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Abstract. The cyclic sieving phenomenon of Reiner, Stanton, and White says that we can
often count the fixed points of elements of a cyclic group acting on a combinatorial set by
plugging roots of unity into a polynomial related to this set. One of the most impressive
instances of the cyclic sieving phenomenon is a theorem of Rhoades asserting that the set of
plane partitions in a rectangular box under the action of promotion exhibits cyclic sieving.
In Rhoades’s result the sieving polynomial is the size generating function for these plane
partitions, which has a well-known product formula due to MacMahon. We extend Rhoades’s
result by also considering symmetries of plane partitions: specifically, complementation and
transposition. The relevant polynomial here is the size generating function for symmetric
plane partitions, whose product formula was conjectured by MacMahon and proved by
Andrews and Macdonald. Finally, we explain how these symmetry results also apply to the
rowmotion operator on plane partitions, which is closely related to promotion.
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1 Introduction and statement of results

1.1 Plane partitions

An a × b plane partition of height m is an a × b array π = (πi,j)1≤i≤a,
1≤j≤b

of nonnegative integers

πi,j ∈ N which is weakly decreasing in rows and columns (i.e., πi,j ≥ πi+1,j and πi,j ≥ πi,j+1 for
all i, j) and for which the largest entry is less than or equal to m (i.e., π1,1 ≤ m). We denote
the set of such plane partitions by PPm(a× b). For a plane partition π ∈ PPm(a× b), we define
its size to be |π| :=

∑
1≤i≤a,
1≤j≤b

πi,j .

MacMahon’s celebrated product formula [53, Section 495] for the size generating function for
a× b plane partitions of height m is:

Mac(a, b,m; q) :=
∑

π∈PPm(a×b)

q|π| =
∏

1≤i≤a,
1≤j≤b

(
1− qi+j+m−1

)(
1− qi+j−1

) .

See [82, Theorem 7.21.7] for a modern presentation of this result. Note Mac(a, b,m; q) is (essen-
tially) a principal specialization of a Schur polynomial sλ(x1, x2, . . . , xa+b):

Mac(a, b,m; q) = q−κ(ma)sma

(
1, q, q2, . . . , qa+b−1

)
,

where ma is the a×m rectangle shape, and κ(λ) := 0λ1 + 1λ2 + 2λ3 + · · · . The Schur polyno-
mials sλ occur in many contexts, but of particular relevance is the fact that they are characters
of general linear group representations.
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1.2 Promotion

Promotion is a certain invertible operator acting on the set of these plane partitions. It can be
defined as a composition of piecewise-linear involutions, as follows. We define the piecewise-linear
toggle τi,j : PPm(a× b)→ PPm(a× b) for 1 ≤ i ≤ a, 1 ≤ j ≤ b by

(τi,jπ)k,l :=

{
πk,l if (k, l) 6= (i, j),

min(πi,j−1, πi−1,j) + max(πi+1,j , πi,j+1)− πi,j if (k, l) = (i, j),

with the convention that π0,j := πi,0 := m and πa+1,j := πi,b+1 := 0. The τi,j are involutions.
Also, toggles τi,j and τi′,j′ commute unless (i, j) and (i′, j′) are directly adjacent, where by
“directly adjacent” we mean that |i− i′|+ |j − j′| = 1.

Then for −a + 1 ≤ k ≤ b − 1 we define Fk :=
∏

1≤i≤a,
1≤j≤b,
j−i=k

τi,j to be the composition of all the

toggles along the “kth diagonal” of our array (note that all these toggles commute).

Finally, we define promotion Pro: PPm(a × b) → PPm(a × b) as the composition of these
diagonal toggles Fk from left to right:

Pro := Fb−1 · Fb−2 · · · F−a+2 · F−a+1.

Example 1.1. Suppose a := 2, b := 2, and m := 4. We can compute an application of promotion
on a plane partition π ∈ PP4(2× 2) as follows:

π = 2 2

1 0

τ2,1−−→ 2 2

1 0

τ2,2−−→ 2 2

1 1

τ1,1−−→ 4 2

1 1

τ1,2−−→ 4 3

1 1
= Pro(π).

This description of promotion in terms of piecewise-linear involutions goes back to Berenstein
and Kirillov [42] and Berenstein and Zelevinsky [8], building on work of Bender and Knuth [7]
and Gansner [27]. More recently, interest in these piecewise-linear toggles has been rekindled in
connection with another related operator called rowmotion (see, e.g., [16] or the survey [67]).
We will discuss rowmotion later.

It is more common, following the seminal work of Schützenberger [73, 74, 75] (see also
Haiman [34]), to consider promotion as an operator on semistandard Young tableaux defined in
terms of “jeu de taquin” sliding moves. But in fact, via a simple change of coordinates using
Gelfand–Tsetlin patterns, promotion of plane partitions in PPm(a× b) as we have just defined
it exactly corresponds to the usual promotion of semistandard tableaux of shape a × m with
entries in the set {1, . . . , a+ b} (see Appendix A for the details of this correspondence).

1.3 The sieving phenomenon

The sieving phenomenon of Reiner, Stanton, and White [61] is, loosely speaking, the philosophy
that we can often count fixed points for a nice group action on a set of combinatorial objects
by plugging roots of unity into a polynomial related to this set. Initially the philosophy was
considered only for cyclic group actions, and in this context it is usually called the cyclic sieving
phenomenon; but there has also been interest in broadening the philosophy to include other
groups as well [6, 60]. In fact, as we explain below, the sieving phenomenon grew out of
Stembridge’s “q = −1” phenomenon, which is basically the case where the group has order two.

Sieving phenomena involving polynomials which have simple product formulas in terms of
ratios of q-numbers (like the MacMahon formula) are especially valuable, because these imply
that every symmetry class has a product formula.

One of the most impressive such examples of the cyclic sieving phenomenon is:
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Theorem 1.2 ([63, Theorem 1.4], [79, Theorem 1.3]). For any k ∈ Z, we have

#
{
π ∈ PPm(a× b) : Prok(π) = π

}
= Mac

(
a, b,m; q 7→ ζk

)
,

where ζ := e2πi/(a+b) is a primitive (a+ b)th root of unity.

Theorem 1.2 says that promotion acting on plane partitions has a very regular orbit structure.
For instance, note that one consequence of Theorem 1.2 is that Pro acting on PPm(a × b) has
order dividing a + b. But, as mentioned, Theorem 1.2 implies much more than this: it also
means that every symmetry class has a product formula.

Theorem 1.2 was first proved by Rhoades [63]. To prove this theorem he used Kazhdan–
Lusztig theory and the related theory of quantum groups. In particular, he employed the dual
canonical basis for representations of the general linear group [41, 49]. More recently, Shen and
Weng [79] gave a different proof of Theorem 1.2. Their approach was from the perspective of
cluster algebras and the “cluster duality” conjecture of Fock and Goncharov [18]. Specifically,
their proof employed the Gross–Hacking–Keel–Kontsevich [33] canonical basis (or “theta basis”)
for cluster algebras, in the particular case of the coordinate ring of the Grassmannian.

In either case, the proof of Theorem 1.2 followed the “linear algebraic” paradigm. This
means that the desired equality is established by computing the trace of a linear operator on a
vector space in two different bases. The first basis should be indexed by the combinatorial set in
question, and the linear operator should permute this basis according to the cyclic action, so that
its trace computes the number of fixed points of the action. The second basis is an eigenbasis
where we can compute trace by considering eigenvalues. See, e.g., [62] or [70, Section 4].

In both the Rhoades [63] and Shen–Weng [79] proofs the vector space in question actually
carries more structure: it is a GL(a+ b) representation. And in both proofs the linear operator
corresponding to promotion is the action of a particular lift to the general linear group of the long
cycle (a.k.a. standard Coxeter element) c ∈ Sa+b in the symmetric group. Geometrically, this
map is the twisted cyclic shift χ ∈ GL(a+ b) acting on the Grassmannian Gr(a, a+ b).

1.4 Symmetries of plane partitions

In the present paper, we extend Theorem 1.2 by considering symmetries of plane partitions. The
study of plane partitions with symmetry goes back to MacMahon [52], but really took off in the
1970s and 80s: see for instance the seminal paper of Stanley [81] which identified 10 symmetry
classes of plane partitions, and see [44] for a modern update to Stanley’s paper. Here we will be
concerned exclusively with the involutive symmetries of plane partitions.

The first symmetry we consider is complementation Co: PPm(a× b)→ PPm(a× b), which is
defined by Co(π)i,j := m−πa+1−i,b+1−j . A plane partition π ∈ PPm(a× b) can be viewed as the
3-dimensional stack of cubes inside of an a× b×m rectangular box which has πi,j cubes stacked
at position (i, j), in which case complementation is set-theoretic complementation inside this
box.

Plane partitions π ∈ PPm(a × b) with Co(π) = π are called self-complementary. Stan-
ley [81] was the first to enumerate self-complementary plane partitions. The enumeration of self-
complementary plane partitions is one of the prototypical examples of Stembridge’s “q = −1”
phenomenon [85, 87], the precursor to the cyclic sieving phenomenon. Namely:

Theorem 1.3 ([86, Theorem 1.1], [85, Theorem 4.1], [45, Theorem 3.1]). We have

#
{
π ∈ PPm(a× b) : Co(π) = π

}
= Mac(a, b,m; q 7→ −1).

Stembridge [85] (and, independently, Kuperberg [45]) gave a “linear algebraic” proof of Theo-
rem 1.3, computing the trace of a linear operator in two ways. The linear operator correspond-
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ing to complementation is the action of a particular lift w0 ∈ GL(a + b) of the longest ele-
ment w0 ∈ Sa+b in the symmetric group. Geometrically, this map is the twisted reflection on
the Grassmannian.

Complementation and promotion together generate a dihedral group: Co ·Pro = Pro−1 ·Co.
(In the context of tableaux, complementation is more often referred to as the “Schützenberger
involution” or “evacuation”; see for instance Stanley’s survey paper [83].) This means that
Co · Prok is conjugate to Co · Proj whenever k and j have the same parity. So if we want to
count the number of fixed points of Co ·Prok, there are only two cases to consider: k even (which
is addressed by Theorem 1.3 above), and k odd.

Recently there has been interest in sieving for dihedral group actions [60, 88], where fixed
points of both the rotations and reflections are counted by plugging roots of unity into a polyno-
mial. And in fact a “dihedral sieving” result for the action of 〈Pro,Co〉 on plane partitions has
already been considered by Abuzzahab–Korson–Li–Meyer [1] and obtained by Rhoades [63]:1

Theorem 1.4 ([1, Theorem 1.2 and Conjecture 1.3], [63, Theorem 7.6]). For any even k ∈ Z,
we have #

{
π ∈ PPm(a× b) : Co ·Prok(π) = π

}
= Mac(a, b,m; q 7→ −1). For any odd k ∈ Z, we

have

#

{
π ∈ PPm(a× b) :

Co · Prok(π) = π

}
=


Mac(a, b,m; q 7→ −1) if a or b is even,

(−1)κ(ma)sma(

a+ b− 1 values︷ ︸︸ ︷
1,−1, 1, . . . ,−1, 1, 1) if a and b are odd.

We note that there are product formulas for the Schur function evaluation appearing in
Theorem 1.4: see [1, Lemma 8.2]. However, Theorem 1.4 is certainly not quite as clean a result
as Theorem 1.2. By considering additional plane partition symmetries, we will actually discover
fixed point enumerations which are as pleasant as Theorem 1.2.

The next symmetry we consider is transposition, or in other words, reflection across the main
diagonal. In order for transposition to act on a fixed set of plane partitions, we need a = b.
So let n := a = b. Then Tp: PPm(n × n) → PPm(n × n) is defined by Tp(π)i,j := πj,i. Plane
partitions π ∈ PPm(n × n) with Tp(π) = π are usually just called symmetric plane partitions.
In 1899 MacMahon conjectured [52], and in 1978 Andrews [4] proved, the following product
formula for the size generating function for symmetric plane partitions:

SymMac(n,m; q) :=
∑

π∈PPm(n×n),
Tp(π)=π

q|π| =
∏

1≤i<j≤n

(
1− q2(i+j+m−1)

)(
1− q2(i+j−1)

) · ∏
1≤i≤n

(
1− q2i+m−1

)(
1− q2i−1

) .

Macdonald [51, Example 17, p. 52] also proved MacMahon’s conjecture independently and es-
sentially simultaneously. See also [29] and [58] for other proofs of MacMahon’s conjecture.

Transposition and complementation commute, and so together generate a group isomorphic
to Z/2Z × Z/2Z. We will refer to their composition Tp · Co as transpose-complementation.
Plane partitions π ∈ PPm(n × n) with Tp · Co(π) = π are called transpose-complementary.
Proctor [59] was the first to count transpose-complementary plane partitions. Later, Stem-
bridge observed [86], and Kuperberg [45] explained, the following q = −1 phenomenon for the
enumeration of transpose-complementary plane partitions:

Theorem 1.5 ([86, Theorem 1.2], [45, Theorem 5.1]). We have

#
{
π ∈ PPm(n× n) : Tp · Co(π) = π

}
= SymMac(n,m; q 7→ −1).

1We stated this result in a somewhat more compact way than it is stated in [63, Theorem 7.6].
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Kuperberg [45] gave a linear algebraic proof of Theorem 1.5 where transposition corresponds
to the outer automorphism of GL(2n) induced by the symmetry of the Dynkin diagram of
type A2n−1. Geometrically, the outer automorphism is the symplectic orthogonal complement
on the Grassmannian.

There is another q-analog for the symmetric plane partitions. For π ∈ PPm(n × n), set
|π|′ :=

∑
1≤i≤j≤n πi,j , which roughly speaking is the ‘size of π/Tp’. Bender and Knuth [7]

conjectured that:

SymMac′(n,m; q) :=
∑

π∈PPm(n×n),
Tp(π)=π

q|π|
′

=
∏

1≤i≤j≤n

(
1− qi+j+m−1

)(
1− qi+j−1

) .

In [3], Andrews showed that in fact the MacMahon and Bender–Knuth conjectures are equiva-
lent, and in doing so proved the Bender–Knuth conjecture.

This second q-analog of symmetric plane partitions also has an associated q = −1 re-
sult, this time enumerating symmetric self-complementary plane partitions. Symmetric self-
complementary plane partitions were again first enumerated by Proctor [57]. Later, Stem-
bridge [85, 86] interpreted this enumeration as a q = −1 result:

Theorem 1.6 ([85, Theorem 4.1, Example 4.3], [86, Theorem 1.1]). We have

#
{
π ∈ PPm(n× n) : Tp(π) = π,Co(π) = π

}
= SymMac′(n,m; q 7→ −1).

Stembridge [85] gave a linear algebraic proof of Theorem 1.6, but this time using represen-
tations of the special orthogonal group SO(2n + 1) (or at least its Lie algebra) instead of the
general linear group.

1.5 New sieving results

To summarize the above, the interaction of promotion and complementation of plane partitions,
and also the interaction of transposition and complementation, are understood. The main
undertaking of this paper is to understand how promotion and transposition, and promotion
and transpose-complementation, interact.

Transposition and promotion together generate a dihedral group: Tp · Pro = Pro−1 · Tp.
Our first main result is the following “dihedral sieving”-style result concerning fixed points for
elements of 〈Pro,Tp〉:

Theorem 1.7. For any k ∈ Z, we have

#
{
π ∈ PPm(n× n) : Tp · Prok(π) = π

}
= SymMac

(
n,m; q 7→ (−1)k

)
.

To prove Theorem 1.7, we note that the evaluation SymMac(n,m; q 7→ −1) is nonzero if and
only if m = 2M is even, and in this case is equal to

SymMac(n, 2M ; q 7→ −1) =
∏

1≤i≤j≤n−1

i+ j + 2M

i+ j
.

Using algebraic techniques, Proctor [59] demonstrated that a couple of different combinatorial
sets of plane partition flavor are enumerated by

∏
1≤i≤j≤n−1

i+j+2M
i+j . We will establish that the

set
{
π ∈ PP2M (n× n) : Tp · Pro(π) = π

}
is in bijection with one of the sets Proctor showed is

counted by
∏

1≤i≤j≤n−1
i+j+2M
i+j .

Transpose-complementation and promotion commute. Hence the group they generate is
a product of two cyclic groups: 〈Pro,Tp · Co〉 ' Z/2nZ × Z/2Z. Enumerating fixed points for
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elements of a cyclic group times Z/2Z is a bit more interesting than for elements of a dihedral
group because there are more conjugacy classes. Barcelo, Reiner, and Stanton [6] considered an
extension of cyclic sieving to products of two cyclic groups, which they called “bicyclic sieving”.
Our second main result is the following “bicyclic sieving”-style result concerning fixed points for
elements of 〈Pro,Tp · Co〉:

Theorem 1.8. For any k ∈ Z, we have

#
{
π ∈ PPm(n× n) : (Tp · Co) · Pron+k(π) = π

}
= SymMac

(
n,m; q 7→ ζk

)
,

where ζ := eπi/n is a primitive (2n)th root of unity.

The proof of Theorem 1.8 is more involved than the proof of Theorem 1.7. We use a linear
algebraic approach, extending the work of Rhoades [63]. Basically, we show that w0 ∈ GL(2n)
(corresponding to complementation) and the outer automorphism of GL(2n) (corresponding
to transposition) behave in the appropriate way on the dual canonical basis of the relevant
GL(2n) representation. In fact, this has essentially already been done: Berenstein–Zelevinsky [8]
and Stembridge [87] showed that w0 behaves as evacuation on the dual canonical basis of any
irreducible general linear group representation; and Berenstein–Zelevinsky [8] also described the
effect of the outer automorphism on the dual canonical basis. (General results of Lusztig [50]
imply that these automorphisms permute the canonical basis in some way.) We just have to
put all these results together and compute the trace of the appropriate composition of these
operators.

Theorems 1.2, 1.4, 1.7 and 1.8 together imply that for any element g ∈ 〈Pro,Co,Tp〉, the
number of plane partitions in PPm(n × n) fixed by g is given by some kind of evaluation at
a root of unity of a polynomial which has a nice product formula representation as a rational
expression. However, it is unclear how to package all of these results together into one theorem.

Example 1.9. In this example we consider the case m = 1.
For a subset I ⊆ {1, 2, . . . , a + b} and a permutation σ ∈ Sa+b in the symmetric group on

a+ b letters, we write σ(I) := {σ(i) : i ∈ I}. We also use the notation −I := {1, 2, . . . , a+ b} \ I.
For us, two significant elements of Sa+b are the long cycle c :=

(
1 2 ... a+b−1 a+b
2 3 ... a+b 1

)
and the longest

element w0 :=
(

1 2 ... a+b
a+b a+b−1 ... 1

)
.

We define a bijection Ψ: PP1(a× b) ∼−→ {I ⊆ {1, . . . , a+ b} of size a} in Appendix A. Under
this bijection we have Ψ(Pro(π)) = c(Ψ(π)), Ψ(Co(π)) = w0(Ψ(π)), and (in the case a = b = n)
Ψ(Tp(π)) = −w0(Ψ(π)) for all π ∈ PP1(a× b). Hence, when m = 1, the results described above
reduce to formulas counting the fixed points of rotation, reversal, and complementation acting
on subsets.

For instance, Theorem 1.2 says that

#
{
I ⊆ {1, . . . , a+ b} of size a : ck(I) = I

}
= Mac

(
a, b, 1; q 7→ ζk

)
,

where ζ := e2πi/(a+b) is a primitive (a + b)th root of unity, and Mac(a, b, 1; q) is the usual
q-binomial coefficient :

Mac(a, b, 1; q) =

[
a+ b

a

]
q

:= q−a(a+1)/2 ·
∑

I⊆{1,...,a+b},
#I=a

q
∑

i∈I i =
∏

1≤i≤a

(
1− qa+b+1−i)(

1− qi
) .

This is one of the most prototypical cyclic sieving results, going back to the original Reiner–
Stanton–White paper [61, Theorem 1.1(b)]. Theorem 1.4 offers a dihedral extension of this
prototypical cyclic sieving result. This dihedral extension, which combines rotation of subsets
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with reversal of subsets, is less well known, but is discussed for instance in [60, Proposition 4.1]
(at least for a+ b odd).

Now let us assume a = b = n so that we can also consider what Theorems 1.7 and 1.8 say
about the case m = 1. Actually, Theorem 1.7 is not so interesting in this case because, as
mentioned, SymMac(n,m; q 7→ −1) = 0 when m is odd, and moreover it is clear that there are
no I with −w0(I) = c(I) since 1 ∈ c(I) ⇐⇒ n ∈ I while 1 ∈ −w0(I) ⇐⇒ n /∈ I. But
Theorem 1.8 is quite interesting in this case. It says that

#
{
I ⊆ {1, . . . , 2n} of size n : cn+k(I) = −I

}
= SymMac

(
n, 1; q 7→ ζk

)
,

where ζ := eπi/n is a primitive (2n)th root of unity, and SymMac(n, 1; q) has the simple form

SymMac(n, 1; q) =
∑

I⊆{1,3,5,...,2n−1}

q
∑

i∈I i =
∏

1≤i≤n

(
1 + q2i−1

)
.

For example, taking n = 2, we have

SymMac(2, 1; q) = 1 + q + q3 + q4.

The relevant evaluations are

SymMac(2, 1; q 7→ 1) = 4, SymMac(2, 1; q 7→ ±i) = 2, SymMac(2, 1; q 7→ −1) = 0.

In agreement with these evaluations: the I ⊆ {1, 2, 3, 4} of size 2 with c2(I) = −I are {1, 2},
{2, 3}, {3, 4}, and {1, 4}; while the I for which c(I) = −I (and also the ones with c3(I) = −I)
are {1, 3} and {2, 4}; and there are no I with I = −I.

It is worth contrasting the previous paragraph with a known “type B” version of cyclic sieving
for subsets under rotation. For a subset I ⊆ {1, 2, . . . , n}, we define c̃(I) := c(I)∆{1}, where
here c :=

(
1 2 ... n−1 n
2 3 ... n 1

)
∈ Sn, and ∆ denotes symmetric difference. This c̃ action might be

called twisted rotation, and its order is 2n. We have

#
{
I ⊆ {1, . . . , n} : c̃ k(I) = I

}
= SymMac′

(
n, 1; q 7→ ζk

)
,

where ζ := eπi/n is a primitive (2n)th root of unity, and SymMac′(n, 1; q) has the simple form:

SymMac′(n, 1; q) =
∑

I⊆{1,2,...,n}

q
∑

i∈I i =
∏

1≤i≤n

(
1 + qi

)
.

This result also appears in the original Reiner–Stanton–White paper [61, Corollary 8.5], and
is further discussed in [2, Section 6.1]. Work of Rush and Shi [69] implies that subsets under

twisted rotation are in equivariant bijection with PP1( n) under Row (these notions are defined
in Section 5); hence, this result can be seen as the case m = 1 of Conjecture 5.1 as well. While
evidently quite similar, we know of no direct connection between counting subsets fixed by powers
of twisted rotation, and counting subsets whose rotations are equal to their complements.

Remark 1.10. Some of the root of unity evaluations of polynomials appearing in Rhoades’s
paper [63] had prior combinatorial interpretations, for instance in terms of border-strip tableaux
(see [47]). However, we are not aware of any prior combinatorial interpretations of the evaluations
appearing in Theorems 1.7 and 1.8.
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1.6 Rowmotion

In the last sections of the paper we consider another invertible operator on plane partitions
called rowmotion, Row: PPm(a × b) → PPm(a × b). Rowmotion and promotion are closely
related. Rowmotion is, like promotion, a composition of all of the piecewise-linear toggles acting
on PPm(a×b). However, whereas promotion is a composition of these toggles “from left to right”,
rowmotion is a composition “from top to bottom”. Striker and Williams [89] explained that the
actions of promotion and rowmotion are conjugate; in particular, there is some composition D
of toggles so that D · Row ·D−1 = Pro. We show that this conjugating map D behaves nicely
with respect to complementation and transposition. We conclude that versions of Theorems 1.2,
1.4, 1.7 and 1.8 hold for Row (but with slight differences since, e.g., Row commutes with Tp,
while (Tp · Co) · Row = Row−1 · (Tp · Co), et cetera). In particular, for any g ∈ 〈Row,Co,Tp〉,
we can again count the number of plane partitions in PPm(n × n) fixed by g by some kind of
sieving phenomenon evaluation.

One reason to consider rowmotion instead of promotion is because rowmotion makes sense
acting on any partially ordered set (not all posets have a notion of left and right, but they all
have a notion of top and bottom). Our original motivation for studying the way symmetries
interact with rowmotion was a series of cyclic sieving conjectures we made in [35] concerning
rowmotion acting on the P -partitions of other posets P besides the rectangle poset. Many of
the posets with conjectured cyclic sieving for rowmotion are “triangular” posets which can be
obtained from the rectangle by enforcing certain symmetries. More precisely, in the final section
we show, following Grinberg and Roby [30], that the P -partitions for these various triangular
posets P are in rowmotion-equivariant bijection with the set of plane partitions in PPm(n× n)
fixed by various subgroups of 〈Row,Tp〉. While our results concerning plane partitions fixed
by elements of 〈Row,Tp〉 do not directly imply anything about rowmotion for these triangular
posets, they do lend credence to the idea that there are nice sieving phenomenon formulas
counting plane partitions fixed by many subgroups of 〈Row,Tp〉.

2 Promotion and transposition

In this section we prove Theorem 1.7. First we recall a combinatorial interpretation of the quan-
tity

∏
1≤i≤j≤n−1

i+j+2M
i+j which appeared in the aforementioned paper of Proctor [59]. Consider

a triangular array π = (πi,j)1≤i<j≤n of nonnegative integers πi,j ∈ N like so (we depict the
case n = 4):

π1,2 π1,3 π1,4

π2,3 π2,4

π3,4

Suppose further that π satisfies the following conditions:

� π is weakly decreasing in rows and columns (i.e., πi,j ≥ πi+1,j , πi,j ≥ πi,j+1 for all i, j),

� the largest entry is less than or equal to m (i.e., π1,2 ≤ m),

� m = 2M is even, and moreover every entry along the first diagonal is even (i.e., πi,i+1 is
even for all i).

Denote the set of such triangular arrays π by CY(n, 2M). Proctor [59, Theorem 1, formula ‘CYI’]
showed that #CY(n, 2M) =

∏
1≤i≤j≤n−1

i+j+2M
i+j (and see also the addendum of that paper for

other references for this formula).

With this result in hand we are now ready to prove Theorem 1.7.
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Proof of Theorem 1.7. Since 〈Pro,Tp〉 is a dihedral group, we have that Tp·Prok is conjugate
to Tp·Proj as long as k and j have the same parity, so there are only two cases of the theorem we
need to address: k = 0 and k = 1. The case k = 0 is clear from the definition of SymMac(n,m; q).
So now let us count plane partitions in PPm(n× n) fixed by Tp · Pro.

As mentioned in Section 1, we have

SymMac(n,m; q 7→ −1) =


∏

1≤i≤j≤n−1

i+ j + 2M

i+ j
if m = 2M is even,

0 otherwise.

We want to show that this quantity is also #
{
π ∈ PP2M (n× n) : Tp · Pro(π) = π

}
.

Recall the diagonal toggles Fk :=
∏

1≤i,j≤n,
j−i=k

τi,j for −n + 1 ≤ k ≤ n − 1 which make up

promotion. Let us also use the notation F− := F−1 · · · F−n+2 · F−n+1 and F+ := Fn−1 · · · F1, so
that Pro = F+ · F0 · F−. We claim that there is a bijection{

π ∈ PPm(n× n) : Tp · Pro(π) = π
} ∼−→ {

π ∈ PPm(n× n) : Tp(π) = π,F0(π) = π
}
,

π 7→ F−(π).

An example of this map in the case n = 3, m = 4 is

4 4 3

3 3 2

2 2 1

7→
4 4 3

4 3 2

3 2 1

The key point to showing this map is a bijection is that for all π ∈ PPm(n × n), and all
−n+ 1 ≤ k ≤ n− 1, Tp(Fi(π)) = F−i(Tp(π)); so that in particular Tp(F−(π)) = F−1

+ (Tp(π)).

First let us show that for π ∈ PPm(n×n) with Pro(π) = Tp(π), we have Tp(F−(π)) = F−(π)
and F0(F−(π)) = F−(π). Indeed, if F0 acts nontrivially on F−(π) then Pro = F+ · F0 · F− will
alter the main diagonal of π and so we cannot have Pro(π) = Tp(π). And if F0(F−(π)) = F−(π)
and Pro(π) = Tp(π), then F+(F−(π)) = F+(F0(F−(π)) = Pro(π) = Tp(π), which means that
F−(π) = F−1

+ (Tp(π)) = Tp(F−(π)).

Next let’s show that if π ∈ PPm(n×n) satisfies Tp(F−(π)) = F−(π) and F0(F−(π)) = F−(π),
then Pro(π) = Tp(π). The argument is basically the same. The assumptions imply that

Pro(π) = F+(F0(F−(π))) = F+(F−(π)) = F+(Tp(F−(π)))

= F+

(
F−1

+ (Tp(π))
)

= Tp(π),

as required.

So indeed the map π 7→ F−(π) is a bijection between the claimed sets. Thus we reduced the
problem to counting #{π ∈ PPm(n× n) : Tp(π) = π,F0(π) = π}.

Now for π ∈ PPm(n × n) with Tp(π) = π, we have that F0(π) = π if and only if we
have πi,i = 1

2(πi,i−1 + πi,i+1) for all 1 ≤ i ≤ n (where we recall the conventions that π0,j := m
and πi,n+1 := 0). Because π has integer entries, this can only happen if πi,i−1 and πi,i+1 have
the same parity for all 1 ≤ i ≤ n; since πn,n+1 = 0, this means we need all the πi,i+1 to be even,
including π0,1 = m. So if m is odd then #{π ∈ PPm(n× n) : Tp(π) = π,F0(π) = π} = 0. And
moreover, it follows from what we have just explained that if m = 2M is even then there is a
bijection from {π ∈ PPm(n× n) : Tp(π) = π,F0(π) = π} to CY(n, 2M) which takes the square
array (πi,j)1≤i,j≤n to the triangular array (πi,j)1≤i<j≤n of entries in the upper right corner.
Together with Proctor’s formula for #CY(n, 2M), this completes the proof. �
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3 Promotion and transpose-complementation

In this section we prove Theorem 1.8. We do this by extending Rhoades’s [63] approach to
cyclic sieving for tableaux using the dual canonical basis of GL(a + b) representations. But
actually, rather than hew closely to Rhoades’s presentation, we instead follow the presentation
of Lam [46]. Lam explained how the relevant GL(a + b) representation is the coordinate ring
of the Grassmannian Gr(a, a + b). We find this geometric perspective useful. Also, as hinted
at in Section 1, we owe a great debt to the papers of Stembridge [85, 87] and especially Kuper-
berg [45] for explaining how involutive symmetries of plane partitions can be realized as algebra
automorphisms on these coordinate rings.

In this section we work with semistandard tableaux rather than plane partitions. We recall
that the correspondence between plane partitions and tableaux of rectangular shape is explained
in Appendix A. For a partition λ we use SSYT(λ, k) to denote the set of semistandard Young
tableaux of shape λ with entries less than or equal to k. We will freely use the bijection
Ψ: PPm(a× b) ∼−→ SSYT(ma, a+ b) defined in the appendix. Via this bijection promotion Pro
and complementation Co are viewed as operators on SSYT(ma, a + b) and transposition Tp
is viewed as an operator on SSYT(mn, 2n). The behavior of these operators on tableaux is
explained in Proposition A.9.

3.1 Background on Grassmannian coordinate rings

Before we can prove Theorem 1.8 we have to review a bit about Grassmannians and the repre-
sentation theory arising from their study. We start with the Grassmannian.

The Grassmannian Gr(a, a+b) is the space of a-dimensional subspaces of the complex vector
space V = Ca+b. There is a very well-known system of coordinates on the Grassmannian called
the Plücker coordinates. Let U ∈ Gr(a, a + b) and choose an ordered basis v1, . . . , va ∈ Ca+b

of U ; let I = {i1, i2, . . . , ia} ⊆ {1, 2, . . . , a+ b} be a subset of size a; then the Plücker coordinate
∆I(U) is equal to the maximal minor of the (a + b) × a matrix with column vectors v1, . . . , va
given by selecting rows i1, . . . , ia. The Grassmannian is a projective variety and the map

U 7→ [∆I(U) : I ⊆ {1, . . . , a+ b} of size a]

is an embedding of Gr(a, a + b) into P(a+b
a )−1 known as the Plücker embedding. We use the

notation Ĝr(a, a+b) ⊆ C(a+b
a ) to denote the affine cone over Gr(a, a+b) in its Plücker embedding.

And we use R(a, a+ b) to denote the coordinate ring of Ĝr(a, a+ b). In other words, R(a, a+ b)
is the commutative ring

R(a, a+ b) = C[∆I : I ⊆ {1, . . . , a+ b} of size a]/〈Plücker relations〉,

where the Plücker relations are the well-known relations cutting out Gr(a, a + b) as a subset

of P(a+b
a )−1. Equivalently we may think of R(a, a + b) as the homogeneous coordinate ring of

Gr(a, a+ b).
See for instance [77, Chapter 1] for the basics concerning the coordinate ring of the Grass-

mannian. We use R(a, a+ b)m to denote the functions in R(a, a+ b) of homogeneous degree m.
For T ∈ SSYT(ma, a+ b) we set M(T ) := ∆I1∆I2 · · ·∆Im , where I1, I2, . . . , Im are the columns
of T . Note M(T ) belongs to R(a, a + b)m. The set {M(T ) : T ∈ SSYT(ma, a + b)} is the
standard monomial basis of R(a, a + b)m. It is a classical result, going back to Young, that
{M(T ) : T ∈ SSYT(ma, a+ b)} is indeed a linear basis of R(a, a+ b)m.

Now we review representations of the general linear group and canonical bases.
We will find the following notation for matrices useful: diag(x1, x2, . . . , xk) is the diagonal

k×k matrix with diagonal entries x1 to xk from upper-left to lower-right; antidiag(x1, x2, . . . , xk)
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is the anti-diagonal k × k matrix with anti-diagonal entries x1 to xk from upper-right to lower-

left; and of course Idk := diag(

k︷ ︸︸ ︷
1, 1, . . . , 1) is the k × k identity matrix. We also often write

matrices in block form.

The general linear group GL(a + b) is the group of invertible linear transformations acting
on V = Ca+b. We usually think of the elements of the general linear group as (a+ b)× (a+ b)
C-matrices with nonzero determinant, having implicitly chosen an ordered basis e1, e2, . . . , ea+b

of V . The special linear group SL(a+ b) ⊆ GL(a+ b) is the subgroup of matrices in GL(a+ b) of
determinant one. The Lie algebra corresponding to the Lie group SL(a+b) is the Lie algebra sla+b

of (a+ b)× (a+ b) C-matrices with trace zero, with Lie bracket given by the commutator. The
Lie algebra sla+b is simple.

Inside of GL(a + b) is the algebraic torus T of diagonal matrices diag(x1, . . . , xa+b) with∏a+b
i=1 xi 6= 0. The torus of SL(a+b) is the subgroup of those diagonal matrices with

∏a+b
i=1 xi = 1.

The symmetric group Sa+b on a+ b letters is the quotient of the normalizer in GL(a+ b) of T
by T . In other words, Sa+b is the Weyl group of GL(a + b). The symmetric group is also the
Weyl group of SL(a+b). Thus elements of the symmetric group can be lifted to the general linear
group in various ways; but conjugation by elements of the symmetric group gives a well-defined
action on the torus of GL(a+ b), and on the torus of SL(a+ b).

See for instance [25, Chapter 15] for the basics concerning the representation theory of
GL(a+ b). If V is a GL(a + b) representation, then a vector v ∈ V is said to be a weight
vector with weight α = (α1, . . . , αa+b) if every torus element diag(x1, x2, . . . , xa+b) ∈ GL(a+ b)
sends the vector v to xα1

1 · · ·x
αa+b

a+b · v. For any partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λa+b ≥ 0) with at
most a+ b parts we have an irreducible, finite-dimensional representation V (λ) of GL(a+ b) of
highest weight λ. Each of these GL(a+ b) representations V (λ) is also an irreducible SL(a+ b)
representation, and hence an irreducible sla+b representation. For 0 ≤ i ≤ a + b we define the

partition ωi := (

i︷ ︸︸ ︷
1, 1, . . . , 1,

a+b−i︷ ︸︸ ︷
0, . . . , 0). The V (ωi) for 0 < i < a + b are the fundamental repre-

sentations of sla+b. Because SL(a + b) is connected and simply connected, representations of
SL(a+ b) and sla+b are in exact correspondence.

Lusztig [49] and Kashiwara [41] constructed a canonical (or global) basis of the irreducible
Uq(sla+b)-module Vq(λ) (and their two constructions are known to give the same basis [32]). Here
Uq(sla+b) is the quantized universal enveloping algebra of sla+b, a deformation of the universal
enveloping algebra U(sla+b). By setting q 7→ 1 in their work, and by fixing a particular highest
weight vector v+ of V (λ), we have a canonical basis {G(T ) : T ∈ SSYT(λ, a+ b)} of V (λ). For
a tableau T ∈ SSYT(λ, a+b), the weight of T is wt(T ) := (α1, . . . , αa+b) where αi is the number
of i’s in T . The canonical basis vector G(T ) is a weight vector of V (λ) with weight wt(T ). We
use {H(T ) : T ∈ SSYT(λ, a+ b)} to denote the dual basis to {G(T ) : T ∈ SSYT(λ, a+ b)}; to be
clear, this is a basis of the dual space V (λ)∗. We refer to {H(T ) : T ∈ SSYT(λ, a + b)} as the
dual canonical basis of V (λ)∗.

We can view the Grassmannian as a quotient Gr(a, a + b) = Mat•(a + b, a)/GL(a), where
Mat•(a+ b, a) is the space of (a+ b)× a C-matrices of rank a, and GL(a) acts on Mat•(a+ b, a)
on the right in the obvious way. This space of matrices Mat•(a + b, a) caries an obvious left
action of GL(a+ b) which commutes with the right GL(a) action, and in this way we obtain an

action of GL(a + b) on Gr(a, a + b). Similarly, we can view Ĝr(a, a + b) \ {0} as the quotient

Ĝr(a, a + b) \ {0} = Mat•(a + b, a)/SL(a), and in this way we obtain an action of GL(a + b)

on Ĝr(a, a + b) \ {0} which is compatible with the action of GL(a + b) on Gr(a, a + b). We

extend this action to an action of GL(a + b) on all of Ĝr(a, a + b) by declaring g · 0 = 0 for all
g ∈ GL(a+ b). We then get an action of GL(a+ b) on R(a, a+ b) via algebra automorphisms by
inverting and pulling back: for g ∈ GL(a+ b) and f ∈ R(a, a+ b) we set (g · f)(U) := f

(
g−1U

)
for all U ∈ Ĝr(a, a + b). It is well known, for instance via the classical Borel–Weil theorem,
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that as GL(a+ b) representations we have R(a, a+ b)m ' V (mωa)
∗, where V (mωa)

∗ is the dual
of the irreducible representation V (mωa). (Recall that if ρ : G → GL(V ) is a representation of
a group G, then the dual representation ρ∗ : G→ GL(V ∗) is the representation where g ∈ G acts
on the dual space V ∗ by ρ(g−1)T , with the T superscript denoting transpose.) This means we
can consider the dual canonical basis {H(T ) : T ∈ SSYT(ma, a+ b)} as a basis of R(a, a+ b)m.

3.2 Grassmannian coordinate ring automophisms

We now define several algebra automorphisms of R(a, a + b). These automorphisms are at the
heart of our proof of Theorem 1.8: they will correspond to promotion, complementation, and
transposition of plane partitions.

Some of these automorphisms are (the actions of) elements of GL(a+ b). First we define the
twisted cyclic shift χ ∈ GL(a+ b):

χ :=


0 (−1)a−1

Ida+b−1 0

 ∈ GL(a+ b).

The matrix χ is a lift of the long cycle c :=
(

1 2 ... a+b−1 a+b
2 3 ... a+b 1

)
∈ Sa+b. Note that χ has order

a+ b acting on Ĝr(a, a+ b) because χa+b multiplies each vector in Ca+b by (−1)(a−1) and hence
each Plücker coordinate by (−1)a(a−1) = 1.

We next define the twisted reflection w0 ∈ GL(a+ b):

w0 := i(a−1) · antidiag(1, 1, . . . , 1) ∈ GL(a+ b).

We denote this element of GL(a+ b) by w0 because it is a particular lift of the longest element
w0 :=

(
1 2 ... a+b
a+b a+b−1 ... 1

)
∈ Sa+b in the symmetric group. Note that w0 is an involution acting

on Ĝr(a, a+ b) because w2
0 multiplies each vector in Ca+b by (−1)(a−1) and hence each Plücker

coordinate by (−1)a(a−1) = 1.

For the next several paragraphs we suppose that a = b = n. Let B be the following skew-
symmetric 2n× 2n matrix:

B := antidiag(1,−1, 1,−1, . . . ,−1) ∈ GL(2n).

Then B defines a symplectic form 〈·, ·〉B on V = C2n by 〈x, y〉B := xT ·B·y for all x, y ∈ C2n. This
symplectic form defines an outer automorphism φB of GL(2n) where a linear transformation is
sent by φB to the inverse of its transpose with respect to the identification of V and V ∗ induced
by 〈·, ·〉B. At the level of matrices we have

φB : GL(2n)→ GL(2n),

A 7→ B−1 ·
(
AT
)−1 ·B,

where the superscript T denotes usual matrix transposition. Clearly φB is an involution. And φB
restricts to an involutive outer automorphism φB : SL(2n)→ SL(2n) of the special linear group.

The symplectic group Sp(2n) ⊆ GL(2n) is the subgroup of GL(2n) consisting of those matrices
A ∈ GL(2n) with φB(A) = A. In fact Sp(2n) ⊆ SL(2n) (this can be seen by consideration of
Pfaffians). Inside of Sp(2n) we have the algebraic torus consisting of those diagonal matrices
D = diag(x1, x2, . . . , x2n) with xi = x−1

2n+1−i for all i. The analog of the symmetric group here is
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the hyperoctahedral group. The hyperoctahedral group (Z/2Z)oSn is the subset of the symmetric
group S2n consisting of those permutations σ ∈ S2n for which σ(i) = (2n+ 1)− σ((2n+ 1)− i)
for all 1 ≤ i ≤ 2n. The hyperoctahedral group is the Weyl group of Sp(2n). Thus, elements
of (Z/2Z) oSn act on the torus of Sp(2n) by conjugation.

The symplectic form 〈·, ·〉B also gives rise to the following automorphism (of projective alge-
braic varieties) on the middle-dimensional Grassmannian Gr(n, 2n):

φ̃B : Gr(n, 2n)→ Gr(n, 2n),

U 7→ U⊥,

where U⊥ is the orthogonal complement of the subspace U with respect to 〈·, ·〉B, that is,
U⊥ :=

{
x ∈ C2n : 〈x, y〉B = 0 for all y ∈ U

}
. Clearly φ̃B is an involution. We extend φ̃B to

an automorphism φ̃B : Ĝr(n, 2n) → Ĝr(n, 2n) (of affine algebraic varieties) in a unique way by

requiring that ∆{1,2,...,n}(U) = ∆{1,2,...,n}
(
φ̃B(U)

)
for all U ∈ Ĝr(n, 2n). By abuse of notation

we also use φ̃B to denote the induced algebra automorphism on the coordinate ring R(n, 2n) of

Ĝr(n, 2n) given by pulling back φ̃B. All of these φ̃B remain involutions.
The essential property connecting φ̃B and φB is that for any A ∈ GL(2n), we have for

all U ∈ Gr(n, 2n) that φ̃B(A · U) = φB(A) · φ̃B(U). This is easy to see from the fact that
〈Ax, φB(A)y〉B = 〈x, y〉B for all x, y ∈ C2n. Moreover, the amount that the action of a matrix

A ∈ GL(2n) scales ∆{1,2,...,n}(U) for U ∈ Ĝr(n, 2n) is given by the principal n × n minor
of A; a simple computation with block matrices shows that for A ∈ SL(2n) this principal
minor is the same for A and for φB(A). Hence for any A ∈ SL(2n), we in fact have that

φ̃B(A · U) = φB(A) · φ̃B(U) for all U ∈ Ĝr(n, 2n). That is to say, for any A ∈ SL(2n) we have
the following equality of automorphisms of the coordinate ring R(n, 2n): φ̃B ·A = φB(A) · φ̃B.

3.3 Behavior of coordinate ring automorphisms on bases

Now we study how these automorphisms behave on the various bases of R(a, a+ b).
As in Example 1.9, for a permutation σ ∈ Sa+b and a subset I ⊆ {1, . . . , a + b} we

write σ(I) := {σ(i) : i ∈ I}; and we also write −I := {1, . . . , a+ b} \ I.

Lemma 3.1. The actions of the above automorphisms on the Plücker coordinates generating
the coordinate ring R(a, a+ b) are:

� χ(∆I) = ∆c(I),

� w0(∆I) = ∆w0(I),

� (if a = b = n) φ̃B(∆I) = ∆−w0(I).

Proof. The first two bulleted items are stating simple facts about how matrix minors behave
when rows are permuted. The factor i(a−1) in the definition of w0 is there because i(a−1) Ida+b

multiplies each Plücker coordinate by i−a(a−1) = (−1)a(a−1), which is exactly the right number
of minus signs to cancel the number of row transpositions we need to vertically flip an a×a sub-
matrix. Similarly, the entry of (−1)a−1 in the definition of χ cancels out the row transpositions
needed to bring the last row of an a× a submatrix to the front.

The statement about φ̃B is explained, in the somewhat different but equivalent language of
alternating forms and the Hodge star, in [45, proof of Theorem 4.1]. It is also not hard to see
directly. Let U ∈ Gr(a, a+ b), and suppose U lies in the dense open subset of the Grassmannian
where ∆{1,2,...,n}(U) 6= 0. Let’s represent U by a matrix in reduced column echelon form whose
column span is U (and note that ∆{1,2,...,n}(U) 6= 0 implies the upper n×n square submatrix of

this matrix is Idn). Then the effect of φ̃B is to “transpose” the lower n×n square submatrix of this
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matrix across its main anti-diagonal, while also multiplying the entries in this square submatrix
by ±1 in a checkerboard pattern, as the following diagrams depict in the cases n = 2, 3, 4:


1 0
0 1
a c
b d

 φ̃B−−→


1 0
0 1
−d c
b −a

 ,



1 0 0
0 1 0
0 0 1
a d g
b e h
c f i


φ̃B−−→



1 0 0
0 1 0
0 0 1
i −h g
−f e −d
c −b a

 ,



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
a e i m
b f j n
c g k o
d h l p


φ̃B−−→



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
−p o −n m
l −k j −i
−h g −f e
d −c b −a


.

This matrix representation makes it easy to check that ∆I

(
φ̃B(U)

)
= ∆−w0(I)(U). This is

because the maximal minors of the 2n×n matrix correspond, up to sign, to all of the minors of
its lower n × n square submatrix (see [56, Lemma 3.9]); and the checkerboard pattern of signs
exactly addresses the sign issue. Then we observe that ∆I

(
φ̃B(U)

)
= ∆−w0(I)(U) in fact holds for

all U ∈ Gr(a, a+ b) since it holds on a dense open subset. It also holds for U ∈ Ĝr(a, a+ b) since
we declared that ∆{1,2,...,n}(U) = ∆{1,2,...,n}

(
φ̃B(U)

)
and −w0({1, 2, . . . , n}) = {1, 2, . . . , n}. �

Corollary 3.2. The actions of the automorphisms w0 and φ̃B on the standard monomial basis
of the ring R(a, a+ b)m are:

� w0(M(T )) = M(Co(T )),

� (if a = b = n) φ̃B(M(T )) = M(Tp(T )).

Proof. These follow immediately from Lemma 3.1 if we recall the effects of Co and Tp on
tableaux as described in Proposition A.9. For a tableau T ∈ SSYT(ma, a + b), the columns of
the complementary tableau Co(T ) are w0(Im), w0(Im−1), . . . , w0(I1), where I1, I2, . . . , Im are the
columns of T . Similarly, for a tableau T ∈ SSYT(mn, 2n), the columns of the transposed tableau
Tp(T ) are −w0(I1),−w0(I2), . . . ,−w0(Im), where I1, I2, . . . , Im are the columns of T . �

Essentially via Corollary 3.2, Stembridge [85] and Kuperberg [45] were able to deduce the
q = −1 results discussed in the Section 1: Theorems 1.3 and 1.5. Note crucially, however, that
we do not have χ(M(T )) = M(Pro(T )). Indeed, the whole point of using sophisticated bases
like the dual canonical basis is that the naive bases like the standard monomial basis fail to
behave well under the action of the long cycle.

This brings us to the main algebraic result we need to prove Theorem 1.8:

Theorem 3.3. The actions of the above automorphisms on the dual canonical basis of the
ring R(a, a+ b)m are:

� χ(H(T )) = H(Pro(T )),

� w0(H(T )) = H(Co(T )),

� (if a = b = n) φ̃B(H(T )) = H(Tp(T )).
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Proof. The first bulleted item is [46, Theorem 2]. But in fact this result is essentially due
to Rhoades [63]. To obtain this result Rhoades used a particular realization of the canonical
basis in terms of Kazhdan–Lusztig immanants [64, 65] which was first introduced by Du [14]
and further developed by Skandera [80]. (In [15] Du showed that his canonical basis is the same
as that of Lusztig [49].) Very recently, Rush [68] gave a new proof of Rhoades’s result which is
more conceptual/abstract.

For the second bulleted item: Berenstein–Zelevinsky [8, Proposition 8.8], and Stembridge [87,
Theorem 1.2] showed that for any irreducible GL(a+ b) representation V (λ), multiplication by
a lift of w0 corresponds (up to an overall ±1 sign) to evacuation of tableaux in the dual canonical
basis. As explained in the appendix, in the case of rectangular tableaux evacuation is the same
as complementation.

For the third bulleted item: Berenstein–Zelevinsky [8, Section 7] again explained the effect
of twisting by the GL(2n) automorphism φB on the dual canonical basis of any irreducible
representation V (λ). (This automorphism is denoted by ψ in [8, Section 7].) This effect is
described in terms of the “multisegment duality” [43]. It should be possible to show that this
involution defined in terms of the multisegment duality reduces to transposition in the case of
rectangular partitions, just like evacuation also radically simplifies in the rectangular case.

However, there are some annoying technicalities we would have to deal with in order to directly
apply the work of Berenstein–Zelevinsky [8]. For instance, we would have to show that their
indexing of the dual canonical basis is compatible with that of Du [14]. Let us instead explain
a different way to conclude the second and third bulleted items. The idea is still to observe that
these involutions correspond to automorphisms of the quantized universal enveloping algebra.
But we can exploit the fact that we are working in the particularly nice “rectangular” setting
where the standard monomial basis also behaves well with respect to these involutions (which
is not always the case). It turns out that we can piggyback off of the result for the standard
monomial basis to obtain the result we want for the dual canonical basis.

In discussing automorphisms of the quantized universal enveloping algebra we follow the
presentation of Berenstein–Zelevinsky [8, Section 7]. If φ : Uq(sla+b) → Uq(sla+b) is an algebra
automorphism, then from a Uq(sla+b)-module V we get another module φV by twisting by φ:
φV = V as a vector space but we have g ∈ Uq(sla+b) act on φV by φ(g). If V = Vq(λ) is
irreducible then so is φV : say φV ' Vq(φ(λ)) for the corresponding highest weight φ(λ). Thus,
abusing notation, we get an isomorphism of vector spaces φ : Vq(λ) → Vq(φ(λ)) also denoted φ
which satisfies φ(gv) = φ(g)φ(v) for all g ∈ Uq(sla+b) and v ∈ Vq(λ). Because we have a choice
of highest weight vector, the map φ : Vq(λ)→ Vq(φ(λ)) is uniquely defined only up to an overall
scalar.

The quantized universal enveloping algebra Uq(sla+b) is generated by elements Ei, Fi, Ki,
K−1
i for 1 ≤ i < a + b subject to certain relations involving the parameter q. There are two

involutive automorphisms of Uq(sla+b) we want to consider. Following [8, Section 7] we call these
automorphisms η and ψ. They are given as follows

η(Ei) = Fa+b+1−i, η(Fi) = Ea+b+1−i, η(Ki) = K−1
a+b+1−i,

ψ(Ei) = Ea+b+1−i, ψ(Fi) = Fa+b+1−i, ψ(Ki) = Ka+b+1−i.

At the level of weights we have η(λ) = λ for all λ, and ψ(mωn) = mωn for all m in the case
a = b = n. Thus, we get involutions η : Vq(mωa) → Vq(mωa), and ψ : Vq(mωn) → Vq(mωn) in
the case a = b = n. General results of Lusztig [50, Proposition 21.1.2] (see also Berenstein–
Zelevinsky [8, Proposition 7.1]) imply that both η and ψ permute the canonical bases of these
Uq(sla+b)-modules; indeed, η is the so-called “Lusztig involution”, while ψ is more-or-less the
involutive automorphism induced by the Dynkin diagram symmetry in type A2n−1. These
descend to involutions of the GL(a+b) representations η : V (mωa)→ V (mωa) and ψ : V (mωn)→
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V (mωn) which permute the corresponding canonical bases. In this way we also get involutions
η : V (mωa)

∗ → V (mωa)
∗ and ψ : V (mωn)∗ → V (mωn)∗ on the dual spaces which permute the

dual canonical bases. (We are glossing over the fact that the maps η and ψ between irreducible
modules are only defined up to an overall scalar; to really get a permutation of the canonical or
dual canonical bases we have to normalize properly.)

When we take the limit q 7→ 1, the automorphisms of Uq(sla+b) above reduce to the following
automorphisms of U(sla+b), the ordinary universal enveloping algebra of sla+b:

η(Ei) = Fa+b+1−i, η(Fi) = Ea+b+1−i, η(Hi) = −Ha+b+1−i,

ψ(Ei) = Ea+b+1−i, ψ(Fi) = Fa+b+1−i, ψ(Hi) = Ha+b+1−i,

where here the Ei, Fi, Hi for 1 ≤ i < a + b are the usual generators of U(sla+b) (see for
instance [48, Section 2.4]). Recall that we can identify Ei, Fi, and Hi with matrices in sla+b:
Ei is the matrix with a 1 in position (i, i + 1) and 0’s elsewhere; Fi is the matrix with a 1 in
position (i+ 1, i) and 0’s elsewhere; and Hi is the matrix with a 1 in (i, i), a −1 in (i+ 1, i+ 1),
and 0’s elsewhere. Thus we see that the automorphism η of U(sla+b) is induced from the
automorphism of sla+b given by conjugation by w0. Similarly, the automorphism ψ of U(sl2n)
is induced from the automorphism φB : sl2n → sl2n given by φB(A) := B−1 ·

(
−AT

)
· B for all

A ∈ sl2n, which is the Lie algebra version of the Lie group automorphism φB : SL(2n)→ SL(2n)
defined earlier. But then we can note that acting by w0 on R(a, a + b)m ' V (mωa)

∗ is clearly
compatible with conjugation by w0 in the sense that w0gw0

−1 · (w0v) = w0gv for all g ∈ SL(2n),
v ∈ R(a, a + b)m. So w0 agrees with η up to a scalar, and hence permutes the dual canonical
basis up to a sign. Similarly, φ̃B : R(n, 2n)m → R(n, 2n)m is compatible with φB in the sense
that φB(g)φ̃B(v) = φ̃B(gv) for all g ∈ SL(2n), v ∈ V (mωn)∗. So φB agrees with ψ up to a
scalar, and hence permutes the dual canonical basis up to a sign.

To summarize the preceding, we have argued that w0 and φ̃B permute the dual canonical
basis in some way (at least up to overall signs). But we want to conclude that these permuta-
tions correspond to complementation and transposition of tableaux. To do this, we note that
the transition matrix between the dual canonical and standard monomial basis is upper unitri-
angular with respect to a certain order on tableaux. This is proved in a paper of Brundan [11,
Theorem 26], where he in fact gives an explicit formula for this transition matrix in terms of
Kazhdan–Lusztig polynomials (and he notes [11, Remark 10] that his indexing of the canonical
basis is consistent with that of Du [14]). We know from Corollary 3.2 that w0 and φ̃B permute
the standard monomial basis in the appropriate way. So finally we observe that if a permutation
matrix is conjugated by an upper unitriangular matrix to another permutation matrix, then the
two permutation matrices have to be the same (and this remains true if one of the permutation
matrices is a priori only a permutation matrix up to an overall sign). Thus, the fact that w0

and φ̃B permute the standard monomial basis in the appropriate way in fact implies that they
permute the dual canonical basis in the appropriate way. �

3.4 Proof of bicyclic sieving for Grassmannian coordinate ring

We are now ready to prove Theorem 1.8.

Proof of Theorem 1.8. Define the following two matrices in GL(2n):

X :=

antidiag
(
in−1, in−1, . . . , in−1

)
0

0 Idn

 ∈ GL(2n),

Y :=

Idn 0

0 (−1)n−1 antidiag
(
in−1, in−1, . . . , in−1

)
 ∈ GL(2n).
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Thus,

w0 · χn = X · Y.

It is easy to check that X,Y ∈ SL(2n) and that φB(Y ) = X−1. So we have the following equality
of algebra automorphisms R(n, 2n)→ R(n, 2n):

φ̃B · w0 · χn = X−1 · φ̃B ·X.

Next we observe that the matrix XBX has the block form 0 antidiag
( n︷ ︸︸ ︷
i−(n−1),−i−(n−1), . . . ,±i−(n−1)

)
antidiag

( n︷ ︸︸ ︷
−i−(n−1), i−(n−1), . . . ,∓i−(n−1)

)
0


from which it is easy to see that

(XBX) · χ = −χ · (XBX).

Then we can compute that

φB
(
X · i−1χ ·X−1

)
= B−1 ·

((
X · i−1χ ·X−1

)T )−1 ·B

= B−1 · (XT )−1 ·
((
i−1χ

)T )−1 ·
((
X−1

)T )−1 ·B
= B−1X−1 · iχ ·XB
= X · (XBX)−1 · iχ · (XBX) ·X−1

= X · −iχ ·X−1

= X · i−1χ ·X−1.

In other words, X−1 · i−1χ ·X is a symplectic matrix.
By looking at the characteristic polynomial, we see that the eigenvalues of i−1χ are all

distinct; in fact they are precisely −ζ1/2,−ζ1/2+1,−ζ1/2+2, . . . ,−ζ1/2+(2n−1), where ζ := eπi/n is
a primitive (2n)th root of unity. Set Dq := q1/2−n diag

(
1, q, q2, . . . , q2n−1

)
. With this notation,

i−1χ is conjugate to Dζ . Moreover, since X · i−1χ ·X−1 is symplectic, and it is diagonalizable,
a basic result in symplectic linear algebra says this matrix is symplectically diagonalizable; that
is, we can find a symplectic matrix S ∈ Sp(2n) and a diagonal matrix D for which we have
X · i−1χ ·X−1 = S ·D ·S−1. In fact, by conjugating by an element of the hyperoctahedral group,
we can assume that this diagonal matrix is D = Dζ . (Note that Dq is in fact symplectic since
its ith and (2n+ 1− i)th entries along the diagonal are inverses.) We then also clearly have that
X · i−kχk ·X−1 = S ·Dζk · S−1.

To complete the proof, we compute trR(n,2n)m

(
φ̃B · w0 · i−kχ(n+k)

)
in two ways. On the one

hand,

trR(n,2n)m

(
φ̃B · w0 · i−kχ(n+k)

)
= iknm · trR(n,2n)m

(
φ̃B · w0 · χ(n+k)

)
= iknm ·#

{
T ∈SSYT(mn, 2n) : (Tp · Co) · Pron+k(T ) = T

}
= iknm ·#

{
π∈PPm(n× n) : (Tp · Co) · Pron+k(π) = π

}
.

Here the factor of iknm comes from the fact that i−k Id2n ∈ GL(2n) scales each Plücker coordinate
by ikn and hence scales elements of R(n, 2n)m by iknm. Meanwhile, the interpretation of the
term trR(n,2n)m

(
φ̃B · w0 · χ(n+k)

)
in terms of tableaux fixed by (Tp · Co) · Pron+k follows from
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working in the dual canonical basis and recalling Theorem 3.3. Finally the interpretation in
terms of plane partitions fixed by (Tp · Co) · Pron+k comes from the bijection Ψ between plane
partitions and tableaux described in Appendix A.

On the other hand, from our work above we have

trR(n,2n)m

(
φ̃B · w0 · i−kχ(n+k)

)
= trR(n,2n)m

(
X−1 · φ̃B ·X · i−kχk

)
= trR(n,2n)m

(
φ̃B ·X · i−kχk ·X−1

)
= trR(n,2n)m

(
φ̃B · S ·Dζk · S−1

)
= trR(n,2n)m

(
S · φ̃B ·Dζk · S−1

)
= trR(n,2n)m

(
φ̃B ·Dζk

)
.

In general, the trace trV (λ)(φ · D), where φ is the twist by an automorphism of a simple Lie
group induced from a Dynkin diagram automorphism and D is a torus element, is what is called
a twining character. The twining character formula, originally due to Jantzen [36] and later
rediscovered for instance in [23, 24], expresses such a twining character as an ordinary character of
the so-called “orbit Lie group”. In our case, that orbit Lie group would be the special orthogonal
group SO(2n + 1). But in fact, it is easy to compute trR(n,2n)m

(
φ̃B ·Dζk

)
directly. Indeed, as

Kuperberg explained in [45, Section 4], just by considering the action on the standard monomial

basis we can see trR(n,2n)m

(
φ̃B ·Dζk

)
=
(
ζ−k

)−n2m/2
SymMac

(
n,m; q 7→ ζ−k

)
. (Here we have ζ−k

instead of ζk because R(n, 2n)m ' V (mωn)∗ is isomorphic to the dual representation.) But(
ζ−k

)−n2m/2
= iknm, so we conclude

#
{
π ∈ PPm(n× n) : (Tp · Co) · Pron+k(π) = π

}
= SymMac

(
n,m; q 7→ ζ−k

)
.

Since ζk and ζ−k are Galois conjugates and SymMac(n,m; q) ∈ Z[q], in fact we have

#
{
π ∈ PPm(n× n) : (Tp · Co) · Pron+k(π) = π

}
= SymMac

(
n,m; q 7→ ζk

)
,

as claimed. �

Remark 3.4. By now the significance (in combinatorics, algebra, geometry, et cetera) of the
twisted cyclic shift acting on the Grassmannian is well appreciated. See the recent paper of
Karp [37] for a nice survey of many places in which the cyclic shift arises. Another related
paper which studied the cyclic shift as well as involutive symmetries of the Grassmannian is
the recent paper of Frieden [22]. In that paper, Frieden constructed an affine geometric crystal
on the Grassmannian and in doing so showed that (a deformation of) the twisted cyclic shift
tropicalizes to promotion of rectangular semistandard Young tableaux.

Remark 3.5. As mentioned in Section 1, there is another proof of cyclic sieving for plane
partitions under promotion (Theorem 1.2) due to Shen and Weng [79]. The main difference
from Rhoades’s proof is that, rather than use the Lusztig/Kashiwara dual canonical basis,
Shen–Weng used a basis of the coordinate ring of the Grassmannian coming from its cluster
algebra structure. Let us quickly review their setting. A “cluster ensemble” is a pair of an
“X -cluster variety” and an “A-cluster variety” associated to a quiver, which are “dual” to
one another. The “Fock–Goncharov conjecture” [18] predicts that the tropical points of an
X -cluster variety parameterize a canonical basis of the coordinate ring of its dual A-cluster
variety, and vice-versa. Breakthrough work of Gross–Hacking–Keel–Kontsevich [33] establishes
that the Fock–Goncharov conjecture holds as long as certain combinatorial conditions on the
quiver are met. Under these conditions we have a canonical basis for the cluster algebra, the
so-called “theta basis”. Very roughly speaking, the Grassmannian carries the structure of both
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an X - and an A-cluster variety, and it is its own dual in a cluster ensemble. Shen–Weng verified
the Gross–Hacking–Keel–Kontsevich combinatorial conditions for the quiver associated to the
Grassmannian and so showed that the Fock–Goncharov conjecture holds in this case. (Their
work is closely related to work of Rietsch and Williams [66], which also studied cluster duality
for the Grassmannian.) Moreover, Shen–Weng showed that the twisted cyclic shift corresponds
to an element of the “cluster modular group”, a certain group of automorphisms of the cluster
structure. The Fock–Goncharov conjecture says that the parametrization of the canonical cluster
basis of one variety by the tropical points of its dual variety should be equivariant under the
action of the cluster modular group. Shen–Weng showed that the action of the twisted cyclic
shift on tropical points corresponds to promotion of plane partitions. They deduced that the
theta basis of the coordinate ring of the Grassmannian is permuted by the twisted cyclic shift
according to promotion of plane partitions (just like the dual canonical basis).

It is reasonable to ask how the involutive symmetries w0 and φ̃B behave on the theta basis
of the coordinate ring of the Grassmannian (this could, for instance, yield a different proof of
Theorem 1.8.) Understanding the behavior of the Dynkin diagram automorphism φ̃B seems
tractable. Indeed, in the case a = b = n, the quiver Γa,a+b (see [79, Section 2.4]) defining
the Grassmannian cluster ensemble has a transposition symmetry Ai,j 7→ Aj,i (ignoring arrows
between frozen vertices, which are largely irrelevant). Moreover, this Ai,j 7→ Aj,i symmetry
exactly corresponds to the Plücker coordinate map ∆I 7→ ∆−w0(I) which Lemma 3.1 says defines

the action of φ̃B. The behavior of w0, however, is less clear to us. As Fraser explained in [21,
Section 5], the twisted reflection is, together with the twisted cyclic shift, one of the most
well-known and significant cluster automorphisms of the Grassmannian. (This follows from the
combinatorics of weakly separated collections as elucidated in the seminal work of Scott [76] and
Postnikov [56].) However, the twisted reflection is, unlike the twisted cyclic shift, an “orientation-
reversing” cluster automorphism, which means it cannot be an element of the cluster modular
group. Hence, the Fock–Goncharov conjecture says nothing about the behavior of the twisted
reflection on the theta basis. At the moment we have no good way of understanding the behavior
of w0 on the theta basis.

4 Promotion and rowmotion

In this section we introduce another piecewise-linear operator on plane partitions called row-
motion, which is different from but closely related to promotion. Let us very briefly review
the history of rowmotion. Combinatorial rowmotion is a certain invertible operator acting on
the set of order ideals of any finite2 poset P which has been studied by many authors over
a long period [5, 12, 10, 19, 55, 69, 89]. Piecewise-linear rowmotion is a generalization of com-
binatorial rowmotion which was introduced by Einstein and Propp [16, 17] about 5 years ago.
Piecewise-linear rowmotion, as well as its further generalization birational rowmotion, have al-
ready been the subject of a good deal of research [30, 31, 54], with interesting connections to
topics ranging from integrable systems to quiver representations [26, 28]. In the next section
we will define piecewise-linear rowmotion acting on the P -partitions of an arbitrary poset P ; in
this section we focus exclusively on plane partitions (which corresponds to P being the rectangle
poset, i.e., the product of two chains). Since our focus throughout will be on piecewise-linear
rowmotion (as opposed to combinatorial or birational rowmotion), from now on we will drop
the “piecewise-linear” adjective and speak simply of “rowmotion”.

Our goal in this section is to show that versions of Theorems 1.2, 1.4, 1.7 and 1.8 hold for
rowmotion. So now let us formally define rowmotion and explain its relationship to promotion.
As in the preceding sections, we fix the parameters a, b, and m defining our set of plane partitions

2Throughout, all posets will be finite.
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(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3) P2

P1

N1 N2 N3

R1

R2

R3

R4F−1

F0

F1

F2

Figure 1. The various toggle compositions Fk, Rk, Pk and Nk.

PPm(a × b); and sometimes (e.g., when we want to consider the transposition symmetry) we
also assume that a = b = n.

We define rowmotion acting on PPm(a × b) as a composition of the piecewise-linear toggles
τi,j : PPm(a×b)→ PPm(a×b) introduced in Section 1. Recall that τi,j and τi′,j′ commute unless
(i, j) and (i′, j′) are directly adjacent. For 1 ≤ k ≤ a+ b−1, we define Rk :=

∏
1≤i≤a,
1≤j≤b,
i+j−1=k

τi,j to be

the composition of all the toggles along the “kth antidiagonal” of our array (this composition is
well-defined because these toggles commute).

We then define rowmotion Row: PPm(a× b)→ PPm(a× b) as

Row := Ra+b−1 · Ra+b−2 · · ·R2 · R1.

Promotion was defined similarly but in terms of the diagonal toggles Fk :=
∏

1≤i≤a,
1≤j≤b,
j−i=k

τi,j . Observe

that promotion is a composition of the piecewise-linear toggles “from left to right”, whereas
rowmotion is a composition of the toggles “from top to bottom”.

In a moment we will explain the precise relationship between promotion and rowmotion. First
let us review a few other ways to express both promotion and rowmotion. In order to do this we
must introduce some other compositions of toggles in addition to the Fk and Rk. For 1 ≤ k ≤ a
we define Pk := τk,b ·τk,b−1 · · · τk,2 ·τk,1 and for 1 ≤ k ≤ b we define Nk := τa,k ·τa−1,k · · · τ2,k ·τ1,k.
Note that while the toggles constituting Fk or Rk all commute, this is not true for Pk or Nk,
so we have to be careful to specify the order of composition like we have just done. Relatedly,
Fk = F−1

k and Rk = R−1
k , but Pk 6= P−1

k and Nk 6= N−1
k . Fig. 1 is a diagram depicting all

of these various compositions of toggles. Let us explain our notation for these compositions,
which perhaps appears quite strange at first. This notation derives from terminology due to
Einstein and Propp [16, Section 2]: the Fk are toggles along a file of the rectangle; the Rk are
toggles along a rank of the rectangle; the Pk are toggles along a positive fiber of the rectangle;
and the Nk are toggles along a negative fiber of the rectangle. (When we view the rectangle
as a poset, like we will do in the next section, the terms “row” and “column” do not cohere
with the usual way of depicting a poset via its Hasse diagram, which is why Einstein and Propp
avoided those terms.)

Both promotion and rowmotion can also be written in terms of Pk (or Nk):

Proposition 4.1. We have

Pro = P1 · P2 · · · Pa−1 · Pa = N−1
b · N−1

b−1 · · · N
−1
2 · N−1

1 ,
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and

Row = Pa · Pa−1 · · · P2 · P1 = Nb · Nb−1 · · · N2 · N1.

Proof. This is explained, for instance, in [16, Section 2]. It follows easily from the commutativ-
ity properties of the toggles. As we will see in the next section, we can in fact define rowmotion
to be the composition of all the toggles in the order of any linear extension of the underlying
rectangle poset (and something similar is true for promotion). �

We now explain the relationship between promotion and rowmotion. This relationship was
first discovered and explored by Striker and Williams [89]. It turns out that promotion and
rowmotion are conjugate to one another. Moreover, there is a simple, explicit composition of
toggles which conjugates Row to Pro. Namely, define

D :=
(
P−1
a

)
·
(
P−1
a−1 · P

−1
a

)
· · ·
(
P−1

2 · P−1
3 · · · P

−1
a

)
·
(
P−1

1 · P−1
2 · · · P

−1
a

)
.

Then we have:

Lemma 4.2. We have D · Row ·D−1 = Pro.

Proof. This was essentially proved by Striker–Williams [89, Theorem 5.4]. They were working
at the level of combinatorial rowmotion (i.e., the case m = 1) but they only used the facts
that the toggles are involutions and that non-adjacent toggles commute (in other words, they
were really working in the corresponding “right angled Coxeter group”). At any rate, this
lemma follows from the description of promotion and rowmotion in terms of the Pk given in
Proposition 4.1, together with the observation that Pi and Pj commute unless |i− j| = 1. �

Corollary 4.3. For any k ∈ Z, we have

#
{
π ∈ PPm(a× b) : Rowk(π) = π

}
= Mac

(
a, b,m; q 7→ ζk

)
,

where ζ := e2πi/(a+b) is a primitive (a+ b)th root of unity.

Proof. This follows from combining Theorem 1.2 and Lemma 4.2. �

Observe that Corollary 4.3 implies that Row has order dividing a+ b.
Next we want to understand how rowmotion interacts with the involutive symmetries of

complementation and transposition. First of all, observe that Co · Row = Row−1 · Co, while
Tp · Row = Row · Tp (which is slightly different than for promotion).

In order to count fixed points of elements of the group 〈Row,Co,Tp〉 acting on the plane
partitions in PPm(a × b), we need to understand how the conjugating map D interacts with
complementation and transposition. First, we give a simple proposition about how Co and Tp
interact with the individual toggles and with the Pk:

Proposition 4.4. For 1 ≤ i ≤ a and 1 ≤ j ≤ b, we have

Co · τi,j = τa+1−i,b+1−j · Co

and hence for 1 ≤ k ≤ a we have

Co · Pk = P−1
a+1−k · Co.

Similarly, if a = b = n, then for 1 ≤ i, j ≤ n we have

Tp · τi,j = τj,i · Tp

and hence for 1 ≤ k ≤ n we have

Tp · Pk = Nk · Tp.
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Proof. The statements about how to commute the τi,j past Co or Tp are immediate from the
definitions of complementation, transposition, and the toggles. The statements about the Pk
then follow easily. �

Now we can explain how D and Co interact.

Lemma 4.5. We have D · Co · Row−(a+1) = Co ·D.

Proof. From Proposition 4.4 we get that

D · Co = Co · (P1) · (P2 · P1) · · · (Pa−1 · Pa−2 · · · P1) · (Pa · Pa−1 · · · P1).

Hence, using the description of Row in terms of Pk from Proposition 4.1, as well as the fact
that Pi and Pj commute unless |i− j| = 1, denoting Z := D · Co · Row−(a+1), we get

Z = Co · (P1) · (P2 · P1) · · · (Pa−1 · Pa−2 · · · P1) · (Pa · Pa−1 · · · P1) · Row−(a+1)

= Co · (P1) · (P2 · P1) · · · (Pa−1 · Pa−2 · · · P1) · Row−a

= Co · (P1) · (P2 · P1) · · · (Pa−2 · Pa−3 · · · P1) ·
(
P−1
a

)
· Row−(a−1)

= Co ·
(
P−1
a

)
· (P1) · (P2 · P1) · · · (Pa−2 · Pa−3 · · · P1) · Row−(a−1)

= Co ·
(
P−1
a

)
· (P1) · (P2 · P1) · · · (Pa−3 · Pa−4 · · · P1) ·

(
P−1
a−1 · P

−1
a

)
· Row−(a−2)

= Co ·
(
P−1
a

)
·
(
P−1
a−1 · P

−1
a

)
· (P1) · (P2 · P1) · · · (Pa−3 · Pa−4 · · · P1) · Row−(a−2) = · · ·

= Co ·
(
P−1
a

)
·
(
P−1
a−1 · P

−1
a

)
· · ·
(
P−1

2 · P−1
3 · · · P

−1
a

)
·
(
P−1

1 · P−1
2 · · · P

−1
a

)
= Co ·D,

as claimed. �

Corollary 4.6. For any k ∈ Z, we have

#
{
π ∈ PPm(a× b) : Co · Rowk(π) = π

}
= #

{
π ∈ PPm(a× b) : Co · Prok(π) = π

}
,

with an explicit formula for this number given by Theorem 1.4.

Proof. From Lemmas 4.2 and 4.5 we have

D · Co · Rowk ·D−1 = Co ·D · Rowk+(a+1) ·D−1 = Co · Prok+(a+1).

In other words, Co · Rowk and Co · Prok+(a+1) are conjugate, and hence in particular have the
same number of fixed points. But by looking at the explicit formula in Theorem 1.4, we see that
whether a is even or odd, the number of fixed points of Co ·Prok+(a+1) and of Co ·Prok are the
same, and hence the corollary follows. �

In order to explain how D and Tp interact, we a need a few more preparatory results. First
we need to explain how Co actually can be written as a composition of toggles.

Lemma 4.7. We have

Co = (F−a+1) · (F−a+2 · F−a+1) · · · (Fb−2 · · · F−a+2 · F−a+1) · (Fb−1 · · · F−a+2 · F−a+1).

Proof. This follows from various results in Appendix A. Namely, in Definition A.3, dual eva-
cuation ε∗ is defined as the corresponding composition of Bender–Knuth involutions; in Proposi-
tion A.7 it is shown that these Bender–Knuth involutions correspond to the diagonal toggles Fk;
and in Proposition A.9 it is shown that complementation of plane partitions corresponds to dual
evacuation of semistandard tableaux under the bijection Ψ: PPm(a × b) → SSYT(ma, a + b)
studied in the appendix. �
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Remark 4.8. In addition to the description of Co in Lemma 4.7, we also have that

Co = (R1) · (R2 · R1) · · · (Ra+b−2 · · ·R2 · R1) · (Ra+b−1 · · ·R2 · R1).

This follows from a “reciprocity” property of rowmotion that was established by Grinberg and
Roby [30, Theorem 32]. (We discuss this reciprocity property more in the next section; see
Theorem 5.8.) Furthermore, there are other similar ways of writing Co as a composition of
toggles which one can obtain by considering evacuation ε or by considering the reciprocity
property for Row−1. The fact that complementation is an involution gives even a few more ways
of writing it as a composition of toggles.

Proposition 4.9. We have

Co ·D = (N1 · N2 · · · Nb−2 · Nb−1) · · · (N1 · N2) · (N1).

Proof. We claim that

(F−a+1) · (F−a+2 · F−a+1) · · · (Fb−2 · · · F−a+2 · F−a+1) · (Fb−1 · · · F−a+2 · F−a+1) (4.1)

is equal to

(N1 · · · Nb−2 · Nb−1) · · · (N1 · N2) · (N1) · (Pa · · · P2 · P1) · · · (Pa · Pa−1) · (Pa). (4.2)

By Lemma 4.7, establishing this claim proves the proposition. To show that (4.1) and (4.2) are
equal, first we observe that when we expand (4.2) as a product of toggles, a toggle τi,j appears
i−j+b times; this is the same number of times as when we expand (4.1) as a product of toggles.
Moreover, if we read the toggles in (4.2) from right to left, then whenever we see a toggle τi,j
for the kth time, we have already seen the toggles τi+1,j (assuming i 6= a) and τi,j−1 (assuming
j 6= 1) exactly k times. This implies that we can indeed commute the toggles that make up (4.2)
to fit the form of (4.1), as claimed. �

Now we can explain how D and Tp interact.

Lemma 4.10. If a = b = n, then we have

D · Tp · Rown = Tp · Co ·D.

Proof. From Proposition 4.4 we get that

D · Tp = Tp ·
(
N−1
n

)
·
(
N−1
n−1 · N

−1
n

)
· · ·
(
N−1

2 · N−1
3 · · · N−1

n

)
·
(
N−1

1 · N−1
2 · · · N−1

n

)
.

Using the description of Row in terms of Nk from Proposition 4.1, as well as the fact that Ni
and Nj commute unless |i− j| = 1, denoting Z := D · Tp · Rown, we get

Z = Tp ·
(
N−1
n

)
·
(
N−1
n−1 · N

−1
n

)
· · ·
(
N−1

2 · N−1
3 · · · N−1

n

)
·
(
N−1

1 · N−1
2 · · · N−1

n

)
· Rown

= Tp ·
(
N−1
n

)
·
(
N−1
n−1 · N

−1
n

)
· · ·
(
N−1

2 · N−1
3 · · · N−1

n

)
· Rown−1

= Tp ·
(
N−1
n

)
·
(
N−1
n−1 · N

−1
n

)
· · ·
(
N−1

3 · N−1
4 · · · N−1

n

)
· N1 · Rown−2

= Tp · (N1) ·
(
N−1
n

)
·
(
N−1
n−1 · N

−1
n

)
· · ·
(
N−1

3 · N−1
4 · · · N−1

n

)
· Rown−2

= Tp · (N1) ·
(
N−1
n

)
·
(
N−1
n−1 · N

−1
n

)
· · ·
(
N−1

4 · N−1
5 · · · N−1

n

)
· (N2 · N1) · Rown−3

= Tp · (N1) · (N2 · N1) ·
(
N−1
n

)
·
(
N−1
n−1 · N

−1
n

)
· · ·
(
N−1

4 · N−1
5 · · · N−1

n

)
· Rown−3

= · · · = Tp · (N1) · (N2 · N1) · · · (Nn−1 · Nn−2 · · · N2 · N1)

= Tp · (N1 · N2 · · · Nn−2 · Nn−1) · · · (N1 · N2) · (N1)

= Tp · Co ·D,

where in the last line we applied Proposition 4.9. �
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Corollary 4.11. For any k ∈ Z, we have

#
{
π ∈ PPm(n× n) : Tp · Rowk(π) = π

}
= SymMac

(
n,m; q 7→ ζk

)
,

where ζ := eπi/n is a primitive (2n)th root of unity.

Proof. From Lemmas 4.2 and 4.5 we have

D · Tp · Rowk ·D−1 = Tp · Co ·D · Rowk−n ·D−1 = Tp · Co · Prok−n.

In other words, Tp · Rowk and Tp · Co · Prok−n are conjugate, and hence in particular have
the same number of fixed points. By Theorem 1.8, this number is the claimed evaluation of
SymMac(n,m, q) (where we note that ζk−2n = ζk since ζ2n = 1). �

Finally, we can explain how D and Tp · Co interact.

Lemma 4.12. If a = b = n, then we have

D · Tp · Co · Row−1 = Tp ·D.

Proof. By Lemmas 4.5 and 4.10 we have

D · Tp · Co · Row−1 = Tp · Co ·D · Row−n · Co · Row−1

= Tp · Co ·D · Co · Rown−1

= Tp · Co · Co ·D · Rown+1 · Rown−1

= Tp ·D,

where we used that Co is an involution and Row has order dividing 2n. �

Corollary 4.13. For any k ∈ Z, we have

#
{
π ∈ PPm(n× n) : Tp · Co · Rowk(π) = π

}
= SymMac

(
n,m; q 7→ (−1)k+1

)
.

Proof. From Lemmas 4.2 and 4.12 we have

D · Tp · Co · Rowk ·D−1 = Tp ·D · Rowk+1 ·D−1 = Tp · Prok+1.

In other words, Tp · Co · Rowk and Tp · Prok+1 are conjugate, and hence in particular have
the same number of fixed points. By Theorem 1.7, this number is the claimed evaluation of
SymMac(n,m, q). �

In direct analogy with what we showed for promotion, Corollaries 4.3, 4.6, 4.11 and 4.13
together imply that for any element g ∈ 〈Row,Co,Tp〉, the number of plane partitions in
PPm(n× n) fixed by g is given by some kind of sieving phenomenon evaluation of a nice poly-
nomial at a root of unity.

5 Rowmotion for triangular posets

Since orbit structures are our main interest in this paper, and since, as we explained in the
last section, rowmotion is conjugate to promotion, it might not be clear why we care about
rowmotion at all. The reason we do care about rowmotion is that rowmotion can be defined
as an action on the set of P -partitions of any poset P . Rowmotion acting on plane partitions
corresponds to taking P to be the rectangle poset. Moreover, rowmotion still behaves remark-
ably well on the P -partitions of other posets P besides the rectangle poset, especially certain
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(a, b)

(1, 1)

(1, b)

(a, 1)

Figure 2. The rectangle poset a× b.

nice posets coming from Lie theory (namely, minuscule posets and root posets of coincidental
type). In [35] we made a number of cyclic sieving conjectures regarding the action of rowmotion
on the P -partitions of these other nice posets P . The major examples of the nice posets P ,
beyond the rectangle itself, are certain “triangular” posets. As we will explain in this section
(following Grinberg–Roby [30]), these triangular posets can be obtained from the rectangle by
enforcing certain symmetries. Understanding the behavior of rowmotion on these triangular
posets was our original motivation for studying how rowmotion interacts with the symmetries of
complementation and transposition. As we will see, while the results we obtained above concern-
ing the interaction of rowmotion with these symmetries do not directly imply anything about
cyclic sieving for the triangular posets, morally they are very closely related to our conjectures
from [35].

So now we define rowmotion for arbitrary posets. We assume the reader is familiar with the
basics of posets as laid out for instance in [84, Chapter 3]. Let P be a finite partially ordered
set. We use ≤ for the partial order of P and l for its cover relation. A P -partition of height m
is a weakly order-preserving map π : P → {0, 1, . . . ,m}, i.e., one for which p ≤ q ∈ P implies
that π(p) ≤ π(q). We use PPm(P ) to denote the set of P -partitions of height m. For any
element p ∈ P , the piecewise-linear toggle at p is the involution τp : PPm(P )→ PPm(P ) defined
by

(τpπ)(q) :=

{
π(q) if p 6= q,

min({π(r) : pl r}) + max({π(r) : r l p})− π(p) if p = q,

with the conventions that min(∅) = m and max(∅) = 0. Note that toggles τp and τq commute
unless there is a cover relation between p and q.

We then define rowmotion Row: PPm(P )→ PPm(P ) by

Row := τp1 · τp2 · · · τpn−1 · τpn ,

where p1, p2, . . . , pn is any linear extension of P . The commutativity properties of the toggles
imply that this definition does not depend on the choice of linear extension.

The rectangle poset, denoted a × b, is the Cartesian product of an a-element chain and
a b-element chain. Rowmotion on the rectangle poset is the same as rowmotion of a × b plane
partitions. However, note that we are working with order-preserving maps in order to match the
conventions of [16] and [35]; and on the other hand in order to match the traditional conventions
for plane partitions we put the maximal entry of a plane partition in its upper-left corner.
Thus to satisfy all of our conventions we need to view the rectangle poset P = a × b as the
set {(i, j) : 1 ≤ i ≤ a, 1 ≤ j ≤ b} with the “backwards” partial order (i, j) ≤ (i′, j′) if and only if
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n

n

n

n

n

n

Figure 3. The triangle posets.

i′ ≤ i and j′ ≤ j. Fig. 2 depicts the Hasse diagram of the rectangle poset: observe how we have
simply rotated the usual matrix coordinates 45◦ clockwise. With this convention for the naming
of elements of the rectangle poset, our notation PPm(a × b) is consistent whether we think of
this as a set of plane partitions (πi,j) or of P -partitions π(i, j). And of course, as mentioned,
the two definitions of rowmotion acting on PPm(a× b) agree as well.

The other posets we care about in this section are three families of triangular posets which

we denote n, n, and n. The Hasse diagrams of these triangular posets are depicted in
Fig. 3. These three families of triangular posets are, in addition to the rectangle poset, the
major examples of the nice posets for which we conjectured cyclic sieving under rowmotion
in [35]. Namely:

Conjecture 5.1 (special case of [35, Conjecture 4.23]). Fix n,m ≥ 1 and let

F (q) :=
∏

1≤i≤j≤n

(
1− qi+j+m−1

)(
1− qi+j−1

) .

Then for all k ∈ Z we have

#
{
π ∈ PPm( n) : Rowk(π) = π

}
= F

(
q 7→ ζk

)
,

where ζ := eπi/n is a primitive (2n)th root of unity.

Conjecture 5.2 (special case of [35, Conjecture 4.28]). Fix n,m ≥ 1 and let

F (q) :=
∏

1≤i≤j≤n

(
1− qi+j+2m

)(
1− qi+j

) .

Then for all k ∈ Z we have

#
{
π ∈ PPm( n) : Rowk(π) = π

}
= F

(
q 7→ ζk

)
,

where ζ := eπi/(n+1) is a primitive (2(n+ 1))th root of unity.

Conjecture 5.3 (special case of [35, Conjecture 4.28]). Fix n,m ≥ 1 and let

F (q) :=
∏

1≤i,j≤n

(
1− q2(i+j+m−1)

)(
1− q2(i+j−1)

) .
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Then for all k ∈ Z we have

#
{
π ∈ PPm( n) : Rowk(π) = π

}
= F

(
q 7→ ζk

)
,

where ζ := eπi/2n is a primitive (4n)th root of unity.

Remark 5.4. The F (q) appearing in Conjectures 5.1, 5.2 and 5.3 are all actually polynomials
with nonnegative integer coefficients F (q) ∈ N[q]. For example, the F (q) in Conjecture 5.1 is the

size generating function for P -partitions in PPm( n): that is, F (q) =
∑

π∈PPm(P ) q
|π|, where

|π| :=
∑

p∈P π(p). In fact, this is the same as SymMac′(n,m; q) from Section 1. Meanwhile,

the F (q) in Conjecture 5.2 is qm·(
n+1
2 ) times the quantity denoted “(CGI)” by Proctor in [59].

Proctor explained how this expression is the generating function for P -partitions in PPm( n)
with respect to a certain statistic (the statistic in question is slightly more complicated than
size- it involves an alternating sum of entries). Finally, the F (q) in Conjecture 5.3 is the result
of applying the substitution q 7→ q2 to Mac(n, n,m; q). For all these conjectures, the case k = 0
is known; that is, F (1) is known to be equal to the total number of height m plane partitions of
the poset. Also, for all these conjectures, the case m = 1 is known [5, 69].

Remark 5.5. Conjecrure 5.1 is part of a more general conjecture concerning all the minuscule
posets. The rectangle poset is the most prominent example of a minuscule poset, and the

poset n is the next most prominent example (in this context, it is commonly referred to as the
“shifted staircase”). Besides the rectangle and the shifted staircase, the only other minuscule
posets are one very simple infinite family (the “propeller poset”) and two exceptional posets
(corresponding to E6 and E7). Hence, together with Theorem 1.2, establishing Conjecture 5.1
would resolve “most” of [35, Conjecture 4.23].

Similarly, Conjectures 5.2 and 5.3 are part of a more general conjecture concerning the root
posets of coincidental type. The posets n (which is Φ+(An)) and n (which is Φ+(Bn)) are
the most prominent examples of root posets of coincidental type. Beyond these, there is only one
very simple infinite family (Φ+(I2(`))), and one exceptional poset (Φ+(H3)). Hence, establishing
Conjectures 5.2 and 5.3 would resolve “most” of [35, Conjecture 4.28].

Remark 5.6. In [20], Fontaine and Kamnitzer use some ideas from geometric representation
theory to obtain a kind of refinement of Rhoades’s Theorem 1.2 in which, rather than considering
the action of promotion on the whole set SSYT(ma, a + b), they consider only those tableaux
with a fixed (cyclically symmetric) content. The relevant sieving polynomial turns out to be the
corresponding Kostka–Foulkes polynomial (in fact, in [63] Rhoades obtained a less precise version
of this result in which only the absolute value of the root of unity evaluation was considered). It is
possible that Conjectures 5.1, 5.2 and 5.3 have similar “content” refinements as well. Actually,
this possibility is discussed in [35, Remark 4.25] where it is suggested that the appropriate
Lusztig’s q-analog of weight multiplicity could be the sieving polynomial. We will not discuss
“content” refinements further here.

Now we explain, following Grinberg–Roby [30], how the P -partitions in PPm(P ) for the
triangular posets P are in Row-equivariant bijection with the plane partitions in PPm(n × n)
which satisfy certain symmetry properties. This allows us to reformulate Conjectures 5.1, 5.2
and 5.3 as assertions about the number of plane partitions in PPm(n × n) fixed by various
subgroups of 〈Row,Tp〉.

First let us explain how to relate n to the rectangle, which is very easy.

Lemma 5.7. There is a Row-equivariant bijection between PPm( n) and the subset of those
π ∈ PPm(n× n) for which Tp(π) = π.
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Proof. This is basically proved by Grinberg–Roby in [30, Section 9]. They were working at the
birational level; the result we want, at the piecewise-linear level, is even simpler than what they
did.

Let us view a P -partition π ∈ PPm( n) as triangular array π = (πi,j)1≤i≤j≤n of nonnegative
integers πi,j ∈ N such that:

� π is weakly decreasing in rows and columns (i.e., πi,j ≥ πi+1,j , πi,j ≥ πi,j+1 for all i, j),

� the maximal entry of π is less than or equal to m (i.e., π1,1 ≤ m).

From such a π we obtain a π′ ∈ PPm(n× n) by setting

π′i,j =

{
πi,j if i ≤ j,
πj,i if i > j.

This map π 7→ π′ gives the desired bijection. In particular, it is easily seen to be rowmotion
equivariant. �

In order to relate rowmotion of n to rowmotion of the rectangle, we have to review a
remarkable “reciprocity” property of rowmotion acting on the rectangle that was established by
Grinberg–Roby [30].

Theorem 5.8 ([30, Theorem 32]). For any π ∈ PPm(a+ b) we have

πa+1−i,b+1−j + Rowi+j−1(π)i,j = m

for all 1 ≤ i ≤ a and 1 ≤ j ≤ b.

Actually, Grinberg–Roby proved the birational version of Theorem 5.8; but the birational
version implies the piecewise-linear version we have stated via tropicalization. Theorem 5.8
allows us to relate n to the rectangle, as follows.

Lemma 5.9. There is a Row-equivariant bijection between PPM ( n−1) and the subset of those
π ∈ PP2M (n× n) for which Tp · Rown(π) = π.

Proof. This is basically proved by Grinberg–Roby in [30, Section 10] (they worked at the
birational level, but via tropicalization their results imply the corresponding piecewise-linear
statements). They explained how to embed PPM ( n−1) into PP2M (n×n) in a Row-equivariant
way. We now review their embedding.

Let us view a P -partition π ∈ PPM ( n−1) as triangular array π = (πi,j)1≤i,j≤n−1
i+j≤n

of non-

negative integers πi,j ∈ N such that:

� π is weakly decreasing in rows and columns (i.e., πi,j ≥ πi+1,j , πi,j ≥ πi,j+1 for all i, j),

� the maximal entry of π is less than or equal to m (i.e., π1,1 ≤ m).

From such a π we obtain a π′ ∈ PP2M (n× n) by setting

π′i,j =


πi,j +M if i+ j ≤ n,
M if i+ j = n+ 1,

M − Rowk(π)i−k,j−k, with k = i+ j − n− 1 if i+ j > n+ 1.

An example of the map π 7→ π′ in the case n = 3, M = 2 is

2 1

0
7→ 4 3 2

2 2 2

2 1 0
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In [30, Lemma 67] it is shown that the map π 7→ π′ is indeed an embedding of PPM ( n−1)
into PP2M (n× n) which is equivariant under rowmotion.

Moreover, [30, Theorem 65] implies that if π ∈ PP2M (n×n) is in the image of this embedding
of PPM ( n−1) into PP2M (n×n) then we will have Rown(π) = Tp(π). Indeed, that essentially
follows from the reciprocity result, Theorem 5.8. It also can be shown using Theorem 5.8 that
the only π ∈ PP2M (n × n) with Rown(π) = Tp(π) are in the image of this embedding. But
in fact, we can also establish that there are no other such π via a counting argument. Namely,
Corollary 4.11 implies that

#
{
π ∈ PP2M (n× n) : Tp · Rown(π) = π

}
= SymMac(n, 2M ; q 7→ −1).

Recall from Section 1 that

SymMac(n, 2M ; q 7→ −1) =
∏

1≤i≤j≤n−1

i+ j + 2M

i+ j
.

And it is known that #PPM ( n−1) =
∏

1≤i≤j≤n−1
i+j+2M
i+j ; see, for instance, [59, Case “(CG)”

of Theorem 1]. This completes the proof of the lemma. �

Remark 5.10. If m is odd, there are no π ∈ PPm(n×n) for which Tp·Rown(π) = π. This can be
seen either from the Grinberg–Roby reciprocity result, Theorem 5.8, or from our Corollary 4.11.

Remark 5.11. Recall the set CY(n, 2M) defined in Section 2: this can be thought of as the

subset of PP2M ( n−1) with even entries along the leftmost “file”. In Section 2 we explained
how CY(n, 2M) is naturally in bijection with the set of plane partitions π ∈ PP2M (n × n)
for which Tp · Pro(π) = π. Meanwhile, we just explained in the proof of Lemma 5.9 that
PPM ( n−1) is naturally in bijection with the set of plane partitions π ∈ PP2M (n × n) for
which Tp · Rown(π) = π. Then observe that

#CY(n, 2M) =
∏

1≤i≤j≤n−1

i+ j + 2M

i+ j
= #PPM ( n−1),

as was proved for instance in the paper of Proctor [59]. However, it is not at all a priori clear
that CY(n, 2M) and PPM ( n−1) have the same size, and constructing a bijection between
these two sets is rather difficult (a bijection appears for instance in [78]). Thus, by studying the
way these two operators interact with transposition, we uncovered another interesting “duality”
between promotion and rowmotion.

We can relate n to the rectangle by combining the previous two ideas.

Lemma 5.12. There is a Row-equivariant bijection between PPM ( n) and the subset of those
π ∈ PP2M (2n× 2n) for which Tp(π) = π and Row2n(π) = π.

Proof. This follows from combining the ideas in the proofs of Lemmas 5.7 and 5.9. There
is an obvious “transposition” symmetry of 2n−1 which reflects the poset across the vertical
line of symmetry. Let Tp: PPM ( 2n−1) → PPM ( 2n−1) denote the induced symmetry of
P -partitions. Then, by the same argument as in the proof of Lemma 5.7, PPM ( n) is in Row-
equivariant bijection with those π ∈ PPM ( 2n−1) with Tp(π) = π. Via the proof of Lemma 5.9
we can further embed PPM ( n) into PP2M (2n× 2n) in desired way. �

The preceding lemmas about how to embed the triangular posets into the rectangle allow us
to reformulate Conjectures 5.1, 5.2 and 5.3, as follows:
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Conjecture 5.13 (reformulation of Conjecture 5.1 in light of Lemma 5.7). For any k ∈ Z we
have that

#
{
π ∈ PPm(n× n) : Tp(π) = π,Rowk(π) = π

}
= F

(
q 7→ ζk

)
,

where ζ := eπi/n is a primitive (2n)th root of unity and

F (q) :=
∏

1≤i≤j≤n

(
1− qi+j+m−1

)(
1− qi+j−1

) .

Conjecture 5.14 (reformulation of Conjecture 5.2 in light of Lemma 5.9). For any k ∈ Z we
have that

#
{
π ∈ PP2M (n× n) : Tp · Rown(π) = π,Rowk(π) = π

}
= F

(
q 7→ ζk

)
,

where ζ := eπi/n is a primitive (2n)th root of unity and

F (q) :=
∏

1≤i≤j≤n−1

(
1− qi+j+2M

)(
1− qi+j

) .

Conjecture 5.15 (reformulation of Conjecture 5.3 in light of Lemma 5.12). For any k ∈ Z we
have that

#
{
π ∈ PP2M (2n× 2n) : Tp(π) = π,Row2n(π) = π,Rowk(π) = π

}
= F

(
q 7→ ζk

)
,

where ζ := eπi/2n is a primitive (4n)th root of unity and

F (q) :=
∏

1≤i,j≤n

(
1− q2(i+j+M−1)

)(
1− q2(i+j−1)

) .

Remark 5.16. Conjecture 5.15 follows easily from Conjecture 5.14 or Conjecture 5.13 via the
same kind of argument as in [5, proof of Proposition 2.4].

Corollaries 4.3 and 4.11 from the previous section say that for any g ∈ 〈Row,Tp〉, the number
of plane partitions in PPm(n × n) fixed by g is given by some kind of sieving phenomenon
evaluation of a polynomial with a simple product formula as a rational expression. In other
words, for any cyclic subgroup H ⊆ 〈Row,Tp〉, the number of plane partitions in PPm(n × n)
fixed by H is given by such an evaluation. Meanwhile, Conjectures 5.13, 5.14 and 5.15 assert that
for various noncyclic subgroups H ⊆ 〈Row,Tp〉, the number of plane partitions in PPm(n× n)
fixed by H is given by such an evaluation. This leads us to wonder the following:

Question 5.17. Is the number of plane partitions in PPm(n × n) fixed by H, where H is any
subgroup of 〈Row,Tp〉, given by a sieving phenomenon-type evaluation at a root of unity of
a polynomial with a simple product formula as a rational expression?

If Question 5.17 had a positive answer, it would be very similar to what happens with the
“classical” symmetries of plane partitions, where the 10 symmetry classes all have product
formulas for their enumeration (again see [44, 81]).

Remark 5.18. The polynomial F (q) appearing in Conjecture 5.1 is the principal specializa-
tion of the character of the irreducible SO(2n + 1) representation V (mωn), where ωn is the
minuscule weight of type Bn. (Technically one might have to work with the simply connected

double cover S̃O(2n+ 1), i.e., the so-called “spin group”.) Geometrically, this representation is
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the dual of the mth homogeneous component of the coordinate ring of the maximal orthogonal
Grassmannian OG(n, 2n+1). Similarly, the polynomial F (q) appearing in Conjecture 5.2 is (es-
sentially) the principal specialization of the character of the irreducible Sp(2n) representation
V (mωn), where ωn is the cominuscule weight of type Cn. Geometrically, this representation is
the dual of the mth homogeneous component of the coordinate ring of the Lagrangian Grass-
mannian LG(n, 2n). See Proctor [58, 59] or Stembridge [85] for more information about these
polynomials. At any rate, the fact that these polynomials are more-or-less Lie group charac-
ters naturally suggests an approach for resolving Conjectures 5.1 and 5.2: find a basis of the
corresponding representation indexed by the set of P -partitions in question and such that an
appropriate group element (e.g., the lift of a Coxeter element) permutes the basis according to
rowmotion (or, more likely, according to a conjugate “promotion”-like action). In other words,
extend Rhoades’s approach [63] to other types. The problem with this approach is that the naive
bases like the standard monomial basis fail to behave in the appropriate way, while the sophisti-
cated bases like the dual canonical basis or the theta basis are extremely hard to concretely get
one’s hands on, and doubly so outside of type A. (We do not mean to suggest that it is totally
hopeless to work in other types. For instance, the theory of plabic graphs [56, 76] is ultimately
the combinatorial underpinning of the Shen–Weng [79] proof of cyclic sieving, and the work of
Karpman [38, 39, 40] extends much of the theory of plabic graphs to the Lagrangian Grassman-
nian.) Our results in this paper point the way to an alternative but ultimately complementary
approach to Conjectures 5.1 and 5.2: stay in the type A world but impose symmetries.

A Plane partitions and semistandard tableaux

In this appendix we explain the correspondence between plane partitions and semistandard
tableaux of rectangular shape, and how the operators we are interested in (e.g., promotion)
behave under this correspondence.

A partition λ = (λ1 ≥ λ2 ≥ · · · ) is an infinite nonincreasing sequence of integers for which
λi = 0 for all i � 0. The nonzero λi are called the parts of λ. If we write a partition
as λ = (λ1, . . . , λk) that means that λi = 0 for i > k. A particularly important family of

partitions for us will be the rectangle partitions ma := (

a︷ ︸︸ ︷
m,m, . . . ,m). We represent a partition λ

via its Young diagram, which is the collection of boxes in rows with λi boxes left-justified in
row i. For example, the Young diagram of (4, 3, 1, 1) is

A semistandard Young tableau of shape λ is a filling of the boxes of the Young diagram of λ
with positive integers that is weakly increasing in rows and strictly increasing in columns. For
example, the following is a semistandard Young tableau of shape (4, 3, 1, 1):

1 3 3 6

2 5 5

4

5

We use SSYT(λ, k) to denote the set of semistandard Young tableaux of shape λ whose entries
belong to {1, 2, . . . , k}. Note that this set is empty if k is less than the number of parts of λ.
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Now we define the promotion operator ρ acting on SSYT(λ, k).3 Roughly speaking, promotion
behaves as follows: first we delete all entries of k in our tableau, leaving holes in their places;
then we slide the remaining entries into the holes so that the holes occupy the upper-left of the
Young diagram; then we increment by one all entries in the tableau; and finally we fill the holes
in the upper-left with 1’s. For example, with k = 6, an application of promotion might look like
the following:

1 3 3

2 4 6

4 5

6 6

delete 6’s−−−−−→ 1 3 3

2 4 •
4 5

• •

slide−−−→ • • •
1 3 3

2 4

4 5

increment−−−−−−→ • • •
2 4 4

3 5

5 6

fill in 1’s−−−−−→ 1 1 1

2 4 4

3 5

5 6

To formalize this definition would require more explanation of the sliding procedure. A precise
description is given in [63, Section 2]. In fact, these slides are the “jeu de taquin” moves of
Schützenberger [73, 74, 75] (see also the presentation of Haiman [34]).

Another closely related operator acting on SSYT(λ, k) is evacuation ε. It can also be defined
in terms of jeu de taquin slides. Evacuation roughly behaves as follows: first we rotate the
tableau 180◦; then we replace every entry by k+ 1 minus that entry; finally, we slide the entries
into the upper-left so that we get back to a Young diagram shape. For example, with k = 6, an
application of evacuation might look like the following:

1 3 3

2 4 6

4 5

6 6

rotate 180◦−−−−−−−→ 6 6

5 4

6 4 2

3 3 1

i 7→k+1−i−−−−−−→ 1 1

2 3

1 3 5

4 4 6

slide−−−→ 1 1 1

2 3 5

3 4

4 6

Again, to formalize this definition of evacuation we would need to explain the jeu de taquin
slides in more detail; a precise description is given in [63, Section 2].

However, rather than use jeu de taquin, we will instead work with different but equivalent
definitions of promotion and evacuation in terms of the so-called “Bender–Knuth involutions” [7].

Definition A.1. The ith Bender–Knuth involution, denoted BKi : SSYT(λ, k) → SSYT(λ, k),
for 1 ≤ i < k, is the operator which acts on a tableau T ∈ SSYT(λ, k) as follows: first we
“freeze” in place all i’s directly above (i + 1)’s, and all (i + 1)’s directly below i’s; and then,
in each row, we change unfrozen i’s into (i + 1)’s and unfrozen (i + 1)’s into i’s in the unique
way which preserves the semistandardness condition and so that the number of unfrozen i’s in
that row in the resulting tableau is the number of unfrozen (i+ 1)’s in that row in the original
tableau, and vice-versa. In other words, considering just the unfrozen i’s and (i+ 1)’s in a row,
we perform the transformation ix(i+ 1)y 7→ iy(i+ 1)x on these entries.

Example A.2. Let T ∈ SSYT((11, 10, 8, 4, 2), 6) be the following tableau:

T =
1 1 1 1 2 2 2 3 3 3 4

2 2 3 3 3 3 4 4 4 5

3 4 4 4 5 5 5 5

5 5 5 6

6 6

3There is no consensus in the literature about whether the operator ρ or ρ−1 is the one which should be called
“promotion”. We follow the convention of Rhoades [63] and Lam [46]; but for instance Bloom, Pechenik, and
Saracino [9] take the opposite convention. Of course, ultimately these differences in convention are inconsequential.
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Suppose we want to compute BK4(T ). First of all, we can restrict our attention to only the 4’s
and 5’s in the tableau, resulting in a picture that looks like this:

4

4 4 4 5

4 4 4 5 5 5 5

5 5 5

Then we “freeze” in place 4’s directly above 5’s and 5’s directly below 4’s. In the picture below
these frozen boxes have been shaded:

4

4 4 4 5

4 4 4 5 5 5 5

5 5 5

Then within each row we swap the number of unfrozen 4’s and 5’s, while preserving the weakly
decreasing requirement, resulting in the following:

5

4 4 4 5

4 4 4 4 5 5 5

4 5 5

Finally, to obtain BK4(T ), we put the entries which are not 4’s or 5’s back in as they were in T :

BK4(T ) =
1 1 1 1 2 2 2 3 3 3 5

2 2 3 3 3 3 4 4 4 5

3 4 4 4 4 5 5 5

4 5 5 6

6 6

It is clear that the BKi are indeed involutions; however, unlike the reflection operators si
which act on SSYT(λ, k) thanks to its crystal structure, note that the BKi do not satisfy the
braid relations, and hence do not give an action of the symmetric group on these tableaux.

We can define promotion and evacuation as a composition of the Bender–Knuth involutions.

Definition A.3. Promotion ρ : SSYT(λ, k) → SSYT(λ, k) is the following composition of the
Bender–Knuth involutions

ρ := BK1 · BK2 · · · BKk−2 · BKk−1.

Evacuation ε : SSYT(λ, k)→ SSYT(λ, k) is

ε := (BK1) · (BK2 · BK1) · · · (BKk−2 · · · BK2 · BK1) · (BKk−1 · · · BK2 · BK1).

Dual evacuation ε∗ : SSYT(λ, k)→ SSYT(λ, k) is

ε∗ := (BKk−1) · (BKk−2 · BKk−1) · · · (BK2 · · · BKk−2 · BKk−1) · (BK1 · · · BKk−2 · BKk−1).
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We did not discuss dual evacuation earlier but it turns out to be useful in understanding the
behavior of promotion and evacuation. It is a theorem of Gansner [27] (see also [9, 13]) that the
definitions of promotion and evacuation in terms of the Bender–Knuth involutions are the same
as those in terms of Schützenberger’s jeu de taquin moves.

As we will see in the next proposition, evacuation has a very simple behavior on tableaux of
rectangular shape. In order to record that behavior we need a little notation. So for a tableau
T ∈ SSYT(ma, k) we define T+ ∈ SSYT(ma, k) to be the tableau obtained by rotating T 180◦

and replacing every entry by k + 1 minus that entry.

The following proposition records some basic properties of promotion and evacuation which
are well known but are “folklore”. The best reference we have for these results is the paper of
Bloom–Pechenik–Saracino [9], who adapt the arguments presented by Stanley [83] in the case of
standard Young tableaux, and also use the fundamental connection of promotion and evacuation
to the Robinson–Schensted–Knuth correspondence.

Proposition A.4 (see [9, Theorem 2.9], building off of [83, Theorem 2.1]). For any shape λ and
any k we have the following relationship among the operators ρ, ε, ε∗ : SSYT(λ, k)→ SSYT(λ, k):

� ε2 = (ε∗)2 = id (the identity operator),

� ρε = ερ−1,

� ρk = εε∗.

Furthermore, if λ = ma is a rectangle then ε(T ) = ε∗(T ) = T+ for all tableaux T ∈ SSYT(ma, k).
Consequently, ρk = id if λ = ma is a rectangle.

Now we explain an equivalent, but very useful, way to think about semistandard Young
tableaux: namely, as Gelfand–Tsetlin patterns. In particular, Gelfand–Tsetlin patterns will serve
as the bridge between semistandard tableaux and plane partitions. The usefulness of Gelfand–
Tsetlin patterns for understanding operations on semistandard tableaux in terms of piecewise-
linear expressions was especially emphasized in the papers of Berenstein and Kirillov [42] and
Berenstein and Zelevinsky [8].

Definition A.5. Let λ be a partition and k an integer greater than or equal to the number
of parts of λ. A Gelfand–Tsetlin pattern of shape λ and length k is a triangular array π =
(πi,j)1≤i≤j≤k of nonnegative integers πi,j ∈ N such that:

� π is weakly decreasing in rows and columns (i.e., πi,j ≥ πi+1,j , πi,j ≥ πi,j+1 for all i, j),

� the main diagonal (π1,1, π2,2, . . . , πk,k) of π is equal to the partition λ.

We denote the set of such Gelfand–Tsetlin patterns by GT(λ, k).

There is a well-known bijection Φ: GT(λ, k) → SSYT(λ, k): for π ∈ GT(λ, k), the tableau
T = Φ(π) is the unique semistandard tableau such that for all 1 ≤ i ≤ k the diagonal
(πi,1, πi+1,2, . . . , πk,k+1−i) of π is the shape of the restriction of T to the entries {1, 2, . . . , k+1−i}.
To see that this is really a bijection, observe that πk,1 is the number of 1’s in T , and these must
all go in the first row; similarly πk−1,1 − πk,1 is the number of 2’s in the first row and πk−1,2

is the number of 2’s in the second row; and so on. In this way we can clearly reconstruct
a unique tableau T from π, and the inequalities imposed on the πi,j exactly correspond to the
semistandardness condition.
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Example A.6. Let λ = (3, 2, 1, 1, 0) and let π ∈ GT(λ, 5) be the following Gelfand–Tsetlin
pattern:

π =

3 3 3 1 1
2 1 1 0

1 1 0
1 0

0

Then T = Φ(π) ∈ SSYT(λ, 5) is the semistandard tableau

T =
1 3 3

3 5

4

5

Naturally we want to understand how promotion behaves in terms of Gelfand–Tsetlin pat-
terns. This is where the piecewise-linear toggles come in. We define the piecewise-linear toggle
τi,j : GT(λ, k)→ GT(λ, k) for 1 ≤ i < j ≤ k by

(τi,jπ)p,q :=

{
πp,q if (p, q) 6= (i, j),

min(πi,j−1, πi−1,j) + max(πi+1,j , πi,j+1)− πi,j if (p, q) = (i, j),

where we ignore πi,j with i, j outside of the bounds of the triangle (at least one term in each max
and min will exist). Observe that these are exactly the same as the τi,j defined in Section 1. We
again define Fl :=

∏
1≤i≤j≤k,
j−i=l

τi,j for 1 ≤ l ≤ k− 1 to be the composition of all the toggles along

the “lth diagonal” of our array. As Berenstein–Kirillov [42] explained, these diagonal toggles
are the same as the Bender–Knuth involutions:4

Proposition A.7 ([42, Proposition 2.2]). Viewing the Bender–Knuth involutions as operators
on GT(λ, k) via the bijection Φ, we have BKi = Fk−i for 1 ≤ i ≤ k − 1.

So ρ and ε can be described in terms of piecewise-linear dynamics on GT(λ, k).
Finally, let us concentrate on the rectangular case and the correspondence with plane par-

titions. So suppose that λ = ma, and let us take k = a + b to match our indexing of plane
partitions. Then consider what a Gelfand–Tsetlin pattern π ∈ GT(ma, a+ b) looks like. In the
upper-left, π has a length a triangle of entries which must all be m’s; in the lower-right, π has
a length b triangle of entries which must all be 0’s; and the other entries in π, whose values are
not forced, form an a× b rectangle. For example, with a = 3, b = 2, and m = 5, we have

π =

5 5 5 ∗ ∗
5 5 ∗ ∗

5 ∗ ∗
0 0

0

where the asterisks denote the entries whose values are not forced. What condition is placed on
these asterisk entries? Well, they certainly must be weakly decreasing in rows and columns, and
they must all be integers between 0 and m. In other words, they exactly form a plane partition
in PPm(a× b). And clearly any such plane partition can be placed in the asterisk entries.

4Hence one may view BK as honoring either Bender and Knuth or Berenstein and Kirillov.



36 S. Hopkins

In this way we obtain a bijection Ψ: PPm(a × b) → SSYT(ma, a + b): we extend a plane
partition π ∈ PPm(a×b) to a Gelfand–Tsetlin pattern in GT(ma, a+b) by appending a length a
triangle of m’s to its left and a length b triangle of 0’s below it; and then we map that Gelfand–
Tsetlin pattern to a semistandard tableau in SSYT(ma, a + b) via Φ. This is depicted in the
following example for a plane partition π ∈ PP4(2× 2):

π =
2 2

1 0
7→

4 4 2 2
4 1 0

0 0
0

7→ 1 1 3 3

3 4 4 4
= Ψ(π)

This construction is discussed, very briefly, in [17, pp. 516–517].

Remark A.8. There is a very naive way to obtain a semistandard Young tableau of rectangular
shape from a plane partition π ∈ PPm(a × b): rotate π 180◦, and then add i to all entries in
the ith row. The bijection Ψ is not this naive procedure. Indeed, this naive procedure produces
a tableau in SSYT(ba,m+ a), which is not the same set of tableaux that Ψ maps into.

Let us describe another way to view the bijection Ψ, which is also useful.

We start with the case m = 1. Note that a single column tableau T ∈ SSYT(1a, a + b) is
exactly the same as a subset I ⊆ {1, 2, . . . , a + b} of size a. So in this case Ψ is some bijection
Ψ: PP1(a × b)

∼−→ {I ⊆ {1, . . . , a + b} of size a}. In fact, this bijection is a correspondence
between Young diagrams that fit in an a × b rectangle and size a subsets of {1, 2, . . . , a + b}
which is ubiquitous in algebraic combinatorics, as we now explain. Let π ∈ PP1(a × b). The
boundary between the entries of 1 and 0 in π determines a lattice path of down and left steps
from the upper-right corner of the a× b grid to the lower-left corner. Writing this lattice path
as a word in the alphabet {D,L} with a D’s and b L’s (where D’s correspond to down steps
and L’s to left steps), the subset Ψ(π) ⊆ {1, 2, . . . , a + b} is the set of positions of D’s in this
word. This is depicted in the following example with a = 4 and b = 5:

π =

1 1 1 1 0

1 1 0 0 0

1 1 0 0 0

0 0 0 0 0

7→ LDLLDDLLD 7→ {2, 5, 6, 9} =

2

5

6

9

= Ψ(π).

Now we extend the construction from the previous paragraph to greater values of m. For
π, π′ ∈ PPm(a× b) we write π ≥ π′ to mean that π is entrywise greater than or equal to π′; and
we define π + π′ ∈ PPm+m′(a × b) for π ∈ PPm(a × b), π′ ∈ PPm

′
(a × b) to be their entrywise

sum. Let π ∈ PPm(a × b). There are unique plane partitions π1, π2, . . . , πm ∈ PP1(a × b) for
which π = π1 + π2 + · · ·+ πm and π1 ≥ π2 ≥ · · · ≥ πm; explicitly, we have

(πk)i,j =

{
1 if πi,j ≥ k,
0 otherwise,

for all 1 ≤ k ≤ m. Then Ψ(π) ∈ SSYT(ma, a+ b) is the tableau whose columns are the subsets
Ψ(π1),Ψ(π2), . . . ,Ψ(πm) in order. This is easily proven inductively: the condition πm−1 ≥ πm

means that placing the column Ψ(πm) to the right of the column Ψ(πm−1) will preserve the
tableau’s semistandardness; conversely, appending the column Ψ(πm) changes the entries in the
Gelfand–Tsetlin pattern of the tableau in exactly the way that corresponds to adding πm. This
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description of Ψ is depicted in the following example for a plane partition π ∈ PP4(2× 2):

π =
2 2

1 0
=

1 1

1 0
+

1 1

0 0
+

0 0

0 0
+

0 0

0 0

Ψ(π) =
1

3
+

1

4
+

3

4
+

3

4
=

1 1 3 3

3 4 4 4

We end this section by describing how the operators Pro, Co, and Tp on plane partitions
defined in Section 1 behave when viewed as operators on semistandard tableaux via the bijec-
tion Ψ. Unsurprisingly, Pro behaves as ρ (thus justifying the name promotion), while Co behaves
as evacuation. In order to record the behavior of transposition we need a little notation. So
for T ∈ SSYT(mn, 2n) we define T † ∈ SSYT(mn, 2n) to be the tableau obtained from T by
first replacing each entry by 2n + 1 minus that entry, and then replacing each column I by its
set-theoretic complement {1, 2, . . . , 2n} \ I.

Proposition A.9. Via the bijection Ψ: PPm(a× b)→ SSYT(ma, a+ b), view Pro and Co, and,
if a = b = n, also Tp, as operators on SSYT(ma, a+ b). Then:

� Pro(T ) = ρ(T ) for all T ∈ SSYT(ma, a+ b),

� Co(T ) = ε(T ) = ε∗(T ) = T+ for all T ∈ SSYT(ma, a+ b),

� (if a = b = n) Tp(T ) = T † for all T ∈ SSYT(mn, 2n).

Proof. The first bulleted item is immediate from the original description of Ψ in terms of
Gelfand–Tsetlin patterns, together with the description of the Bender–Knuth involutions as
compositions of toggles which appears in Proposition A.7 above.

The second and third bulleted items are easier to see from the alternate description of Ψ. (Of
course, with the second bulleted item we are implicitly applying the folklore Proposition A.4.)
It is easily checked that the behaviors of Co and Tp are as claimed for single column tableaux.
Furthermore, for T ∈ SSYT(ma, a + b), if the columns of T are I1, . . . , Im then the columns
of T+ will be I+

m, . . . , I
+
1 ; and for T ∈ SSYT(mn, 2n), if the columns of T are I1, . . . , Im then

the columns of T † will be I†1, . . . , I
†
m. Finally, we have π ≥ π′ ⇐⇒ Co(π′) ≥ Co(π) for

any pair π, π′ ∈ PP1(a × b); and similarly we have π ≥ π′ ⇐⇒ Tp(π) ≥ Tp(π′) for any
pair π, π′ ∈ PP1(n×n). These observations, together with the alternate description of Ψ, imply
the second and third bulleted items. �
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