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Abstract. We present further mathematical results on a function appearing in the con-
formal blocks of four-point correlation functions with arbitrary primary operators. The
H-function was introduced in a previous article and it has several interesting properties.
We prove explicitly the recurrence relation as well as the D6-invariance presented previ-
ously. We also demonstrate the proper action of the differential operator used to construct
the H-function.
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1 Introduction

Conformal field theories (CFTs) play an important role in modern physics. The introduction of
the full conformal algebra constrains non-trivially N -point correlation functions. For example,
two-point correlation functions are completely determined by conformal invariance while three-
point correlation functions are settled in terms of a finite number of coefficients. This can be
seen as originating from the existence of a convergent operator product expansion (OPE) [20].
Moreover, using the OPE twice in four-point correlation functions leads to conformal blocks
which represent the contributions of exchanged primary operators to the four-point correlation
functions. Using associativity in N -point correlation functions further constrains the OPE,
leading to the crossing symmetry of the four-point correlation functions which can be used
to restrict the unknown conformal dimensions and OPE coefficients [11, 24]. Recent work in
spacetime dimensions larger than two resulted in some explicit expressions for certain specific
conformal blocks [4, 5], and the conformal bootstrap in spacetime dimensions larger than two
has also been implemented numerically with impressive results [26], see [23] for a review of recent
results on conformal bootstrap.

The computation of conformal blocks in spacetime dimensions larger than two is not straight-
forward. Several approaches to this challenging problem have been developed, for example
shadow formalism [12, 13, 29], recurrence relations [22, 35, 36], harmonic analysis [3], weight
shifting [19], and integrable systems [18, 27, 28]. Although the conformal blocks are techni-
cally determined by conformal symmetry, they are better understood from the embedding space
where the conformal generators act linearly [2, 21, 33, 34]. For example, the OPE has been
studied utilizing the embedding space formalism in [7, 8, 9, 10, 14, 15]. In [14], it was shown
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how to employ the OPE in the embedding space formalism to compute the scalar conformal
block. In [15], the results of [14] were used to find a very general function, the H-function, that
appears in general conformal blocks containing fields in more complicated representations. Us-
ing a Rodrigues equation for the H-function, it was shown that it satisfies a recurrence relation
and a specific symmetry property leading to invariance under the dihedral group of order 12.

In this paper, an explicit expression for the H-function is used to show directly that the
recurrence relation and the symmetry property are indeed satisfied. After briefly reviewing the
definition of the H-function and analyzing its convergence in Section 2, several new expressions
for this function are obtained in Section 3. Section 4 gives a proof of the recurrence relation and
the symmetry property using various expressions explored in the previous section. Finally, in
Section 5 the action of the differential operator is found and it is shown how to use it to compute
the H-function constructively.

2 Functions

In this section we review the G- and H-functions as well as the associated differential operators
introduced in [15]. We also study the convergence of the H-function using Horn’s technique.

2.1 Power series

It is a well-known fact that the conformal blocks for scalar exchange in four-point correlation
functions of four scalar primary fields in arbitrary spacetime dimension d are related to the

function G
(q;r;t)
d (u, v). This function can be expressed as a double sum over powers of the

variables x = u/v and y = 1− 1/v,

G
(q;r;t)
d (u, v) =

∑
m,n≥0

(−q,−t)m
(r − t+ 1− d/2)mm!

(r, r − t+ q)m+n

(r − t)2m+nn!
xmyn, (2.1)

where u and v are the conformal cross-ratios and (a)n represents the rising Pochhammer symbol
with (a, b, . . . )n = (a)n(b)n · · · . Moreover, (2.1) can be expressed in terms of the hypergeometric
function G(α, β, γ, δ;x, y) of Exton [5, 6, 15] as

G
(q;r;t)
d (u, v) = G(r, r − t+ q, r − t+ 1− d/2, r − t;x, y),

where q, r and t are related to the conformal dimensions of the five scalar primary fields appearing
in the conformal blocks.

In [15], it was argued that more general conformal blocks are given by linear combinations of
the following function,

H
(p,q;r;s,t)
d (u, v) =

∑
m,n≥0

P
(p,q;r;s,t)
d (m,n)

× (r, r − s+ p, r − t+ q)m+n

(r − s+ 1− d/2, r − t+ 1− d/2)m(r − s, r − t)2m+nn!
xmyn,

P
(p,q;r;s,t)
d (m,n) =

∑
i,j≥0

(−i)j
i!j!(m− i)!

(−p, r − t+ 1− d/2 +m− i)i

× (−s− q +m− i+ j, r − t+ 2m+ n− i+ j)i−j (2.2)

× (−q)m−i+j(−t)m−i+j(r − s+m+ n+ i, r − s+ p+ 1− d/2)m−i.

The functional form (2.2), as well as several contiguous relations and the symmetry properties

H
(p,q;r;s,t)
d (u, v) = H

(q,p;r;t,s)
d (u, v) and H

(p,q;r;s,t)
d (u, v) = H

(p,t;r−t+q;s−t+q,q)
d (u, v), which generate
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the dihedral group D6 of order 12, were obtained by using the definitions (2.1) and (2.2) in terms
of differential operators,

G
(q;r;t)
d (u, v) =

(
u
v

)−(r−t+q)Dq(u,v) (uv )r−t vr
(−2)q(r − t, r − t+ 1− d/2)q

,

H
(p,q;r;s,t)
d (u, v) =

(
u
v

)−(r−s+p)Dp(u,v) (uv )t−s−q Dq(u,v) (uv )r−t vr
(−2)p+q(r − s, r − s+ 1− d/2)p(r − t, r − t+ 1− d/2)q

=

(
u
v

)−(r−s+p)Dp(u,v) (uv )r−sG(q;r;t)
d (u, v)

(−2)p(r − s, r − s+ 1− d/2)p
. (2.3)

In the equation above, the second-order differential operator D(u,v), as well as two related first-
order differential operators D(u) and D(v), are defined as

D(u,v) = (−2)
{
u3∂2u + u2(u+ v − 1)∂u∂v + u2v∂2v

−
(
d
2 − 2

)
u2∂u + u

[
u+

(
d
2 − 1

)
(1− v)

]
∂v
}
,

D(u) = −2u∂u − (u+ v − 1)∂v, D(v) = u(u− v − 1)∂u + v(u− v + 1)∂v,

and satisfy the algebra[
D(u),D(v)

]
= D(u) −D(v),

[
D(u),Dh(u,v)

]
= −2hDh(u,v),

[
D(v),Dh(u,v)

]
= −2hDh(u,v).

2.2 Convergence

Before we proceed further we investigate convergence of the H-function introduced in (2.2). In
its present form, the H-function is not a standard hypergeometric function of two variables as

the coefficients of its power series contain P
(p,q;r;s,t)
d (m,n), a sum of hypergeometric-like terms.

We note that both sums in the definition of P
(p,q;r;s,t)
d (m,n) terminate for generic values of

parameters p, q, r, s and t.
Convergence of multi-variable hypergeometric functions can be deduced using the Horn’s

method [17]. Therefore, we represent the H-function in terms of a generalized four-variable
hypergeometric function

L

[
α1, α2, α3;β; γ; δ1, δ2; ε

a, b, c, d, e

∣∣∣∣x1, x2, x3, x4]
=

∑
n1,n2,n3,n4≥0

(α1, α2, α3)n1+n2+n3+n4(β)n1+n2+n3(γ)n1+n2(δ1, δ2)n2+n3(ε)n3

(a)2n1+2n2+n3+n4(b)n1+2n2+2n3+n4(c)n1+n2+n3(d)n2+n3(e)n3

× xn1
1 x

n2
2 x

n3
3 x

n4
4

n1!n2!n3!n4!
, (2.4)

such that

H
(p,q;r;s,t)
d (u, v)

= L

[
r, r − s+ p, r − t+ q;−s− q;−p;−q,−t; r − s+ p+ 1− d/2

r − s; r − t; r − s+ 1− d/2;−s− q; r − t+ 1− d/2

∣∣∣∣x,−x, x, y] .
2.2.1 Horn’s technique

In order to generalize the Horn’s technique (see [17, 30, 31]) to four-variable functions

F =
∑

n1,n2,n3,n4≥0
An1,n2,n3,n4x

n1
1 x

n2
2 x

n3
3 x

n4
4 ,
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we define

fi(n1, n2, n3, n4) =
An1+δ1i,n2+δ2i,n3+δ3i,n4+δ4i

An1,n2,n3,n4

,

and

ui(µ1, µ2, µ3, µ4) =
∣∣ lim
λ→∞

fi(µ1λ, µ2λ, µ3λ, µ4λ)
∣∣−1,

Ri = ui(δ1i, δ2i, δ3i, δ4i).

The region of convergence |xi| < ri corresponds to the intersection of the following sets

S1 =
{

(r1, r2, r3, r4) | ∧i [0 < ri < ui(δ1i, δ2i, δ3i, δ4i) = Ri]
}
,

Sij =
{

(r1, r2, r3, r4) | ∀ (µi, µj) ∈ R2
+ : ∨k=i,j [0 < rk < uk]

}
,

Sijk =
{

(r1, r2, r3, r4) | ∀ (µi, µj , µk) ∈ R3
+ : ∨l=i,j,k [0 < rl < ul]

}
,

S1234 =
{

(r1, r2, r3, r4) | ∀ (µ1, µ2, µ3, µ4) ∈ R4
+ : ∨i [0 < ri < ui]

}
,

i.e.,

D = S1 ∩ S12 ∩ S13 ∩ S14 ∩ S23 ∩ S24 ∩ S34 ∩ S123 ∩ S124 ∩ S134 ∩ S234 ∩ S1234,

where D is the convergence region.

2.2.2 Region of convergence

Applying the results from the proceeding section to (2.4), we find

u1 =
µ1(2µ1 + 2µ2 + µ3 + µ4)

2(µ1 + 2µ2 + 2µ3 + µ4)

(µ1 + µ2)(µ1 + µ2 + µ3 + µ4)3
,

u2 =
µ2(2µ1 + 2µ2 + µ3 + µ4)

2(µ1 + 2µ2 + 2µ3 + µ4)
2

(µ1 + µ2)(µ2 + µ3)(µ1 + µ2 + µ3 + µ4)3
,

u3 =
µ3(2µ1 + 2µ2 + µ3 + µ4)(µ1 + 2µ2 + 2µ3 + µ4)

2

(µ2 + µ3)(µ1 + µ2 + µ3 + µ4)3
,

u4 =
µ4(2µ1 + 2µ2 + µ3 + µ4)(µ1 + 2µ2 + 2µ3 + µ4)

(µ1 + µ2 + µ3 + µ4)3
, (2.5)

with

R1 = 4, R2 = 16, R3 = 4, R4 = 1.

The convergence region of the four-variable hypergeometric function L needs to be projected to

two variables. The function H
(p,q;r;s,t)
d (u, v) in (2.2) converges for those parameters that satisfy

(x1 = |u|, x2 = |u|, x3 = |u|, x4 = |v|) ∈ D. The expressions for ui’s in (2.5) are too complicated

to obtain an explicit form of the convergence region of H
(p,q;r;s,t)
d (u, v), but convergence for any

specific values of its parameters can be verified straightforwardly. The region of convergence is
clearly finite, but not zero.

2.3 Recurrence relation and symmetry

In [15], the recurrence relation

P
(p+1,q;r;s,t)
d (m,n) =

r − s+ p+ 1− d/2 +m

r − s+ p+ 1− d/2
P

(p,q;r;s,t)
d (m,n)
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− (r − s− 1 + 2m+ n)(r − s− d/2 +m)(r − t− 1 + 2m+ n)(r − t− d/2 +m)

r − s+ p+ 1− d/2
× P (p,q;r;s,t)

d (m− 1, n+ 1)

+
(r +m+ n)(r − s− d/2 +m)(r − t− d/2 +m)(r − t+ q +m+ n)

r − s+ p+ 1− d/2
× P (p,q;r;s,t)

d (m− 1, n+ 2), (2.6)

necessary to show that (2.2) is the appropriate solution to (2.3) and the symmetryH
(p,q;r;s,t)
d (u, v)

= H
(q,p;r;t,s)
d (u, v) needed for the invariance under the dihedral group D6 of order 12 were not

explicitly demonstrated to follow from the solution (2.2).

In the next sections, several equivalent expressions for P
(p,q;r;s,t)
d (m,n) and H

(p,q;r;s,t)
d (u, v)

will be introduced to verify that (2.6) is satisfied and the solution (2.2) is indeed invariant
under D6.

3 Several expressions for H

In this section several equivalent but completely different expressions for the H-function are
given. The first subsection lists the various expressions, while the proofs are left for the following
subsections. The reader only interested in the different forms of H can certainly skip the proofs.

3.1 H-function

By trivially combining Pochhammer symbols together, the original solution (2.2) for the H-
function can be rewritten as

P
(p,q;r;s,t)
d (m,n) =

∑
i,j≥0

(−1)i(−m)i(−i)j
i!j!m!

(−p, r − t+ 1− d/2 +m− i)i

× (−s− q +m− i+ j, r − t+ 2m+ n− i+ j)i−j

× (r − s+m+ n+ i, r − s+ p+ 1− d/2)m−i(−q,−t)m−i+j

=
(−q,−t, r − s+ p+ 1− d/2, r − s+m+ n)m

m!

× F 3,2,0
2,2,0

[
−m,−p,−r + t+ d/2−m; s+ q −m+ 1,−r + t− 2m− n+ 1;−
−r + s− p+ d/2−m, r − s+m+ n; q −m+ 1, t−m+ 1;−

∣∣∣∣− 1, 1

]
,

H
(p,q;r;s,t)
d (u, v) =

∑
i,j,m,n≥0

(−1)i(−m)i(−i)j
i!j!m!n!

(−p)i(−q,−t)m−i+j(−s− q +m− i+ j)i−j

× (r − s+ p+ 1− d/2)m−i

× (r, r − s+ p, r − t+ q)m+n

(r − s)m+n+i(r − s+ 1− d/2)m(r − t)2m+n−i+j(r − t+ 1− d/2)m−i
xmyn. (3.1)

As indicated above, P
(p,q;r;s,t)
d (m,n) can also be expressed in terms of a Kampé de Fériet function.

This form leads to an alternative way of proving equivalences of different forms for the H-
function.

Another expression for the H-function, which allows to show that P
(p,q;r;s,t)
d (m,n) is invariant

under the interchange of r + 1− d/2 and r +m+ n, is given by

P
(p,q;r;s,t)
d (m,n) =

∑
i,j≥0

(−m)i(−i)j
i!j!m!

(−p)m−j(−q,−t)i
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×(r − s+m− j + 1− d/2, r − s+ 2m+ n− j)j(2r − s− t+ 2m+ n− d/2)i−j

×(−s− q + i, r − t+ i+ 1− d/2, r − t+m+ n+ i)m−i

=
(−p,−s− q, r − t+ 1− d/2, r − t+m+ n)m

m!

× F 3,1,2
3,0,1

 −m,−q,−t; 2r − s− t+ 2m+ n− d/2;
−r + s−m+ d/2,−r + s− 2m− n+ 1

−s− q, r − t+ 1− d/2, r − t+m+ n;−; p−m+ 1

∣∣∣∣∣∣ 1, 1
 ,

H
(p,q;r;s,t)
d (u, v) =

∑
i,j,m,n≥0

(−m)i(−i)j
i!j!m!n!

(−p)m−j(−q,−t)i(−s− q + i)m−i

× (2r − s− t+ 2m+ n− d/2)i−j

× (r, r − s+ p, r − t+ q)m+n

(r − s)2m+n−j(r − s+ 1− d/2)m−j(r − t)m+n+i(r − t+ 1− d/2)i
xmyn. (3.2)

A slightly more complicated expression with one extra sum, useful to prove the symmetry

property H
(p,q;r;s,t)
d (u, v) = H

(q,p;r;t,s)
d (u, v), corresponds to

P
(p,q;r;s,t)
d (m,n) =

∑
i,j,k≥0

(−m)i(−i)j(−i+ j)k
i!j!k!m!

(−p)m−j(−q)i(−s)m−j−k(−t)i−k

× (r + 1− d/2, r +m+ n)k(r − s+m− j + 1− d/2, r − s+ 2m+ n− j)j
× (r − t+ i+ 1− d/2, r − t+m+ n+ i)m−i,

H
(p,q;r;s,t)
d (u, v) =

∑
i,j,k,m,n≥0

(−m)i(−i)j(−i+ j)k
i!j!k!m!n!

(−p)m−j(−q)i(−s)m−j−k

× (−t)i−k(r + 1− d/2)k

× (r)m+n+k(r − s+ p, r − t+ q)m+n

(r − s)2m+n−j(r − s+ 1− d/2)m−j(r − t)m+n+i(r − t+ 1− d/2)i
xmyn. (3.3)

In this case, P
(p,q;r;s,t)
d (m,n) is not expressible in terms of a Kampé de Fériet function, but can

be written as a generalized Lauricella function. As this way of expressing P
(p,q;r;s,t)
d (m,n) does

not lead to an alternative proof we do not provide it here.

The final rewriting of the H-function, relevant to prove the recurrence relation (2.6), is

P
(p,q;r;s,t)
d (m,n) =

∑
i,j≥0

(−m)i(−i)j
i!j!m!

(−p, r − t+ j + 1− d/2)m−j

× (−q,−t, r − s+ p+ 1− d/2)j(r +m+ n, r − t+ q +m+ n)i−j

× (r − s+m+ n+ i− j)m−i+j(r − t+m+ n+ i)m−i

=
(−p, r − s+m+ n, r − t+ 1− d/2, r − t+m+ n)m

m!

× F 1,2,3
1,1,2

[
−m; r +m+ n, r − t+ q +m+ n;−q,−t, r − s+ p+ 1− d/2
r − t+m+ n; r − s+m+ n; p−m+ 1, r − t+ 1− d/2

∣∣∣∣ 1, 1] ,
H

(p,q;r;s,t)
d (u, v) =

∑
i,j,m,n≥0

(−m)i(−i)j
i!j!m!n!

(−p)m−j(−q,−t, r − s+ p+ 1− d/2)j

× (r − s+ p)m+n(r, r − t+ q)m+n+i−j
(r − s)m+n+i−j(r − s+ 1− d/2)m(r − t)m+n+i(r − t+ 1− d/2)j

xmyn. (3.4)
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3.2 Proof of (3.2)

To prove (3.2) from (3.1), it is convenient to reorder the sums in the polynomial using

m∑
i=0

i∑
j=0

aij =
m∑
i=0

i∑
j=0

am−j,i−j ,

which leads to

P
(p,q;r;s,t)
d (m,n) =

m∑
i=0

i∑
j=0

(−m)i(−i)j
i!j!m!

(−q,−t)i

× (r − s+ 2m+ n− j, r − s+ p+ 1− d/2)j(−p, r − t+ j + 1− d/2)m−j

× (−s− q + i, r − t+m+ n+ i)m−i, (3.5)

after simplifying the pre-factors. With the help of

(−p)m−j =
(−1)j(−p)m
(p−m+ 1)j

,

(r − s+ 2m+ n− j)j = (−1)j(s− r − 2m− n+ 1)j ,

(r − t+ 1− d/2 + j)m−j =
(r − t+ 1− d/2)m
(r − t+ 1− d/2)j

and the first symmetry of (A.4) on the sum over j with a = s−r−2m−n+1 and d = r−t+1−d/2,

one finally obtains (3.2) after some trivial simplifications. Hence, P
(p,q;r;s,t)
d (m,n) is invariant

under the interchange of r + 1− d/2 and r +m+ n.

An alternative to this derivation is to use the Kampé de Fériet forms of P
(p,q;r;s,t)
d (m,n)

in (3.1) and (3.2).1 The F 3,2,0
2,2,0 Kampé de Fériet function in (3.1) can be re-expressed using the

reversal of summation order for the hypergeometric series

F a+1,b,0
a,b,0

[
−m,α1, . . . , αa;β1, . . . , βb;−
γ1, . . . , γa; δ1, . . . , δb;−

∣∣∣∣x, y] = (−x)m
(α1, . . . , αa;βa, . . . , βb)m
(γ1, . . . , γa; δ1, . . . , δb)m

× F b+1,0,a
b,0,a

[
−m, 1−m− δ1, . . . , 1−m− δb;−, 1−m− γ1, . . . , 1−m− γa

1−m− β1, . . . , 1−m− βb;−; 1−m− α1, . . . , 1−m− αa

∣∣∣∣− y

x
,

1

x

]
,

yielding

F 3,2,0
2,2,0

[
−m,−p,−r + t+ d/2−m; s+ q −m+ 1,−r + t− 2m− n+ 1;−
−r + s− p+ d/2−m, r − s+m+ n; q −m+ 1, t−m+ 1;−

∣∣∣∣− 1, 1

]
=

(−p,−r + t+ d/2−m, s+ q −m+ 1,−r + t− 2m− n+ 1)m
(−r + s− p+ d/2−m, r − s+m+ n, q −m+ 1, t−m+ 1)m

× F 3,0,2
2,0,2

[
−m,−q,−t;−; 1 + r − s+ p− d/2, 1− r + s− 2m− n
−s− q, r − t+m+ n;−; 1−m+ p, 1 + r − t− d/2

∣∣∣∣ 1, 1] . (3.6)

Theorem 3.5 in [32] states that for any sequence of complex numbers Ωk∑
i,j≥0

zi

i!

(α)j(β)j(−z)j

(γ)j(δ)jj!
(i+ j)!Ωi+j =

∑
i,j≥0

(δ − β)iz
i

i!

(γ − α)j(β)jz
j

j!

(i+ j)!

(γ)j(δ)i+j
Ωi+j .

1This form of the proof was suggested by an anonymous referee.
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Setting z = 1 in the above result and substituting

α→ 1 + r − s− p− d/2, β → 1− r + s− 2m− n, γ → 1−m+ p,

δ → 1 + r − t− d/2, Ωk →
(−m,−q,−t)k

k!(−s− q, r − t+m+ n)k
,

transforms the F 3,0,2
2,0,2 Kampé de Fériet on the right-hand side of (3.6) to F 3,1,2

3,0,1 in (3.2).

3.3 Proof of (3.3)

Now that the equivalence of (3.2) and (3.1) is established, the third form for P
(p,q;r;s,t)
d (m,n)

can be obtained from (3.2). Using the binomial identity (A.2) in (3.2) to express

(−s− q + i)m−i =

m−i∑
k=0

(
m− i
k

)
(−s)m−i−k(−q + i)k =

m∑
k=i

(
m− i
k − i

)
(−s)m−k(−q + i)k−i

allows to combine the last Pochhammer symbol above with (−q)i in (3.2), leading to

P
(p,q;r;s,t)
d (m,n) =

m∑
i=0

i∑
j=0

m∑
k=i

(
m− i
k − i

)
(−m)i(−i)j
i!j!m!

(−p)m−j(−q)k(−s)m−k(−t)i

× (2r − s− t+ 2m+ n− d/2)i−j(r − s+m− j + 1− d/2, r − s+ 2m+ n− j)j
× (r − t+ i+ 1− d/2, r − t+m+ n+ i)m−i.

Reordering the sums as

m∑
i=0

i∑
j=0

m∑
k=i

aijk =

m∑
k=0

k∑
j=0

k−j∑
i=0

ai+j,jk ,

the previous result becomes

P
(p,q;r;s,t)
d (m,n) =

m∑
k=0

k∑
j=0

k−j∑
i=0

(
m

k

)(
k

j

)
(−k + j)i
i!m!

(−p)m−j(−q)k(−s)m−k(−t)i+j

× (2r − s− t+ 2m+ n− d/2)i(r − s+m− j + 1− d/2, r − s+ 2m+ n− j)j
× (r − t+ i+ j + 1− d/2, r − t+m+ n+ i+ j)m−i−j ,

after a trivial simplification of the pre-factors. Using

(−t)i+j = (−t)j(−t+ j)i,

(r − t+ i+ j + 1− d/2)m−i−j =
(r − t+ j + 1− d/2)m−j

(r − t+ j + 1− d/2)i
,

(r − t+m+ n+ i+ j)m−i−j =
(r − t+m+ n+ j)m−j

(r − t+m+ n+ j)i
,

and separating the sum over i gives

P
(p,q;r;s,t)
d (m,n) =

m∑
k=0

k∑
j=0

1

m!

(
m

k

)(
k

j

)
(−q)k

× (−t, r − s+m− j + 1− d/2, r − s+ 2m+ n− j)j
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× (−p)m−j(−s)m−k(r − t+ j + 1− d/2, r − t+m+ n+ j)m−j

×
k−j∑
i=0

(−k + j)i
i!

(−t+ j, 2r − s− t+ 2m+ n− d/2)i
(r − t+ j + 1− d/2, r − t+m+ n+ j)i

.

At this point, the last symmetry property (A.4) with a = −t+ j can be used for the sum over i
leading to

P
(p,q;r;s,t)
d (m,n) =

m∑
k=0

k∑
j=0

1

m!

(
m

k

)(
k

j

)
(−q)k

× (−t, r − s+m− j + 1− d/2, r − s+ 2m+ n− j)j
× (−p)m−j(−s)m−k(r − t+ j + 1− d/2, r − t+m+ n+ j)m−j

×
(−t+ j, s−m+ j + 1)k−j

(r − t+ j + 1− d/2, r − t+m+ n+ j)k−j

×
k−j∑
i=0

(−k + j)i
i!

(r + 1− d/2, r +m+ n)i
(s−m+ j + 1, t− k + 1)i

.

Combining the Pochhammer symbols in the last line yields

P
(p,q;r;s,t)
d (m,n) =

m∑
k=0

k∑
j=0

1

m!

(
m

k

)(
k

j

)
(−q)k

× (−t, r − s+m− j + 1− d/2, r − s+ 2m+ n− j)j
× (−p)m−j(−s)m−k(r − t+ j + 1− d/2, r − t+m+ n+ j)m−j

× (−1)k+j
k−j∑
i=0

(−k + j)i
i!

(r + 1− d/2, r +m+ n)i(−t+ j,−s+m− k)k−j−i
(r − t+ j + 1− d/2, r − t+m+ n+ j)k−j

,

which is equivalent to (3.3) once a few simplifications of the Pochhammer symbols are performed
and the indices are changed as in i↔ k.

3.4 Proof of (3.4)

The expression (3.4) can be obtained starting from the form (3.5) which can be written as

P
(p,q;r;s,t)
d (m,n) =

m∑
i=0

i∑
j=0

(−1)i+j

(m− i)!(i− j)!j!
(−q,−t)i

× (r − s+ 2m+ n− j, r − s+ p+ 1− d/2)j

× (−s− q + i, r − t+m+ n+ i)m−i(−p, r − t+ j + 1− d/2)m−j ,

after simplifying the pre-factors. Reordering the sums using

m∑
i=0

i∑
j=0

aij =

m∑
j=0

m−j∑
i=0

ai+j,j ,

leads to

P
(p,q;r;s,t)
d (m,n) =

m∑
j=0

1

(m− j)!j!
(−q,−t, r − s+ 2m+ n− j, r − s+ p+ 1− d/2)j
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× (−p,−s− q + j, r − t+m+ n+ j, r − t+ j + 1− d/2)m−j

×
m−j∑
i=0

(−m+ j)i
i!

(−q + j,−t+ j)i
(−s− q + j, r − t+m+ n+ j)i

,

where the sum over i was factored out and its pre-factor simplified. Using the second symmetry
property (A.4) for the sum over i with d = −s− q + j gives

P
(p,q;r;s,t)
d (m,n) =

m∑
j=0

1

(m− j)!j!
(−q,−t, r − s+ 2m+ n− j, r − s+ p+ 1− d/2)j

× (−p,−s− q + j, r − t+m+ n+ j, r − t+ j + 1− d/2)m−j

× (r − s+m+ n)m−j
(−s− q + j)m−j

m−j∑
i=0

(−m+ j)i
i!

(r − t+ q +m+ n, r +m+ n)i
(r − t+m+ n+ j, r − s+m+ n)i

.

Combining the Pochhammer symbols together leads to

P
(p,q;r;s,t)
d (m,n) =

m∑
j=0

m−j∑
i=0

(−m)i+j(−i− j)j
(i+ j)!j!m!

(−p)m−j(−q,−t)j(r − s+m+ n+ i)m−i

× (r − s+ p+ 1− d/2)j(r − t+m+ n+ i+ j)m−j−i

× (r − t+ j + 1− d/2)m−j(r − t+ q +m+ n, r +m+ n)i,

after straightforward simplifications of the pre-factors. Shifting i→ i− j followed by reversing
the order of the sums brings the results to

P
(p,q;r;s,t)
d (m,n) =

m∑
i=0

i∑
j=0

(−m)i(−i)j
i!j!m!

(−p)m−j(−q,−t)j(r − s+m+ n+ i− j)m−i+j

× (r − s+ p+ 1− d/2)j(r − t+m+ n+ i)m−i(r − t+ j + 1− d/2)m−j

× (r − t+ q +m+ n, r +m+ n)i−j ,

which is exactly (3.4).

4 Recurrence relation and symmetry

This section proves the recurrence relation and the symmetry using suitable expressions for the
H-function obtained in the previous section.

4.1 Proof of the symmetry

In [15] it was argued from the definition of the H-function in terms of the differential opera-

tor (2.3) that H
(p,q;r;s,t)
d (u, v) = H

(q,p;r;t,s)
d (u, v), a symmetry property necessary to show that the

H-function is invariant under D6. At the level of the polynomial P
(p,q;r;s,t)
d (m,n), the previous

symmetry corresponds simply to P
(p,q;r;s,t)
d (m,n) = P

(q,p;r;t,s)
d (m,n). It is trivial to show this

property directly using expression (3.3).

Indeed, (3.3) implies that

P
(q,p;r;t,s)
d (m,n) =

m∑
i=0

i∑
j=0

i−j∑
k=0

(−m)i(−i)j(−i+ j)k
i!j!k!m!

(−q)m−j(−p)i(−t)m−j−k(−s)i−k
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× (r + 1− d/2, r +m+ n)k(r − t+m− j + 1− d/2, r − t+ 2m+ n− j)j
× (r − s+ i+ 1− d/2, r − s+m+ n+ i)m−i.

Since

m∑
i=0

i∑
j=0

aij =

m∑
i=0

i∑
j=0

am−j,m−i,

the previous result can be rewritten as

P
(q,p;r;t,s)
d (m,n) =

m∑
i=0

i∑
j=0

i−j∑
k=0

(−m)i(−i)j(−i+ j)k
i!j!k!m!

(−q)i(−p)m−j(−t)i−k(−s)m−j−k

× (r + 1− d/2, r +m+ n)k(r − t+ i+ 1− d/2, r − t+m+ n+ i)m−i

× (r − s+m− j + 1− d/2, r − s+ 2m+ n− j)j = P
(p,q;r;s,t)
d (m,n),

where the pre-factors in the first equality have been simplified. This result for P
(p,q;r;s,t)
d (m,n)

therefore shows that the H-function is invariant under the dihedral group of order 12.

4.2 Proof of the recurrence relation

The recurrence relation (2.6) can be verified directly starting from expression (3.4). It is actually
simpler to introduce a generalization of (3.4) in order to prove (2.6). Defining

Q
(p,q,t,a,b,c,d,e,f)
d (m) =

m∑
i=0

i∑
j=0

(−m)i(−i)j
i!j!m!

(−p)m−j(−q,−t, a)j(b, c)i−j
(d)j(e)i−j(f)i

, (4.1)

the original polynomial can be written as

P
(p,q;r;s,t)
d (m,n) (4.2)

= (d, e, f)mQ
(p,q,t,r−s+p+1−d/2,r+m+n,r−t+q+m+n,r−t+1−d/2,r−s+m+n,r−t+m+n)
d (m).

The new polynomial Q satisfies several contiguous relations. Two such relations are needed to
prove (2.6). Using the fact that

(−p)m−j = (−p− 1)m−j + (m− i)(−p)m−1−j + (i− j)(−p)m−1−j ,
a(a+ 1)j = (a+m)(a)j − (m− i)(a)j − (i− j)(a)j ,

leads directly to the two following contiguous relations for (4.1),

Q
(p,q,t,a,b,c,d,e,f)
d (m) = Q

(p+1,q,t,a,b,c,d,e,f)
d (m) +Q

(p,q,t,a,b,c,d,e,f)
d (m− 1)

− bc

ef
Q

(p,q,t,a,b+1,c+1,d,e+1,f+1)
d (m− 1),

aQ
(p+1,q,t,a+1,b,c,d,e,f)
d (m) = (a+m)Q

(p+1,q,t,a,b,c,d,e,f)
d (m) + (p+ 1)Q

(p,q,t,a,b,c,d,e,f)
d (m− 1)

− bc

ef
(p+ 1)Q

(p,q,t,a,b+1,c+1,d,e+1,f+1)
d (m− 1).

These two contiguous relations are not obeyed by the polynomial P
(p,q;r;s,t)
d (m,n) due to the re-

lationship between the different parameters in (4.2). However, by isolating Q
(p+1,q,t,a,b,c,d,e,f)
d (m)
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in the first contiguous relation and inserting its definition in the right-hand side of the second
contiguous relation, it is easy to obtain the following contiguous relation

aQ
(p+1,q,t,a+1,b,c,d,e,f)
d (m)

= (a+m)Q
(p,q,t,a,b,c,d,e,f)
d (m)− (a− p+m− 1)Q

(p,q,t,a,b,c,d,e,f)
d (m− 1)

+
bc

ef
(a− p+m− 1)Q

(p,q,t,a,b+1,c+1,d,e+1,f+1)
d (m− 1), (4.3)

which is satisfied by the polynomial P
(p,q;r;s,t)
d (m,n). In fact, (4.3) is nothing else than the recur-

rence relation (2.6), proving that the H-function is the correct quantity appearing in conformal
blocks.

5 Differential operators

In this section the differential operator D(u,v) is used to derive both the G and H-functions
constructively. Generalizations to higher-point correlation functions will be discussed elsewhere.

5.1 Action

By direct computation, the action of the differential operator D(u,v) on the variables x = u/v
and y = 1− 1/v is simply

D(u,v)x
myn = (−2)

[
n(n− 1)x− n(m+ n)xy + (m+ n)(m+ 1− d/2)y2

]
xm+1yn−2,

and therefore

Dh(u,v)x
myn = (−2)h

∑
i,j≥0

(−1)i+j(−h)i(−i)j
i!j!

(−n)i+j(m+ i+ 1− d/2)h−i

× (m+ n)h−jx
m+h+iyn−i−j . (5.1)

Expression (5.1) has the correct limiting behavior at (u, v) → (0, 1) as can be checked by
computing (2.1) from (2.3), which gives

G
(q;r;t)
d (u, v) =

x−(r−t+q)Dq(u,v)x
r−t(1− y)−r

(−2)q(r − t, r − t+ 1− d/2)q
=
∑
k≥0

(r)k
k!

x−(r−t+q)Dq(u,v)x
r−tyk

(−2)q(r − t, r − t+ 1− d/2)q

=
∑
i,j,k≥0

(−1)i+j(−i)j(−k)i+j
i!j!k!

(−q)i(r)k(r − t+ k)q−j
(r − t)q(r − t+ 1− d/2)i

xiyk−i−j

=
∑

m,n,j≥0

(−m)j
j!

(r +m+ n)j
(r − t+m+ n)j

(−q)m(r)n+m(r − t+m+ n)q
(r − t)q(r − t+ 1− d/2)mm!n!

xmyn

=
∑
m,n≥0

(−t)m
(r − t+m+ n)m

(−q)m(r)n+m(r − t+m+ n)q
(r − t)q(r − t+ 1− d/2)mm!n!

xmyn.

In the third equality the sums where shifted (i, k) → (m,n + i + j), while the Vandermonde’s
identity (A.3) was used in the last equality. The final result is equivalent to (2.1) and thus proves
that (5.1) is the correct action of the differential operator in computing conformal blocks.

Using (5.1), the H-function can be easily computed from (2.3)

H
(p,q;r;s,t)
d (u, v) =

(
u
v

)−(r−s+p)Dp(u,v) (uv )r−sG(q;r;t)
d (u, v)

(−2)p(r − s, r − s+ 1− d/2)p
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=
∑
m,n≥0

(−q,−t)m
(r − t+ 1− d/2)mm!

(r, r − t+ q)m+n

(r − t)2m+nn!

x−(r−s+p)Dp(u,v)x
r−s+myn

(−2)p(r − s, r − s+ 1− d/2)p

=
∑

i,j,m,n≥0

(−1)i+j(−p)i(−i)j
i!j!

(−q,−t)m
(r − t+ 1− d/2)mm!

(r, r − t+ q)m+n

(r − t)2m+nn!

× (−n)i+j(r − s+m+ i+ 1− d/2)p−i(r − s+m+ n)p−j
(r − s, r − s+ 1− d/2)p

xm+iyn−i−j

=
∑

i,j,m,n≥0

(−1)i+j(−p)i(−i)j
i!j!

(−q,−t)m−i
(r − t+ 1− d/2)m−i(m− i)!

(r, r − t+ q)m+n+j

(r − t)2m+n−i+j(n+ i+ j)!

× (−n− i− j)i+j(r − s+ p+ 1− d/2)m−i(r − s+ p)m+n

(r − s)m+n+j(r − s+ 1− d/2)m
xmyn,

where the last identity, obtained by substituting (m,n)→ (m− i, n+ i+ j), corresponds exactly
to (3.4) after changing (i, j) → (m − j, j − i). Since (3.4) is the expression for the H-function
that originates directly from the action of D(u,v), it is now clear why (3.4) is the appropriate
form to prove the recurrence relation (2.6).

6 Conclusion

We used several identities for the Pochhammer symbols and hypergeometric-like polynomials
in order to show that the H-function computed in [15] is the appropriate function appearing
in conformal blocks. With the help of these identities, several different expressions for the
H-function were presented. This allowed us to demonstrate explicitly that the H-function is
invariant under the dihedral group of order 12 and that it satisfies the proper recurrence relation.

We also found the explicit action of the differential operator on simple products of the confor-
mal cross-ratios. This differential form was used to give a constructive proof of the H-function,
independent of the approach based on identities used before. As far as computing conformal
blocks is concerned, the action of the differential operator is actually the most important result
of this paper. Indeed, there exists a generalization of this expression that acts straightforwardly
on higher N -point correlation functions. This result will be discussed elsewhere.

Finally, it is worth mentioning that the physical interpretation behind the D6-symmetry of
the H-function remains unclear. Nevertheless, this symmetry might have implications for the
analyticity properties in spin of the conformal blocks.

A Pochhammer symbols and hypergeometric functions

Pochhammer symbols and hypergeometric functions satisfy several mathematical properties and
some of those properties are necessary to show that the different representations of the H-
function are equivalent. For completeness, this appendix presents several useful identities for
the Pochhammer symbols and hypergeometric functions.

First, the Pochhammer symbol (x)α is defined as

(x)α =
Γ(x+ α)

Γ(x)
,

and for α = n a non-negative integer, it satisfies

(−x)n = (−1)n(x− n+ 1)n, (A.1)
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as well as the binomial identity

(x+ y)n =

n∑
k≥0

(
n

k

)
(x)k(y)n−k. (A.2)

The Vandermonde’s identity

(x+ y)α =
∑
k≥0

(−α)k
k!

(−x)k(y + k)α−k. (A.3)

can be obtained from the binomial identity (A.2) by using (A.1). Unlike the binomial identity,
the Vandermonde’s identity is satisfied for any α (not just for integer values) as long as the sum
converges. Both (A.2) and (A.3) can be demonstrated by recurrence.

Similarly, the 3F2-hypergeometric functions of interest here satisfy

3F2

[
−n, a, b
c, d

∣∣∣∣ 1] =
(d− a)n

(d)n
3F2

[
−n, a, c− b

c, a− d+ 1− n

∣∣∣∣ 1]
=

(c+ d− a− b)n
(d)n

3F2

[
−n, c− a, c− b
c, c+ d− a− b

∣∣∣∣ 1]
=

(a)n(c+ d− a− b)n
(c)n(d)n

3F2

[
−n, d− a, c− a

c+ d− a− b,−a+ 1− n

∣∣∣∣ 1] . (A.4)

These identities follow from the Thomae’s relations for 3F2-function with unit argument [16, 25].
Group theoretic origins of such identities were explored in [1], where it was shown that 3F2-series
with unit argument has an S5 permutation invariance.

Acknowledgements

Two of the authors (JFF and WS) would like to thank the CERN Theory Group, where this
work was conceived, for its hospitality. The work of VC and JFF is supported by NSERC and
FRQNT. We would like to acknowledge anonymous referees whose comments helped us improve
the content and clarity of this article.

References

[1] Beyer W.A., Louck J.D., Stein P.R., Group theoretical basis of some identities for the generalized hyper-
geometric series, J. Math. Phys. 28 (1987), 497–508.

[2] Dirac P.A.M., Wave equations in conformal space, Ann. of Math. 37 (1936), 429–442.

[3] Dobrev V.K., Mack G., Petkova V.B., Petrova S.G., Todorov I.T., Harmonic analysis: on the n-dimensional
Lorentz group and its application to conformal quantum field theory, Lect. Notes Phys., Vol. 63, Springer-
Verlag, Berlin – Heidelberg, 1977.

[4] Dolan F.A., Osborn H., Conformal four point functions and the operator product expansion, Nuclear Phys. B
599 (2001), 459–496, arXiv:hep-th/0011040.

[5] Dolan F.A., Osborn H., Conformal partial waves and the operator product expansion, Nuclear Phys. B 678
(2004), 491–507, arXiv:hep-th/0309180.

[6] Exton H., On the system of partial differential equations associated with Appell’s function F4, J. Phys. A:
Math. Gen. 28 (1995), 631–641.

[7] Ferrara S., Gatto R., Grillo A.F., Conformal invariance on the light cone and canonical dimensions, Nuclear
Phys. B 34 (1971), 349–366.

[8] Ferrara S., Gatto R., Grillo A.F., Conformal algebra in space-time and operator product expansion, Springer
Tracts in Modern Physics, Vol. 67, Springer-Verlag, Berlin – Heidelberg, 1973.

https://doi.org/10.1063/1.527634
https://doi.org/10.2307/1968455
https://doi.org/10.1007/BFb0009678
https://doi.org/10.1007/BFb0009678
https://doi.org/10.1016/S0550-3213(01)00013-X
https://arxiv.org/abs/hep-th/0011040
https://doi.org/10.1016/j.nuclphysb.2003.11.016
https://arxiv.org/abs/hep-th/0309180
https://doi.org/10.1088/0305-4470/28/3/017
https://doi.org/10.1088/0305-4470/28/3/017
https://doi.org/10.1016/0550-3213(71)90333-6
https://doi.org/10.1016/0550-3213(71)90333-6
https://doi.org/10.1007/BFb0111103


Further Results on a Function Relevant for Conformal Blocks 15

[9] Ferrara S., Grillo A.F., Gatto R., Manifestly conformal covariant operator-product expansion, Lett. Nuovo
Cimento 2 (1971), 1363–1369.

[10] Ferrara S., Grillo A.F., Gatto R., Manifestly conformal-covariant expansion on the light cone, Phys. Rev. D
5 (1972), 3102–3108.

[11] Ferrara S., Grillo A.F., Gatto R., Tensor representations of conformal algebra and conformally covariant
operator product expansion, Ann. Physics 76 (1973), 161–188.

[12] Ferrara S., Grillo A.F., Parisi G., Gatto R., The shadow operator formalism for conformal algebra. Vacuum
expectation values and operator products, Lett. Nuovo Cimento 4 (1972), 115–120.

[13] Ferrara S., Parisi G., Conformal covariant correlation functions, Nuclear Phys. B 42 (1972), 281–290.

[14] Fortin J.F., Skiba W., Conformal bootstrap in embedding space, Phys. Rev. D 93 (2016), 105047, 7 pages,
arXiv:1602.05794.

[15] Fortin J.F., Skiba W., Conformal differential operator in embedding space and its applications, J. High
Energy Phys. 2019 (2019), no. 7, 093, 19 pages, arXiv:1612.08672.

[16] Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and its Appli-
cations, Vol. 96, Cambridge University Press, Cambridge, 2004.

[17] Horn J., Ueber die Convergenz der hypergeometrischen Reihen zweier und dreier Veränderlichen, Math.
Ann. 34 (1889), 544–600.

[18] Isachenkov M., Schomerus V., Integrability of conformal blocks. Part I. Calogero–Sutherland scattering
theory, J. High Energy Phys. 2018 (2018), no. 7, 180, 66 pages, arXiv:1711.06609.

[19] Karateev D., Kravchuk P., Simmons-Duffin D., Weight shifting operators and conformal blocks, J. High
Energy Phys. 2018 (2018), no. 2, 081, 81 pages, arXiv:1706.07813.

[20] Mack G., Convergence of operator product expansions on the vacuum in conformal invariant quantum field
theory, Comm. Math. Phys. 53 (1977), 155–184.

[21] Mack G., Salam A., Finite-component field representations of the conformal group, Ann. Physics 53 (1969),
174–202.

[22] Penedones J., Trevisani E., Yamazaki M., Recursion relations for conformal blocks, J. High Energy Phys.
2016 (2016), no. 9, 070, 50 pages, arXiv:1509.00428.

[23] Poland D., Rychkov S., Vichi A., The conformal bootstrap: theory, numerical techniques, and applications,
Rev. Modern Phys. 91 (2019), 015002, 74 pages, arXiv:1805.04405.

[24] Polyakov A.M., Non-Hamiltonian approach to conformal quantum field theory, Sov. Phys. JETP 39 (1974),
10–18.

[25] Rainville E.D., Special functions, Chelsea Publishing Co., Bronx, N.Y., 1971.

[26] Rattazzi R., Rychkov V.S., Tonni E., Vichi A., Bounding scalar operator dimensions in 4D CFT, J. High
Energy Phys. 2008 (2008), no. 12, 031, 49 pages, arXiv:0807.0004.

[27] Schomerus V., Sobko E., From spinning conformal blocks to matrix Calogero–Sutherland models, J. High
Energy Phys. 2018 (2018), no. 4, 052, 29 pages, arXiv:1711.02022.

[28] Schomerus V., Sobko E., Isachenkov M., Harmony of spinning conformal blocks, J. High Energy Phys. 2017
(2017), no. 3, 085, 23 pages, arXiv:1612.02479.

[29] Simmons-Duffin D., Projectors, shadows, and conformal blocks, J. High Energy Phys. 2014 (2014), no. 4,
146, 36 pages, arXiv:1204.3894.

[30] Srivastava H.M., Daoust M.C., A note on the convergence of Kampé de Fériet’s double hypergeometric
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