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Abstract. We survey some recent work using Ricci flow to create a class of local definitions
of weak lower scalar curvature bounds that is well defined for C0 metrics. We discuss several
properties of these definitions and explain some applications of this approach to questions
regarding uniform convergence of metrics with scalar curvature bounded below. Finally, we
consider the relationship between this approach and some other generalized notions of lower
scalar curvature bounds.
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1 Introduction

In [5] Gromov presented the following theorem on the uniform limit of metrics satisfying a point-
wise lower bound on the scalar curvature; cf. [5, p. 1118] and [1, Theorem 1]:

Theorem 1.1. Let M be a smooth manifold and κ : M → R a continuous function on M .
Suppose gi is a sequence of C2 metrics on M that converges locally uniformly to a C2 metric g
on M . If R(gi) ≥ κ everywhere on M for i = 1, 2, . . . , then R(g) ≥ κ everywhere on M as well.

The proof described by Gromov involves formulating positive scalar curvature as a C0 quan-
tity, by considering the mean convexity and dihedral angles of small cubes. Bamler provided an
alternative proof of Theorem 1.1 in [1], which used the evolution of the scalar curvature under
Ricci flow and some results of Koch and Lamm [7] concerning the Ricci–DeTurck flow for a class
of possibly nonsmooth initial data on Euclidean space.

In light of Bamler’s approach to Theorem 1.1, it is natural to ask whether it is possible
to use Ricci flow to formulate a generalized definition of lower scalar curvature bounds for C0

metrics. In [3] the author proposed a class of such definitions, and proved some related results.
Generally speaking, the lower scalar curvature bounds in [3] are determined by using the Ricci
flow to “regularize” the singular metric and then observing the scalar curvature of the flow at
small positive times. The purpose of this survey is to describe more precisely how to formulate
such a definition, to discuss several natural properties of this definition, and to explain how to
prove some stability and rigidity results concerning the uniform convergence of metrics satisfying
certain lower scalar curvature bounds, such as the following:

Theorem 1.2. Let g be a C0 metric on a closed manifold M which admits a uniform approxi-
mation by C2 metrics gi that have R(gi) ≥ κi, where κi is some sequence of numbers such that
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κi −−−→
i→∞

κ for some number κ. Then g admits a uniform approximation by smooth metrics with

scalar curvature bounded below by κ.

Corollary 1.3. Let g be a smooth metric on the torus which admits a uniform approximation
by smooth metrics gi such that R(gi) ≥ −εi −−−→

i→∞
0. Then g is flat.

2 Preliminaries: Ricci and Ricci–DeTurck flow

If M is a smooth manifold and g0 is a smooth Riemannian metric on M , the Ricci flow starting
from g0 is a solution to

∂tḡ = −2 Ric(ḡ) in M × (0, T ),

ḡ(0) = g0,

where ḡ(t) is a smooth, time-dependent family of Riemannian metrics on a M for t ∈ (0, T ).
If M is closed it is known that a short-time solution to the Ricci flow always exists and is unique;
see [12, Theorems 5.2.1 and 5.2.2].

We will also find it useful to consider the Ricci–DeTurck flow, introduced by DeTurck in [4],
a strongly parabolic flow that is related to the Ricci flow by pullback via a family of diffeo-
morphisms. More specifically, we define the following operator, which maps symmetric 2-forms
on M to vector fields:

Xḡ(g) :=
n∑
i=1

(
∇ḡeiei −∇

g
eiei
)
,

where {ei}ni=1 is any local orthonormal frame with respect to g. Then the Ricci–DeTurck equa-
tion is

∂tg(t) = −2 Ric(g(t))− LXḡ(t)(g(t))g(t), (2.1)

where ḡ(t) is a background Ricci flow. As mentioned, if g(t) solves (2.1) then it is related to
a Ricci flow via pullback by diffeomorphisms. More precisely, if g(t) solves (2.1) and χt : M →M
is a family of diffemorphisms satisfying

Xḡ(t)(g(t))f =
∂

∂t
(f ◦ χt) for all f ∈ C∞(M),

χ0 = id, (2.2)

then χ∗t g(t) solves the Ricci flow equation with initial condition g(0).
Let gt be a solution to the Ricci–DeTurck equation, and write gt = ḡt + ht, where ḡt is the

smooth background Ricci flow from (2.1). Then the evolution equation (see [2, Appendix A] for
more details, and a more general setting) for ht is

∂tht + Lht = Q[ht], (2.3)

where the linear part, L, is

Lht := ∆ḡtht + 2 Rmḡt(ht) := ∆ḡtht + 2ḡpqRmpijhqmdxi ⊗ dxj ,

and the quadratic term Q may be written as

Q[ht] = Q0
t +∇∗Q1

t ,
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where

Q0
t = (ḡ + h)−1 ? (ḡ + h)−1 ?∇h ?∇h+

(
(ḡ + h)−1 − ḡ−1

)
? Rmḡt ?h

and

∇∗Q1
t := ∇p

((
(ḡ + h)pq − ḡpq

)
∇qhij

)
= ∇

((
(ḡ + h)−1 − ḡ−1

)
?∇h

)
.

Here we use the notation A ? B for two tensor fields A and B to mean a linear combination of
products of the coefficients of A andB, and (ḡ+h)−1 and ḡ−1 denote tensor fields with coefficients
(ḡ + h)ij and ḡij respectively. We sometimes also write ht using the integral representation

ht(x) =

∫
M
K̄(x, t; y, 0)h0(y)dḡ0(y)

+

∫
M×[0,t]

(
K̄(x, t; y, s)Q0

s(y) +∇∗K̄(x, t; y, s)Q1
s(y)

)
dḡs(y), (2.4)

where K̄ denotes the heat kernel for the background Ricci flow ḡ(t). We refer to (2.3) as the
Ricci–DeTurck perturbation equation.

There are several results on the existence of Ricci–DeTurck flows starting from C0 initial data,
such as [11, Theorem 1.1], [7, Theorem 4.3], and [8, Theorem 5.3]. Because we will consider
flows from initial metrics that are close to one another in the C0 sense, the result that is most
relevant to this survey is (cf. [3, Lemma 3.2 and Corollary 3.3]):

Proposition 2.1. Let Mn be a smooth, closed manifold. There exist constants ε = ε(n) and
C = C(n) such that the following is true:

For every metric g0 ∈ C0(M) and every smooth background metric ḡ0, if ||g0− ḡ0||L∞(M) < ε
and ḡt is the Ricci flow starting from ḡ0, then there exists T = T (ḡ(t)) sufficiently small so that
there is a solution gt to the integral equation (2.4) such that

||gt − ḡt||L∞(M×(0,T )) ≤ C||g0 − ḡ0||L∞(M).

Moreover, by taking ε and T smaller, we may find constants ck depending only on k, the
dimension, and bounds for the derivatives of Rm(ḡ), such that the solution gt is smooth on
M × (0, T ], continuous on M × [0, T ], and satisfies∣∣∇k(gt − ḡt)∣∣ ≤ ck

tk/2
||g0 − ḡ0||L∞(M)

for all t ∈ (0, T ′], where ∇ denotes the covariant derivative with respect to ḡ(t).

The existence of a solution to (2.4) is proven in a similar fashion to [7]: in [7] Koch and Lamm
construct suitable Banach spaces so that a solution to (2.4) arises from an application of the
Banach fixed point theorem. In [3] one performs a similar construction, working on a Ricci flow
background rather than a stationary background. Once the existence of a solution to the integral
equation (2.4) has been established, smoothness of the solution and bounds on the derivatives
may be proven by iterative application of parabolic interior estimates.

Under the Ricci flow, the scalar curvature evolves by

∂tR = ∆ḡ(t)R+ 2|Ric |2; (2.5)

see [12, Proposition 2.5.4]. Making an orthogonal decomposition, we may conclude that

∂tR ≥ ∆ḡ(t)R+
2

n
R2; (2.6)
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this is [12, Corollary 2.5.5]. For smooth Ricci flows on a closed manifold, a general bound that
follows from the maximum principle is (see [12, Corollary 3.2.5])

R(x, t) ≥ − n
2t
,

for all (x, t) ∈M × (0, T ].
If, instead, g(t) is a Ricci–DeTurck flow, then recall that g(t) = (χ−1

t )∗ḡ(t) for some Ricci
flow ḡ(t), where the family (χt) satisfies (2.2) and X is the corresponding vector field. Therefore,
pushing forward (2.6) by (χt) we find that, under the Ricci–DeTurck flow,

∂tR ≥ ∆g(t)R− 〈X,∇R〉+
2

n
R2;

see also [1, p. 6]. It follows from the maximum principle that, if g(t) is a Ricci or Ricci–DeTurck
flow on a closed manifold, starting from a smooth initial metric, and defined on the interval [0, T ],
then if Rg0 ≥ κ0 ∈ R, we have (cf. [12, Theorem 3.2.1])

Rg(t) ≥ κ0

1−
(

2κ0
n t
) ≥ κ0, (2.7)

for all t ∈ [0, T ].

3 Regularizing Ricci flow
and pointwise lower scalar curvature bounds

As mentioned in Section 1, in order to determine the generalized lower scalar curvature bound for
a C0 metric we first regularize the metric by the Ricci flow and then study the scalar curvature
of the flow for small positive times. It is not obvious what is meant by a Ricci flow starting
from C0 initial data; however, we have [3, Theorem 1.1]:

Theorem 3.1. Let M be a closed manifold and g0 a C0 metric on M . Then there exists a time-
dependent family of smooth metrics (g̃t)t∈(0,T ] and a continuous surjection χ : M →M such that
the following are true:

(a) The family (g̃t)t∈(0,T ] is a Ricci flow, and

(b) There exists a smooth family of diffeomorphisms (χt)t∈(0,T ] : M →M such that

χt
C0

−−→
t→0

χ and ||(χt)∗g̃t − g0||C0(M) −−→
t→0

0.

Moreover, for any x ∈M , diam{χs(x) : s ∈ (0, t]} ≤ C
√
t for some constant C > 0 independent

of x, where the diameter is measured with respect to a fixed smooth background metric, and any
two such families are isometric, in the sense that if g̃′t is another such family with corresponding
continuous surjection χ′, then there exists a stationary diffeomorphism α : M → M such that
α∗g̃t = g̃′t and χ ◦ α = χ′.

The pair ((g̃t)t∈(0,T ], χ) is called a regularizing Ricci flow for g0.

Remark 3.2. It has not been shown that there are metrics for which χ cannot be taken to be
a homeomorphism, though we suspect that such metrics do exist.

Remark 3.3. Moreover, the regularizing Ricci flow is invariant under C0 isometry in a more
general sense: if ϕ :

(
M2, g

2
)
→
(
M1, g

1
)

is a metric space isometry, then, for any two regular-
izing Ricci flows

((
g̃1(t)

)
t∈(0,T 1]

, χ1
)

and
((
g̃2(t)

)
t∈(0,T 2]

, χ2
)

for g1 and g2 respectively, there is

a stationary diffeomorphism α : M2 →M1 such that α∗g̃1(t) = g̃2(t) for all t ∈
(
0,min

{
T 1, T 2

}]
and χ1 ◦ α = ϕ ◦ χ2; this is [3, Corollary 5.5].
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In the smooth case, we may take (g̃t) to be the classical Ricci flow by choosing (χt) to be
the family of diffeomorphisms which solves (2.2) and is defined for t ∈ [0, T ], and then pulling
back the Ricci–DeTurck flow by (χt)t∈[0,T ]. In the case of C0 initial data, it is still possible to
solve the differential equation in (2.2) subject to the “initial condition” χt0 = id for some t0 > 0,
since X is nonsingular for t0 > 0, but it is not possible to prescribe χ0 = id, since X may be
singular at time 0. Instead, we take χ to be the uniform limit as t↘ 0 of the solution (χt)t∈(0,T ]

to the differential equation in (2.2) with χt0 = id. The family (g̃t) is then constructed by pulling
back the Ricci–DeTurck flow in Proposition 2.1 by (χt)t∈(0,T ].

The non-uniqueness of the regularizing Ricci flow is an artifact of the non-unique choice
of “initial data” χt0 . That the regularizing Ricci flow is unique up to isometry is due to the
uniqueness of Ricci flows from smooth initial data on closed manifolds, and compactness of the
isometry group for smooth Riemannian metrics on closed manifolds.

We now explain how to use the regularizing Ricci flow to define pointwise lower scalar cur-
vature bounds for C0 metrics. Henceforth we will refer to this definition as the “weak sense”.
A satisfactory definition of the weak sense should satisfy the following requirements: For any
constant κ, we should have

1. Stability under greater-than-second-order perturbation: If g′ and g′′ are two C0 metrics
that agree to greater than second order around a point x0, i.e., if, for some fixed smooth
background metric, we have |g′(x) − g′′(x)| ≤ cd2+η(x, x0) for some c, η > 0 and all x in
a neighborhood of x0, then g′ should have scalar curvature bounded below by κ in the
weak sense at x0 if and only if g′′ does. Moreover, if g′ and g′′ are C0 metrics on different
manifolds which merely agree to greater than second order under pullback by a locally
defined diffeomorphism, the conclusion should still hold.

2. Preservation of global lower bounds under the Ricci flow: If g is a C0 metric on a closed
manifold that has scalar curvature bounded below by κ in the weak sense at every point,
and g̃t is a regularizing Ricci flow for g, then g̃t should have scalar curvature bounded
below by κ at every point for all t > 0 for which the flow is defined. This is true for Ricci
flows starting from smooth initial data.

3. Agreement with the classical notion for C2 metrics: If g is a C2 metric with scalar curvature
bounded below by κ at x0 in the weak sense for C0 metrics, then g should have scalar
curvature bounded below by κ at x0 in the classical sense. Conversely, if g has scalar
curvature bounded below by κ at x0 in the classical sense, then the same should hold in
the weak sense.

Perhaps the most natural approach would be to declare that R(g0) ≥ κ at x if lim
t↘0

R(gt, y) ≥ κ

for some y ∈ χ−1(x) (we consider the scalar curvature at y ∈ χ−1(x) rather than at x itself
because gt only converges to g0 modulo pushforward by the family (χt)). As we shall discuss
below, we wish to leverage exponential heat kernel estimates in conjunction with (2.5) to show
that (2) holds, so we modify this approach by instead requiring that the lower bound holds
in the limit, in a small time-dependent neighborhood of y, where the size of the neighborhood
tends to 0 as t↘ 0:

Definition 3.4. Let Mn be a closed manifold and g0 a C0 metric on M . For 0 < β < 1/2 we
say that g0 has scalar curvature bounded below by κ at x in the β-weak sense if there exists
a regularizing Ricci flow ((g̃t)t∈(0,T ], χ) for g0 such that, for some point y ∈ M with χ(y) = x,
we have

inf
C>0

(
lim inf
t↘0

(
inf

Bg̃(t)(y,Ct
β)
Rg̃(·, t)

))
≥ κ, (3.1)
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where Bg̃(t)
(
y, Ctβ

)
denotes the ball of radius Ctβ about y, measured with respect to the met-

ric g̃(t), and Rg̃(·, t) denotes the scalar curvature of g̃t .

Remark 3.5. In fact, Definition 3.4 is independent of choice of y, so it is equivalent to require
that (3.1) hold at y for all y with χ(y) = x. Moreover, the fact that any two regularizing
Ricci flows for g0 are isometric (see Theorem 3.1) implies that Definition 3.4 holds for some
regularizing Ricci flow if and only if it holds for all regularizing Ricci flows for g0.

Remark 3.6. Definition 3.4 may also be formulated in terms of Ricci–DeTurck flow (see [3,
Lemma 6.4]). The equivalent statement using Ricci–DeTurck flow is that there is a Ricci–
DeTurck flow gt starting from g0 in the sense of Proposition 2.1 and ḡ0 a stationary metric
on M that is uniformly bilipschitz to (gt)t∈(0,T ] such that

inf
C>0

(
lim inf
t↘0

(
inf

Bḡ0 (x,Ctβ)
Rgt(·)

))
≥ κ.

We take the infimum over all C > 0 to ensure that the condition that R(g0) ≥ 0 at x in the
β-weak sense is scaling invariant, since the condition 0 < β < 1/2 disrupts the parabolic scaling
of the expression. The significance of β in this range is that away from Bg̃(t)

(
y, Ctβ

)
the heat

kernel for the flow decays exponentially as t ↘ 0; we will discuss how this is used below. It is
unknown whether β could instead be replaced by 1/2, or even to replace (3.1) by lim inf

t↘0
R(gt, y).

It is clear that Definition 3.4 satisfies item (3), since if g0 is C2, then by Remark 3.5 we may
take the regularizing Ricci flow as the usual Ricci flow with χ = id, and

inf
C>0

(
lim inf
t↘0

(
inf

Bg̃(t)(y,Ct
β)
Rg̃(·, t)

))
= lim

t→0
Rg̃(x, t) = Rg(x).

Item (1) holds due to the following stability result for the scalar curvatures of regulariz-
ing Ricci flows from metrics which agree to greater than second order at a point; this is [3,
Theorem 1.4]:

Theorem 3.7. Suppose g′ and g′′ are two C0 metrics on closed manifolds M ′ and M ′′ respec-
tively, and that there is a locally defined diffeomorphism φ : U → V where U is a neighborhood
of x′0 in M ′ and V is a neighborhood of x′′0 in M ′′ with φ(x′0) = x′′0. Suppose furthermore that g′

and φ∗g′′ agree to greater than second order around x′0, i.e., with respect to some fixed smooth
background metric, |g′(x)−φ∗g′′(x)| ≤ cd2+η(x, x0) for some c, η > 0 and all x in a neighborhood
of x′0. Then there exist regularizing Ricci flows (g̃′t, χ

′) and (g̃′′t , χ
′′) for g′ and g′′ respectively

such that, for 1/(2 + η) < β < 1/2, C > 0, and t sufficiently small depending on C, β, and η,
we have

sup
B(x′0,Ct

β)

∣∣R(χ′t)∗g̃
′
t − φ∗R(χ′′t )∗g̃′′t

∣∣ ≤ ctω,
where ω is some positive exponent, c is a constant that does not depend on t or C, R(χ′t)∗g̃

′
t and

R(χ′′t )∗g̃′′t denote the scalar curvatures with respect to (χ′t)∗g̃
′
t and (χ′′t )∗g̃

′′
t respectively, and (χ′t)

and (χ′′t ) are the smooth families of diffeomorphisms for g̃′t and g̃′′t respectively, whose existence
is given by (b) in Theorem 3.1.

In particular, Definition 3.4 holds for g′ at x′0 if and only if it holds for g′′ and x′′0.

Remark 3.8. By Theorem 3.7, Definition 3.4 descends to the space of germs of metrics at
a point, and further descends to the quotient space induced on the space of germs of metrics
at x0 by the relation [g] ∼ [g′] if g and g′ agree to greater than second order at x0. One may
also use this fact to define weak pointwise lower scalar curvature bounds for C0 metrics on open
manifolds.
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The strategy for proving Theorem 3.7 is essentially to endow the Banach spaces defined by
Koch and Lamm in [7] with the weight ω(x, t) = max

{(
d(x0, x) +

√
t
)−2−η

, 1
}

to offset the
evolution of two metrics that initially agree to greater than second order about x0, and then
to show that ||ω(·, t)(g′t − φ∗g′′t )||C0(M) ≤ C(||ω(·, 0)g′0 − φ∗g′′0 ||) < ∞. Closeness of the scalar
curvatures is obtained from the C0 estimate by interpolating between higher and lower order
derivatives.

Moreover, we have that item (2) holds; this is [3, Theorem 1.5]:

Theorem 3.9. Suppose that g0 is a C0 metric on a closed manifold M , and suppose there is
some β ∈ (0, 1/2) such that g0 has scalar curvature bounded below by κ in the β-weak sense at
all points in M . Suppose also that (g̃(t))t∈(0,T ] is a Ricci flow starting from g0 in the sense of
Theorem 3.1. Then the scalar curvature of g̃(t), R(g̃(t)), satisfies R(g̃(t)) ≥ κ everywhere on M ,
for all t ∈ (0, T ].

To prove Theorem 3.9 one supposes that the theorem is false and then iteratively uses the
heat kernel estimates and (2.5) to show that there must be a sequence (xi, ti) with ti ↘ 0 and

all xi ∈ Bg̃(ti)
(
x0, t

β
i

)
for some x0, such that R(xi, ti) is bounded above away from κ for all i, so

that Definition 3.4 must fail at x0.

4 Some applications: global lower bounds

Recall that the purpose of Definition 3.4 was to formulate a pointwise lower scalar curvature
bound for a C0 metric g. Nevertheless, if g satisfies a (constant) global lower bound on the scalar
curvature in the sense of Definition 3.4, Theorem 3.9 leads to several alternate characterizations
of g, which we will discuss in this section.

We have (cf. [3, Corollary 1.6]):

Theorem 4.1. Let g be a C0 metric on a closed manifold M . Let κ be some constant. The
following are equivalent:

1. There exists some β < 1/2 such that R(g) ≥ κ in the β-weak sense everywhere on M .

2. For any regularizing Ricci flow (g̃(t))t∈(0,T ] for g, R(g̃(t)) ≥ κ everywhere on M , for all
t ∈ (0, T ].

3. There exists a sequence of smooth metrics gi on M such that R(gi) ≥ κ everywhere on M

for i = 1, 2, . . . , and gi
C0

−−−→
i→∞

g.

Remark 4.2. In particular, Theorem 4.1 implies that if the global lower bound R(g) ≥ κ holds
in the β-weak sense for some value of β < 1/2, then it holds for all β < 1/2.

To see why Theorem 4.1 is true, first choose a sequence of times ti ↘ 0, and let g̃(t) be
a regularizing Ricci flow for g. Then Theorem 3.1 says that (χti)∗g̃(ti) converges uniformly
to g. Moreover, Theorem 3.9 guarantees that R(g̃(ti)) ≥ κ for all i, so the same is true for
R((χti)∗g̃(ti)), so (1)⇒ (3).

Furthermore, if there exists a sequence of smooth approximators gi as in (3), then for suf-
ficiently large i all gi are close enough to some smooth background metric ḡ0 so that there
exists a uniform value T such that the Ricci–DeTurck flows gi(t) starting from gi in the sense
of Proposition 2.1 are defined for t ∈ (0, T ]. Moreover, R(gi(t)) ≥ κ for all t ∈ (0, T ] and i,
according to (2.7).

By the derivative estimates given by Proposition 2.1, the flows gi(t) converge smoothly to
the Ricci–DeTurck flow g(t) for g on M for all fixed t > 0. In particular, for any fixed t ∈ (0, T ]
and all i sufficiently large, we have R(g(t)) ≥ κ. Since g(t) is related to a regularizing Ricci



8 P. Burkhardt-Guim

flow g̃(t) for g by a family of diffeomorphisms, we find that R(g̃(t)) ≥ κ for all t ∈ (0, T ], so
(3) ⇒ (2). It is clear that (2) ⇒ (1) for any β < 1/2. In particular, we have shown that
(1)⇒ (3)⇒ (2)⇒ (1), which proves Theorem 4.1.

Observe that in our argument to show that (3)⇒(2) it was only necessary to haveR(gi(t))≥κi
where κi → κ, since by smooth convergence of the time slices we would then have R(g(t)) ≥ κi
for all i sufficiently large, and hence R(g(t)) ≥ κ. In particular, Theorems 4.1 and 3.9 imply
that it is sufficient to require that the approximating metrics gi be only C0 with R(gi) ≥ κi in
the sense of Definition 3.4. In particular, we have the following “continuity property” for global
lower bounds in the sense of Definition 3.4 (cf. [3, Theorem 1.7]):

Theorem 4.3. Let g be a C0 metric on a closed manifold M which admits a uniform approxi-
mation by C0 metrics gi such that there is some β < 1/2 so that gi has scalar curvature bounded
below by κi in the β-weak sense everywhere on M , where κi is some sequence of numbers such
that κi −−−→

i→∞
κ for some number κ. Then g has scalar curvature bounded below by κ in the

β-weak sense. In particular, any regularizing Ricci flow (g̃(t))t∈(0,T ] for g satisfies R(g̃(t)) ≥ κ
for all t ∈ (0, T ], so g admits a uniform approximation by smooth metrics with scalar curvature
bounded below by κ.

Theorem 1.2 follows from Theorem 4.3 in the case where the gi are C2. We remark that
Theorem 1.2 may also be proved directly by using the Ricci–DeTurck flow as in (3) ⇒ (2) in
the proof of Theorem 4.1, using Proposition 2.1 or [11, Theorem 1.1]. By setting κi = −εi,
Theorem 1.2 answers in the affirmative the following question, posed by Gromov in [5]:

Question 4.4 ([5, p. 1119]). Let g be a continuous Riemannian metric on a closed manifold M
which admits a C0-approximation by smooth Riemannian metrics gi with R(gi) ≥ −εi −−−→

i→∞
0.

Does M admit a smooth metric of nonnegative scalar curvature?

Moreover, Theorem 1.2 implies that g admits a uniform approximation by smooth metrics
with nonnegative scalar curvature.

In light of the scalar torus rigidity theorem, which says that any Riemannian manifold with
nonnegative scalar curvature that is diffeomorphic to the torus must be isometric to the flat
torus (see [6, 10]), it is natural to ask whether Definition 3.4 satisfies an analogous rigidity
result for C0 metrics on the torus. If g is a C0 metric on the torus with nonnegative scalar
curvature in the β-weak sense, for some value of β < 1/2, and (g̃t, χt) is a regularizing Ricci
flow for g, then Theorem 3.9 implies that R(g̃(t)) ≥ 0 for all t > 0, and hence the usual scalar
torus rigidity theorem implies that g̃(t) is flat for all t > 0. In particular, the Ricci flow equation

implies that g̃(t) ≡ g̃ for some stationary smooth flat metric g̃. Then (χt)g̃
C0

−−→
t→0

g implies that g̃

is equivalent to g in the Gromov–Hausdorff sense. We have shown:

Corollary 4.5. Suppose g is a C0 metric on the torus T, and that there is some β ∈ (0, 1/2)
such that g has nonnegative scalar curvature in the β-weak sense everywhere. Then (T, g) is
isometric as a metric space to the standard flat metric on T.

Corollary 4.5 and Theorem 1.2 together imply Corollary 1.3.

Remark 4.6. Corollary 4.5 is in fact the optimal result, i.e., it is not possible to show that there
is a Riemannian isometry between g and the standard flat metric. In the case where g1 and g2

are smooth metrics, a metric space isometry is automatically a smooth Riemannian isometry.
However, there exist examples of C0 isometries between C0 metrics which are not C1. Moreover,
by Remark 3.3, the regularizing Ricci flow is invariant under C0 isometry, so it is not possible
to use regularizing Ricci flow to distinguish Riemannian isometries from isometries which are
merely metric space isometries.
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5 Relation to some notions of positive scalar curvature

We will now discuss the relationship between Definition 3.4 and some other possible definitions
of lower scalar curvature bounds for C0 metrics, both in the global and local setting. Throughout
we take M to be a closed manifold. We first define the following classes of C0 metrics on M ,
each of which is a class of C0 metrics that have scalar curvature globally bounded below by
a constant κ in some reasonable generalized sense:

C0
β(M,κ) :=

{
g ∈ C0(M) : R(g) ≥ κ in the β-weak sense

}
,

C0
met(M,κ) :=

{
g ∈ C0(M) : there exists gi ∈ C2 with R(gi) ≥ κ and gi

C0

−−−→
i→∞

g
}
,

C0
Rf(M,κ) :=

{
g ∈ C0(M) : ∃ (g̃(t))t∈(0,T ] a regularizing Ricci flow for g

with R(g̃(t)) ≥ κ∀ t ∈ (0, T ]
}
,

C0
G(M,κ) :=

{
c ∈ C0(M) : R(g) ≥ κ in the sense of Gromov [5]

}
.

It is natural to study C0
Rf(M,κ) in light of [1]. A metric g is in C0

G(M, 0) if essentially it does
not contain a cube with strictly mean convex faces, such that the dihedral angles are acute, or
more generally, it is in C0

G(M,κ) if the product metric of its product with an appropriate space
form Sκ is in C0

G(M × S−κ, 0); see [5, p. 1119]. This is a natural definition because, if such
a cube were to exist in a manifold with (classical) nonnegative scalar curvature, then, as in [5,
pp. 1144–1145], one could glue together 2n copies of the cube and obtain a non-flat torus of
nonnegative scalar curvature, contradicting the scalar torus rigidity theorem ([10, Corollary 2]
and [6, Corollary A]).

By Theorem 4.1 we have that for any β < 1/2, C0
β(M,κ) = C0

met(M,κ) = C0
Rf(M,κ).

The Ricci flow proof of Theorem 1.1 suggests a relationship between C0
β(M,κ) = C0

Rf(M,κ)

and C0
G(M,κ). We have that C0

met(M,κ) ⊂ C0
G(M,κ), since C0

G(M,κ) contains all C2 metrics g
with R(g) ≥ κ and is closed in C0. Thus, C0

Rf(M,κ) ⊂ C0
G(M,κ). One key question is whether,

if a C0 metric on a closed manifold has scalar curvature bounded below in the sense of [5], it
necessarily has scalar curvature bounded below under the Ricci flow:

Question 5.1. Suppose that M is closed. Is C0
G(M,κ) ⊂ C0

Rf(M,κ)?

If so, then this would imply that all C0 notions of a global lower scalar curvature bound that
we have mentioned would agree.

We remark that, aside from the classes of C0 metrics listed above, Lee and LeFloch [9]
have introduced a notion of positive distributional scalar curvature for metrics in C0 ∩W 1,n

loc ,
which they have used to prove a version of the Positive Mass Theorem. In this paper we work
with C0 metrics without any assumptions regarding their distributional derivatives, but in the
case of metrics in C0 ∩W 1,n

loc , it is an open question whether the definition in [9] is equivalent to
Definition 3.4.

We now discuss some open questions in the pointwise setting. One feature of Gromov’s
definition is that it may be localized around a point x ∈ M , by requiring only that there exist
a neighborhood of x such that no cube within the neighborhood that contains x has strictly
mean convex faces and acute dihedral angles; see [5, p. 1144]. In light of this, for x ∈ M
define C0

G(x, κ) to be the space of germs of C0 metrics on M at x that have scalar curvature
bounded below by κ at x in the sense of [5].

Define C0
β(x, κ) to be the space of germs of C0 metrics on M at x that have scalar curvature

bounded below by κ at x in the sense of Definition 3.4. By Theorem 3.9, this is a reasonable of
localization of C0

Rf(M,κ), as was intended.

Question 5.2. Let M be a closed manifold and x ∈M . Do we have C0
G(x, κ) = C0

β(x, κ)?
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Remark 5.3. In contrast with the case of global lower bounds, the results in this paper do not
imply that C0

β(x, κ) ⊂ C0
G(x, κ).

Theorem 3.7 says that the perturbation of a metric by greater than second order does not
affect β-weak lower bounds on the scalar curvature. Thus, it is natural to ask whether one can
characterize, up to higher order perturbation, those metrics, on Rn, say, that have nonnegative
scalar curvature in the sense of Definition 3.4:

Question 5.4. Suppose g = gijdx
i⊗dxj is a metric on a neighborhood of the origin in Rn, and

that we may write

gij(x) = δij + r2Gij

(x
r

)
+O

(
|x|2+η

)
,

where the Gij are functions on Sn−1 ⊂ Rn satisfying xixjGij(x) = 0. Is there an explicit
characterization of metrics of this form that have nonnegative scalar curvature at the origin, in
the sense of Definition 3.4?
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