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Abstract. We suggest the notion of perfect integrability for quantum spin chains and con-
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1 Introduction

Quantum spin chains are important models in integrable system. These models have numerous
deep connections with other areas of mathematics and physics. In this article, we would like to
suggest the notion of perfect integrability for quantum spin chains.

Let us recall Gaudin models and XXX spin chains. Let g be a simple (or reductive) Lie
(super)algebra and G the corresponding Lie group. Let Ag be an affinization of g where the
universal enveloping algebra U(g) of g can be identified as a Hopf subalgebra of Ag. Here Ag

is either the universal enveloping algebra of the current algebra U(g[t]) which describes the
symmetry for Gaudin models, or Yangian Y(g) associated to g for XXX spin chains. In both
cases the algebra Ag has a remarkable commutative subalgebra called the Bethe algebra. We
denote the Bethe algebra by Bg. The Bethe algebra Bg commutes with U(g). Take any finite-
dimensional irreducible representation M of Ag, then Bg acts naturally on the space of singular
vectors M sing. Let Bg(M

sing) be the image of Bg in End(M sing). The problem is to study the
spectrum of Bg(M

sing) acting on M sing.1

With the agreement with the philosophy of geometric Langlands correspondence, it is impor-
tant to understand and describe the finite-dimensional algebra Bg(M

sing) and the correspond-
ing scheme Spec(Bg(M

sing)). Or more generally, find a geometric object parameterizing the
eigenspaces of Bg when M runs over all finite-dimensional irreducible representations (up to
isomorphism). In Gaudin models, the underlying geometric objects are described by the sets of
monodromy-free Lg-opers with regular singularities of prescribed residues at evaluation points,
see [4, 21], where Lg is the Langlands dual of g. Moreover, when g = glN , the algebra Bg(M

sing)
is interpreted as the space of functions on the intersection of suitable Schubert cycles in a Grass-
mannian variety, see [16]. This interpretation gives a relation between representation theory and
Schubert calculus useful in both directions which has important applications in real algebraic
geometry, see [13, 16].

This paper is a contribution to the Special Issue on Representation Theory and Integrable Systems in honor
of Vitaly Tarasov on the 60th birthday and Alexander Varchenko on the 70th birthday. The full collection is
available at https://www.emis.de/journals/SIGMA/Tarasov-Varchenko.html

1The reason these models are called spin chains is that M is usually a tensor product of evaluation modules
where each factor corresponds to a particle of some spin.
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Any finite-dimensional unital commutative algebra B is a module over itself induced by
left multiplication. We call this module the regular representation of B. The dual space B∗
is naturally a B-module which is called the coregular representation. A Frobenius algebra is
a finite-dimensional unital commutative algebra whose regular and coregular representations
are isomorphic, see Section 2.6.

Let V be a finite-dimensional B-module. Let B(V ) be the image of B in End(V ). We say
that the B-module V is perfectly integrable if B acts on V cyclically and the algebra B(V ) is
a Frobenius algebra. Note that in this case, the B(V )-module V is isomorphic to the regular
and coregular representations of B(V ).

Based on the extensive study of quantum spin chains, see the evidences from [2, 4, 10, 15,
16, 17, 21], the following conjecture is expected to hold.

Conjecture 1.1. The Bg-module M sing is perfectly integrable.

In fact there is a family of commutative Bethe algebras B
µ
g depending on an element µ ∈ g∗

(resp. µ ∈ G). From here to Conjecture 1.2, we use the parenthesis to indicate the modifications
for XXX spin chains. If µ ∈ g∗ (resp. µ ∈ G) is a regular semi-simple element, we say that
the corresponding spin chain has regular quasi-periodic boundary condition. Moreover, if µ = 0
(resp. µ = Id), then the algebra B0

g (resp. BId
g ) coincides with the algebra Bg considered above.

If µ = 0 (resp. µ = Id), we say that the corresponding spin chain has periodic boundary
condition.

For regular quasi-periodic spin chains the Bethe algebra does not commute with U(g) and
one replaces M sing with M . Denote by B

µ
g (M) the image of Bµ

g in End(M). Let h be the Cartan
subalgebra of g and H the Cartan subgroup of G.

Conjecture 1.2. If µ ∈ h∗ (resp. µ ∈ H) is regular, then the B
µ
g -module M is perfectly inte-

grable.

For more general µ ∈ g∗, one has to replace M sing or M with an appropriate subspace of M
depending on µ, see Conjecture 2.9 in Section 2.8.

When Conjectures 1.1, 1.2, and 2.9 hold, we say that the corresponding quantum spin chains
are perfectly integrable.

The perfect integrability was shown for

� Gaudin models of glN in [15, 16] with periodic and regular quasi-periodic boundary con-
ditions;

� XXX (resp. XXZ) spin chains of glN associated to irreducible tensor products of vec-
tor representations in [17] (resp. [18]) with periodic and regular quasi-periodic boundary
conditions;

� XXX spin chains of gl1|1 associated to cyclic tensor products of polynomial representations
in [10] with periodic and regular quasi-periodic boundary conditions;

� XXX spin chains of glm|n associated to irreducible tensor products of vector representations
in [2] with periodic boundary condition.

Our main result confirms Conjectures 1.1 and 1.2 for Gaudin models of all finite types,
see Theorem 2.8. We deduce Theorem 2.8 from [4, Corollary 5], [21, Theorem 3.2], and [6,
Theorem 8.1.5].

Our suggestion to call the situations in Conjectures 1.1 and 1.2 “perfect integrability” is
motivated by Lemma 1.3 below.
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Let B be a finite-dimensional unital commutative algebra. Let V be a finite-dimensional
B-module and E : B → C a character, then the B-eigenspace and generalized B-eigenspace asso-
ciated to E in V are defined by

⋂
a∈B

ker(a|V − E(a)) and
⋂
a∈B

( ∞⋃
m=1

ker(a|V − E(a))m
)
,

respectively. Let B(V ) be the image of B in End(V ).

Lemma 1.3. If the B-module V is perfectly integrable, then every B-eigenspace in V has dimen-
sion one, and there exists a bijection between B-eigenspaces in V and Specm(B(V )) – the subset
of closed points in Spec(B(V )). Moreover, each generalized B-eigenspace is a cyclic B-module,
and the algebra B(V ) is a maximal commutative subalgebra in End(V ) of dimension dimV .

This lemma easily follows from general well-known facts about regular and coregular repre-
sentations of a finite-dimensional unital commutative algebra, see, e.g., [16, Section 3.3]. We
provide a proof of Lemma 1.3 in Section 2.6.

Note that we expect that the dimensions of eigenspaces are one from the general philosophy
of Bethe ansatz conjecture. The integrability in any sense always asserts that the algebra of
Hamiltonians is maximal commutative. And we also expect that the Bethe algebra has geometric
nature based on the geometric Langlands correspondence [6].

In the case of Gaudin models, it is proved in [21, Theorem 3.2] (resp. [4, Corollary 5])
that Bg (resp. B

µ
g with regular µ) acts cyclically on M sing (resp. M). For generic values of

evaluation parameters (in the periodic case or in the case of generic regular µ ∈ h∗) the action
of Bethe algebra is diagonalizable and we immediately obtain that eigenspaces have dimension
one. However, we cannot make such a conclusion for arbitrary parameters. Indeed, if a linear
operator acts cyclically on a vector space then all its eigenspaces have dimension one. But the
same result fails if we replace a single operator by a set of commuting linear operators, as the
following simple example shows.

Example. Let A = C[x1, x2]/
〈
x21, x

2
2, x1x2

〉
. Consider the regular representation A. Then

the eigenspace corresponding to the trivial character is spanned by x1 and x2 which is two-
dimensional.

We supplement the results of [4] and [21] with the nondegenerate symmetric bilinear form
on M which makes B

µ
g (M) Frobenius which allows us to use Lemma 1.3. The bilinear form

comes from the tensor product of Shapovalov forms on M , we show that all elements of Bethe
algebra B

µ
g (M) with µ ∈ h∗ are symmetric with respect to this form, see Lemma 2.6.

In the rest of the paper, we only deal with Gaudin models. We refer the readers to [7] for
details about the Bethe algebra of Yangian Y(g) (XXX spin chains). We expect the conjectures
with proper modifications also hold for XXZ and XYZ spin chains.

2 Perfect integrability of Gaudin models

2.1 Feigin–Frenkel center

In this section, we recall the definition of Feigin–Frenkel center and its properties.
Let g be a complex simple Lie algebra of rank r. Consider the affine Kac–Moody algebra ĝ,

ĝ = g
[
t, t−1

]
⊕ CK, g

[
t, t−1

]
= g⊗ C

[
t, t−1

]
,

where C
[
t, t−1

]
is the algebra of Laurent polynomials in t. For X ∈ g and s ∈ Z, we simply

write X[s] for X ⊗ ts. Let g− = g⊗ t−1C
[
t−1
]

and g[t] = g⊗ C[t].
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Let h∨ be the dual Coxeter number of g. Define the module V−h∨(g) as the quotient of U(ĝ)
by the left ideal generated by g[t] and K + h∨. We call the module V−h∨(g) the Vaccum module
at the critical level over ĝ. The vacuum module V−h∨(g) has a vertex algebra structure.

Define the subspace z(ĝ) of V−h∨(g) by

z(ĝ) = {v ∈ V−h∨(g) | g[t]v = 0}.

Using the PBW theorem, it is clear that V−h∨(g) is isomorphic to U(g−) as vector spaces. There
is an injective homomorphism from z(ĝ) to U(g−). Hence z(ĝ) is identified as a commutative
subalgebra of U(g−). We call z(ĝ) the Feigin–Frenkel center.

There is a distinguished element S1 ∈ z(ĝ) given by

S1 =

dim g∑
a=1

Xa[−1]2,

where {Xa} is an orthonormal basis of g with respect to the Killing form. The element S1 is
called the Segal–Sugawara vector.

Proposition 2.1 ([20]). The subalgebra z(ĝ) is the centralizer of S1 in U(g−).

Let e1, . . . , er, h1, . . . , hr, f1, . . . , fr be a set of Chevalley generators of g. Let $ : g → g
be the Cartan anti-involution sending e1, . . . , er, h1, . . . , hr, f1, . . . , fr to f1, . . . , fr, h1, . . . , hr,
e1, . . . , er, respectively. Let $̂ be the anti-involution on ĝ defined by

$̂ : ĝ→ ĝ, X[s] 7→ $(X)[s],

for all X ∈ g and s ∈ Z. We also call $̂ the Cartan anti-involution.

Corollary 2.2. The Feigin–Frenkel center z(ĝ) is invariant under $̂.

Proof. Since by Proposition 2.1, z(ĝ) is the centralizer of S1 in U(g−), the statement follows
from the fact that $̂(S1) = S1. �

2.2 Affine Harish-Chandra homomorphism

Let n+ be the nilpotent Lie subalgebra generated by e1, . . . , er. Let n− be the nilpotent Lie
subalgebra generated by f1, . . . , fr. Let h be the Cartan subalgebra generated by h1, . . . , hr.
One has the triangular decomposition g = n− ⊕ h⊕ n+.

The Lie algebra g is considered as a subalgebra of ĝ via identifying X ∈ g with X[0] ∈ ĝ. The
Lie subalgebra h acts on ĝ adjointly and hence acts on U(g−). Let U(g−)h be the centralizer
of h in U(g−).

Let J be the intersection of U(g−)h and the left ideal of U(g−) generated by t−1n−[t−1]. Then
we have the direct sum of vector spaces,

U(g−)h = U
(
t−1h

[
t−1
])
⊕ J. (2.1)

Hence we have the projection

f : U(g−)h → U
(
t−1h

[
t−1
])
.

It is clear that f is a homomorphism of algebras. We call f the affine Harish-Chandra homomor-
phism. We use the same letter f for the restriction map f : z(ĝ)→ U

(
t−1h

[
t−1
])

.

The following proposition is a part of [6, Theorem 8.1.5].
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Proposition 2.3. The homomorphism f : z(ĝ)→ U
(
t−1h

[
t−1
])

is injective.

Using Proposition 2.3, we improve Corollary 2.2 to the following proposition.

Proposition 2.4. For any element S ∈ z(ĝ), we have $̂(S) = S.

The proposition was proved in [14, Proposition 8.4] for type A and in [8, Proposition 6.1] for
types B and C.

Proof. Now take S ∈ z(ĝ) and write the decomposition of S as in (2.1), S = Sh + Sj,
where Sh ∈ U

(
t−1h

[
t−1
])

and Sj ∈ J . Then $̂(S) = $̂(Sh) + $̂(Sj). Note that $̂ fix ele-
ments in U

(
t−1h

[
t−1
])

and Sh ∈ U
(
t−1h

[
t−1
])

we have $̂(Sh) = Sh. Note also that $̂ maps
U
(
t−1n+

[
t−1
])

to U
(
t−1n−

[
t−1
])

and U
(
t−1n−

[
t−1
])

to U
(
t−1n+

[
t−1
])

, we have $̂(Sj) ∈ J
since J is the intersection of the h-centralizer U(g−)h with the left ideal of U(g−) generated
by t−1n−

[
t−1
]

and also the intersection of U(g−)h with the right ideal of U(g−) generated by
t−1n+

[
t−1
]
. It follows that

f(S) = Sh = f ◦ $̂(S).

Note that by Corollary 2.2 both S and $̂(S) are elements in z(ĝ). Since by Proposition 2.3 the
homomorphism f : z(ĝ)→ U

(
t−1h

[
t−1
])

is injective, we conclude that S = $̂(S), completing the
proof. �

2.3 Gaudin models

We recall the construction of Gaudin models from, e.g., [19, 21]. The coproduct of U(g−) is
given by

∆: X[s] 7→ X[s]⊗ 1 + 1⊗X[s], X ∈ g, s < 0.

Let ` be a positive integer. Using the iterated coproduct, one has the homomorphism

U(g−)→ U(g−)⊗(`+1).

For any z ∈ C×, one gets the evaluation map at z

ϕz : U(g−)→ U(g), X[s] 7→ zsX.

For any µ ∈ g∗, one obtains the character

ψµ : U(g−)→ C, X[s] 7→ δs,−1µ(X),

Fix a sequence of pairwise distinct nonzero complex numbers z = (z1, . . . , z`). Then using
these three homomorphisms, one obtains a new homomorphism

ϕz,µ : U(g−)→ U(g)⊗`, ϕz,µ(X[s]) =
∑̀
a=1

zsa(X)a + δs,−1µ(X),

where (X)a = 1⊗(a−1) ⊗X ⊗ 1⊗(`−a).

Set u − z = (u − z1, . . . , u − z`). Define the Gaudin algebra as a subalgebra generated
by elements in ϕu−z,µ(z(ĝ)) ⊂ U(g)⊗` for all u ∈ C \ {z1, . . . , z`}. The Gaudin algebra is
commutative and it is denoted by Az,µ. When µ = 0, the Gaudin algebra commutes with the
diagonal action of U(g), see, e.g., [19, Proposition 3].
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Let λ = (λ1, . . . , λ`) be a sequence of dominant integral weights. Denote by Vλi the finite-
dimensional irreducible g-module of highest weight λi. We set Vλ = ⊗`i=1Vλi and

(Vλ)sing = {v ∈ Vλ | n+v = 0}, Mλ,µ =

{
(Vλ)sing, if µ = 0,

Vλ, if µ ∈ h∗ is regular.

Here we identify h∗ with the subspace of g∗ consisting of all elements annihilating n+ ⊕ n−. By
the construction of Az,µ, Mλ,µ is an Az,µ-module.

Let Az,µ be the algebra of Hamiltonians andMλ,µ the spin chain. We call the corresponding
integrable system the Gaudin model. We say that the Gaudin model has periodic boundary
condition if µ = 0 and regular quasi-periodic boundary condition if µ ∈ h∗ is regular. We would
like to study the spectrum of Az,µ acting on Mλ,µ.

The following theorem is obtained in [4, Corollary 5] for any regular µ ∈ g∗ and in [21,
Theorem 3.2] for µ = 0.

Theorem 2.5. If µ ∈ h∗ is regular or if µ = 0, then the spaceMλ,µ is cyclic as an Az,µ-module.

2.4 Bethe algebra

Note that our definition of Gaudin models is slightly different from that in Introduction. In this
section, we define the Bethe algebra in U(g[t]) and clarify this point.

Following, e.g., [12, Section 5], we recall the definition of Bethe algebra using Feigin–Frenkel
center z(ĝ). Note that the Feigin–Frenkel center z(ĝ) is in U(g−) while the Bethe algebra is in
U(g[t]).

For X ∈ g and µ ∈ g∗, define the current X µ(u) by

X µ(u) = µ(X ) +
∑
r>0

X [r]u−r−1 ∈ U(g[t])
[[
u−1

]]
.

For any element a of the form

a =
∑
X1[−s1 − 1]X2[−s2 − 1] · · · Xk[−sk − 1] ∈ z(ĝ)

for some k ∈ Z>0, Xi ∈ g, si ∈ Z>0, define a series in u−1 whose coefficients are in U(g[t]) by

∑ (−1)k

s1!s2! · · · sk!
∂s1u X

µ
1 (u)∂s2u X

µ
2 (u) · · · ∂sku X

µ
k (u) ∈ U(g[t])

[[
u−1

]]
. (2.2)

The Bethe algebra B
µ
g is the subalgebra of U(g[t]) generated by the coefficients of all such series

of form (2.2) as a runs over z(ĝ).

The Bethe algebra B
µ
g (or Feigin–Frenkel center z(ĝ)) is considered as the universal Gaudin

algebra, see, e.g., [7]. The Gaudin algebra Az,µ in U(g)⊗` can also be obtained from B
µ
g by

taking the (` − 1)-th fold coproduct and then applying to the i-th factor the evaluation map
at zi for every 1 6 i 6 `. In particular, the image of the Gaudin algebra Az,µ acting on Vλ
coincides with that of Bethe algebra B

µ
g acting on tensor product of evaluation modules Vλ with

evaluation points at z = (z1, . . . , z`), see [21, Propositions 2.3 and 2.5] or [3, 5, 19]. Note that
in this case, all finite-dimensional irreducible U(g[t])-modules are tensor products of evaluation
modules with pairwise distinct evaluation parameters.
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2.5 Shapovalov form

For a dominant integral weight λ, there is a unique nondegenerate symmetric bilinear form Sλ
on Vλ such that

Sλ(vλ, vλ) = 1, Sλ(Xv,w) = Sλ(v,$(X)w),

where vλ is a highest weight vector of Vλ and v, w ∈ Vλ. We call Sλ the Shapovalov form on Vλ.
The Shapovalov form Sλ is positive definite on the real part of Vλ.

The Shapovalov forms Sλi induce a nondegenerate symmetric bilinear form Sλ = ⊗`i=1Sλi
on Vλ. The restriction of Sλ on the singular subspace (Vλ)sing is also nondegenerate.

Suppose µ ∈ h∗, then it is clear that

Sλ(ϕz,µ(X[s])v, w) = Sλ(v, ϕz,µ($(X)[s])w) = Sλ(v, ϕz,µ ◦ $̂(X[s])w), (2.3)

for all v, w ∈ Vλ and X ∈ g.
Let ρλ,z,µ : Az,µ → End(Mλ,µ) be the representation of the natural action of Az,µ on Mλ,µ.

Let Aλ,z,µ be the image of Az,µ under ρλ,z,µ.

Lemma 2.6. Let a ∈ Aλ,z,µ and v, w ∈Mλ,µ. If µ ∈ h∗, then we have Sλ(av, w) = Sλ(v, aw).

Proof. The statement follows from (2.3) and Proposition 2.4. �

2.6 Frobenius algebra

Let A be a finite-dimensional commutative unital algebra. If there exists a nondegenerate
symmetric bilinear form (·, ·) on A such that

(ab, c) = (a, bc) for all a, b, c ∈ A,

then it is clear that the regular and coregular representations of A are isomorphic. Thus A is
a Frobenius algebra.

We prepare the following lemma for the proof of the main theorem. Suppose A is a unital
commutative algebra acting on a finite-dimensional space V , ρ : A → End(V ). Let A be the
image of A under ρ in End(V ). Clearly, A is a finite-dimensional unital commutative algebra.

Lemma 2.7. Suppose A acts on V cyclically. If there is a nondegenerate symmetric bilinear
form (·|·) on V such that

(av|w) = (v|aw), for all a ∈ A, v, w ∈ V,

then the algebra A is a Frobenius algebra. In particular, the A-module V is perfectly integrable.

Proof. Let v+ be a cyclic vector of the action of A on V . Define a linear map ξ by

ξ : A→ V, a 7→ av+.

Clearly, ξ is surjective.
We claim that ξ is injective. Indeed, suppose that a ∈ ker ξ, then a ∈ End(V ) and av+ = 0.

Hence aa′v+ = a′av+ = 0 for all a′ ∈ A, namely a ξ(A) = 0. Since ξ(A) = V , we conclude
that aV = 0. Therefore a = 0, which implies ξ is injective and hence a bijection. Then it is
clear that ξ defines an A-module isomorphism between the regular representation of A and the
A-module V .

Define a bilinear form (·, ·) on A as follows,

(a, b) = (av+|bv+), for all a, b ∈ A.
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Since (·|·) is symmetric, so is (·, ·). Because (·|·) is nondegenerate and ξ is bijective, the form
(·, ·) is nondegenerate as well. For a, b, c ∈ A, we also have

(ab, c) = (abv+|cv+) = (bav+|cv+) = (av+|bcv+) = (a, bc).

Hence A is a Frobenius algebra. �

Since Lemma 1.3 is central to the results of the present paper, we also provide a detailed
proof for it.

Proof of Lemma 1.3. To simplify the notation, we write B for B(V ). If the B-module V
is perfectly integrable, then the B-module V is isomorphic to the regular representation B
and coregular representation B∗. Note that the B-eigenspaces are essentially the same as B-
eigenspaces, thus we shall use B-eigenspaces instead.

Let ψ ∈ B∗ be a B-eigenvector for the coregular representation B∗ with the eigenvalue
ξψ ∈ B∗, namely aψ = ξψ(a)ψ for any a ∈ B. It is clear that ξψ is a character of B.

On one hand, by definition of coregular representation, we have (aψ)(1) = ψ(a · 1) = ψ(a)
for any a ∈ B. On the other hand, since ψ is a B-eigenvector, we have

(aψ)(1) =
(
ξψ(a)ψ

)
(1) = ξψ(a)ψ(1)

for any a ∈ B. Therefore ψ(a) = ξψ(a)ψ(1) for any a ∈ B, which means the B-eigenvector ψ is
proportional to the corresponding eigenvalue ξψ. This shows that every B-eigenspace in V has
dimension one.

For any character ξ ∈ B∗ and any a, b ∈ B, we have

(aξ)(b) = ξ(ab) = ξ(a)ξ(b).

Therefore, any character ξ ∈ B∗ is a B-eigenvector with the eigenvalue ξ.
Note that the characters of B are parameterized by their kernels, that is the maximal ideals

of B. Combining the facts above, we conclude that there is a bijection between B-eigenspaces
and Specm(B), namely the maximal ideals of B.

We then show that each generalized B-eigenspace is a cyclic B-module. We call a finite-
dimensional commutative algebra A local if it has a unique maximal ideal m. Hence it has a
unique character ζ ∈ A∗. Moreover, m is nilpotent, see [1, Proposition 8.6]. Therefore, the
local algebra A itself as the regular representation is the generalized A-eigenspace corresponding
to the eigenvalue ζ as a − ζ(a) ∈ ker ζ = m. Note that every finite-dimensional commutative
algebra is a direct sum of local algebras, see [1, Theorem 8.7]. In addition, each local summand
is a generalized A-eigenspace with the corresponding eigenvalue uniquely determined by the
summand, see the first paragraph of the proof of [1, Theorem 8.7]. This part now follows from
the fact that V is isomorphic to the regular representation of B.

It is clearly that the algebra B is maximal commutative in End(V ). The last statement
follows from the first half of the proof of Lemma 2.7. �

2.7 Perfect integrability of Gaudin models

The following is our main theorem which asserts Gaudin models with periodic and regular
quasi-periodic boundary conditions are perfectly integrable.

Theorem 2.8. If µ ∈ h∗ is regular or if µ = 0, then the Az,µ-moduleMλ,µ is perfectly integrable.

Proof. By Theorem 2.5, Gaudin algebra Az,µ acts onMλ,µ cyclically. Recall that ρλ,z,µ : Az,µ
→ End(Mλ,µ) and Aλ,z,µ = ρλ,z,µ(Az,µ). It remains to show that Aλ,z,µ is Frobenius.

By Lemma 2.6, we can apply Lemma 2.7 for the case A = Az,µ, A = Aλ,z,µ, V =Mλ,µ, and
(·|·) = Sλ(·, ·). Therefore we conclude that the algebra Aλ,z,µ is a Frobenius algebra. �
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Theorem 2.8 gives the following important facts. By Theorem 2.8, Lemma 1.3, and [21,
Corollary 3.3], we see that the joint eigenvectors (up to proportionality) of the Gaudin algebra
in V sing

λ are in one-to-one correspondence with monodromy-free Lg-opers on the projective line
with regular singularities at the points z1, . . . , z`,∞ and the prescribed residues at the singular
points. Here z1, . . . , z` are arbitrary pairwise distinct complex numbers, cf. [21, Corollary 3.4].
Similarly, when g is of type B or C (resp. G2), one deduces from [11, Theorem 4.5] (resp. [9,
Theorem 5.8]) that there exists a bijection between joint eigenvectors (up to proportionality) of
the Gaudin algebra in V sing

λ and self-dual (resp. self-self-dual) spaces of polynomials in a suitable
intersection of Schubert cells in Grassmannian.

2.8 Conjecture for general µ ∈ g∗

For an arbitrary µ ∈ g∗ ∼= g, there exists an element g ∈ G such that gµg−1 is in the negative
Borel part b− = n− ⊕ h. Thus, without loss of generality, we can assume that µ ∈ b−.

Let zµ(g) be the centralizer of µ in g. It is known that Az,µ commutes with the diagonal
action of zµ(g), see [19, Proposition 4].

Let Vλ be as before. Define Mλ,µ as a subspace of Vλ by

Mλ,µ := {v ∈ Vλ |xv = 0, for all x ∈ zµ(g) ∩ n+}.

Then Az,µ acts on Mλ,µ.

Conjecture 2.9. The Az,µ-module Mλ,µ is perfectly integrable.
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