almost-complex we obtain from Theorem 3.4 that b+2 (X) + b1(X) + f(X,Z) ≡ 1 (mod 2).
We conclude that f(X,Z) ≡ 1 (mod 2). If we perform a connected sum with CP 2 in the
subset X+ to form the manifold X ′ = X− ∪

(
X+#CP 2

)
, we see that b+2 (X ′) = b+2 (X) + 1 while

f(X ′, Z) = f(X,Z). Hence then b+2 (X ′) + b1(X
′) + f(X ′, Z) ≡ 0 (mod 2), so that by applying

Theorem 3.5 we see that (X ′, Z) does not admit an AZ-symplectic structure. �

We finish by giving a simple example of how to apply the above results.

Example 3.12 (3CP 2#CP 2
). The manifoldX = 2CP 2#CP 2

admits a log-symplectic structure
with Z = S1 × S2 (see [4]), and b+2 (X) = 2 and b1(X) = 0. Hence X is not almost-complex
while (X,Z) is AZ-almost-complex, and f(X,Z) is odd. By Corollary 3.11 the manifold X ′ =

3CP 2#CP 2
does not admit a log-symplectic structure with the given Z = S1 × S2. Note,

however, that by [4] again, it does admit a log-symplectic structure with degeneracy locus
diffeomorphic to S1 × S2, but this must necessarily be a different hypersurface.

Remark 3.13. It seems somewhat nontrivial to determine the integer f(X,Z) of a separating
log pair, or even just its parity. We are only able to do so indirectly, cf. Corollary 3.11.
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