Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 140, 9 pages      arXiv:2010.10321      https://doi.org/10.3842/SIGMA.2020.140

An Explicit Example of Polynomials Orthogonal on the Unit Circle with a Dense Point Spectrum Generated by a Geometric Distribution

Alexei Zhedanov
School of Mathematics, Renmin University of China, Beijing 100872, China

Received November 02, 2020, in final form December 19, 2020; Published online December 21, 2020

Abstract
We present a new explicit family of polynomials orthogonal on the unit circle with a dense point spectrum. This family is expressed in terms of $q$-hypergeometric function of type ${_2}\phi_1$. The orthogonality measure is the wrapped geometric distribution. Some ''classical'' properties of the above polynomials are presented.

Key words: polynomials orthogonal on the unit circle; wrapped geometric dustribution; dense point spectrum.

pdf (304 kb)   tex (15 kb)  

References

  1. Askey R., Comments to Gabor Szegő ''Collected papers, Vol. 1'', Contemporary Mathematicians, Birkhäuser, Boston, Mass., 1982, 806-811.
  2. Bannai E., Ito T., Algebraic combinatorics. I. Association schemes, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984.
  3. Costa M.S., Godoy E., Lamblém R.L., Sri Ranga A., Basic hypergeometric functions and orthogonal Laurent polynomials, Proc. Amer. Math. Soc. 140 (2012), 2075-2089.
  4. Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and its Applications, Vol. 96, Cambridge University Press, Cambridge, 2004.
  5. Geronimus Ya.L., Polynomials orthogonal on a circle and their applications, Amer. Math. Soc. Translation 1954 (1954), 79 pages.
  6. Grünbaum F.A., The bispectral problem: an overview, in Special Functions 2000: Current Perspective and Future Directions (Tempe, AZ), NATO Sci. Ser. II Math. Phys. Chem., Vol. 30, Editors J. Bustoz, M.E.H. Ismail, S.K. Suslov, Kluwer Acad. Publ., Dordrecht, 2001, 129-140.
  7. Hendriksen E., van Rossum H., Orthogonal Laurent polynomials, Indag. Math. 89 (1986), 17-36.
  8. Jacob S., Jayakumar K., Wrapped geometric distribution: a new probability model for circular data, J. Stat. Theory Appl. 12 (2013), 348-355.
  9. Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010, earlier edition available at https://homepage.tudelft.nl/11r49/askey.html.
  10. Lagendijk A., van Tiggelen B., Wiersma D., Fifty years of Anderson localization, Phys. Today 62 (2009), no. 8, 24-29.
  11. Leonard D.A., Orthogonal polynomials, duality and association schemes, SIAM J. Math. Anal. 13 (1982), 656-663.
  12. Lubinsky D.S., Saff E.B., Convergence of Padé approximants of partial theta functions and the Rogers-SzegHo polynomials, Constr. Approx. 3 (1987), 331-361.
  13. Magnus A.P., Special nonuniform lattice (snul) orthogonal polynomials on discrete dense sets of points, J. Comput. Appl. Math. 65 (1995), 253-265.
  14. Magnus A.P., Semi-classical orthogonal polynomials on the unit circle, Preprint MAPA 3072A, available at https://perso.uclouvain.be/alphonse.magnus/num3/m3xxx99.pdf.
  15. Mardia K.V., Jupp P.E., Directional statistics, Wiley Series in Probability and Statistics, John Wiley & Sons, Ltd., Chichester, 2000.
  16. Pastro P.I., Orthogonal polynomials and some $q$-beta integrals of Ramanujan, J. Math. Anal. Appl. 112 (1985), 517-540.
  17. Simon B., Orthogonal polynomials on the unit circle. Part 1. Classical theory, American Mathematical Society Colloquium Publications, Vol. 54, Amer. Math. Soc., Providence, RI, 2005.
  18. Spiridonov V., Zhedanov A., Classical biorthogonal rational functions on elliptic grids, C. R. Math. Acad. Sci. Soc. R. Can. 22 (2000), 70-76.
  19. Terwilliger P., Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra Appl. 330 (2001), 149-203, arXiv:math.RA/0406555.
  20. Tsujimoto S., Vinet L., Zhedanov A., An algebraic description of the bispectrality of the biorthogonal rational functions of Hahn type, Proc. Amer. Math. Soc., to appear, arXiv:2005.04217.
  21. Tsujimoto S., Zhedanov A., Elliptic hypergeometric Laurent biorthogonal polynomials with a dense point spectrum on the unit circle, SIGMA 5 (2009), 033, 30 pages, arXiv:0809.2574.
  22. Vinet L., Zhedanov A., Spectral transformations of the Laurent biorthogonal polynomials. II. Pastro polynomials, Canad. Math. Bull. 44 (2001), 337-345.
  23. Vinet L., Zhedanov A., A unified algebraic underpinning for the Hahn polynomials and rational functions, arXiv:2009.05905.
  24. Zhedanov A., The ''classical'' Laurent biorthogonal polynomials, J. Comput. Appl. Math. 98 (1998), 121-147.
  25. Zhedanov A., Biorthogonal rational functions and the generalized eigenvalue problem, J. Approx. Theory 101 (1999), 303-329.
  26. Zhedanov A., On the polynomials orthogonal on regular polygons, J. Approx. Theory 97 (1999), 1-14.
  27. Zhedanov A., Elliptic polynomials orthogonal on the unit circle with a dense point spectrum, Ramanujan J. 19 (2009), 351-384, arXiv:0711.4696.

Previous article  Next article  Contents of Volume 16 (2020)