Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 142, 52 pages      arXiv:2007.03174      https://doi.org/10.3842/SIGMA.2020.142
Contribution to the Special Issue on Elliptic Integrable Systems, Special Functions and Quantum Field Theory

An Elliptic Hypergeometric Function Approach to Branching Rules

Chul-hee Lee a, Eric M. Rains b and S. Ole Warnaar c
a) School of Mathematics, Korea Institute for Advanced Study, Seoul 02455, Korea
b) Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA
c) School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia

Received July 08, 2020, in final form December 09, 2020; Published online December 23, 2020

Abstract
We prove Macdonald-type deformations of a number of well-known classical branching rules by employing identities for elliptic hypergeometric integrals and series. We also propose some conjectural branching rules and allied conjectures exhibiting a novel type of vanishing behaviour involving partitions with empty 2-cores.

Key words: branching formulas; elliptic hypergeometric series; elliptic Selberg integrals; interpolation functions; Koornwinder polynomials; Littlewood identities; Macdonald polynomials.

pdf (763 kb)   tex (57 kb)  

References

  1. Albion S.P., Rains E.M., Warnaar S.O., AFLT-type Selberg integrals, arXiv:2001.05637.
  2. Andrews G.E., On $q$-analogues of the Watson and Whipple summations, SIAM J. Math. Anal. 7 (1976), 332-336.
  3. Baker T.H., Forrester P.J., Transformation formulas for multivariable basic hypergeometric series, Methods Appl. Anal. 6 (1999), 147-164, arXiv:math.QA/9803146.
  4. Bressoud D., Ismail M.E.H., Stanton D., Change of base in Bailey pairs, Ramanujan J. 4 (2000), 435-453, arXiv:math.CO/9909053.
  5. Coskun H., Gustafson R.A., Well-poised Macdonald functions $W_\lambda$ and Jackson coefficients $\omega_\lambda$ on $BC_n$, in Jack, Hall-Littlewood and Macdonald polynomials, Contemp. Math., Vol. 417, Amer. Math. Soc., Providence, RI, 2006, 127-155, arXiv:math.CO/0412153.
  6. de Bruijn N.G., On some multiple integrals involving determinants, J. Indian Math. Soc. (N.S.) 19 (1955), 133-151.
  7. van Diejen J.F., Emsiz E., Pieri formulas for Macdonald's spherical functions and polynomials, Math. Z. 269 (2011), 281-292, arXiv:1009.4482.
  8. van Diejen J.F., Emsiz E., Branching formula for Macdonald-Koornwinder polynomials, J. Algebra 444 (2015), 606-614, arXiv:1408.2280.
  9. van Diejen J.F., Emsiz E., Branching rules for symmetric hypergeometric polynomials, in Representation Theory, Special Functions and Painlevé Equations - RIMS 2015, Adv. Stud. Pure Math., Vol. 76, Math. Soc. Japan, Tokyo, 2018, 125-153, arXiv:1601.06186.
  10. van Diejen J.F., Spiridonov V.P., An elliptic Macdonald-Morris conjecture and multiple modular hypergeometric sums, Math. Res. Lett. 7 (2000), 729-746.
  11. van Diejen J.F., Spiridonov V.P., Elliptic Selberg integrals, Int. Math. Res. Not. 2001 (2001), 1083-1110.
  12. Frenkel I.B., Turaev V.G., Elliptic solutions of the Yang-Baxter equation and modular hypergeometric functions, in The Arnold-Gelfand Mathematical Seminars, Birkhäuser Boston, Boston, MA, 1997, 171-204.
  13. Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and its Applications, Vol. 96, Cambridge University Press, Cambridge, 2004.
  14. Gustafson R.A., A generalization of Selberg's beta integral, Bull. Amer. Math. Soc. (N.S.) 22 (1990), 97-105.
  15. Hoshino A., Shiraishi J., Macdonald polynomials of type $C_n$ with one-column diagrams and deformed Catalan numbers, SIGMA 14 (2018), 101, 33 pages, arXiv:1801.09939.
  16. Hoshino A., Shiraishi J., Branching rules for Koornwinder polynomials with one column diagrams and matrix inversions, SIGMA 16 (2020), 084, 28 pages, arXiv:2002.02148.
  17. Ito M., Noumi M., Derivation of a $BC_n$ elliptic summation formula via the fundamental invariants, Constr. Approx. 45 (2017), 33-46, arXiv:1504.07108.
  18. King R.C., Branching rules for classical Lie groups using tensor and spinor methods, J. Phys. A: Math. Gen. 8 (1975), 429-449.
  19. Koike K., Terada I., Young-diagrammatic methods for the representation theory of the classical groups of type $B_n$, $C_n$, $D_n$, J. Algebra 107 (1987), 466-511.
  20. Koornwinder T.H., Askey-Wilson polynomials for root systems of type $BC$, in Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemp. Math., Vol. 138, Amer. Math. Soc., Providence, RI, 1992, 189-204.
  21. Krattenthaler C., Identities for classical group characters of nearly rectangular shape, J. Algebra 209 (1998), 1-64, arXiv:math.RT/9808118.
  22. Kwon J.H., Combinatorial extension of stable branching rules for classical groups, Trans. Amer. Math. Soc. 370 (2018), 6125-6152, arXiv:1512.01877.
  23. Lam T., Lapointe L., Morse J., Shimozono M., The poset of $k$-shapes and branching rules for $k$-Schur functions, Mem. Amer. Math. Soc. 223 (2013), vi+101 pages.
  24. Lascoux A., Warnaar S.O., Branching rules for symmetric functions and $\mathfrak{sl}_n$ basic hypergeometric series, Adv. in Appl. Math. 46 (2011), 424-456, arXiv:0903.3996.
  25. Littlewood D.E., The theory of group characters and matrix representations of groups, Oxford University Press, New York, 1940.
  26. Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995.
  27. Macdonald I.G., Orthogonal polynomials associated with root systems, Sém. Lothar. Combin. 45 (2000), Art. B45a, 40 pages, arXiv:math.QA/0011046.
  28. Mimachi K., A duality of MacDonald-Koornwinder polynomials and its application to integral representations, Duke Math. J. 107 (2001), 265-281.
  29. Naito S., Sagaki D., An approach to the branching rule from ${\mathfrak{sl}}_{2n}(\mathbb C)$ to ${\mathfrak{sp}}_{2n}(\mathbb C)$ via Littelmann's path model, J. Algebra 286 (2005), 187-212.
  30. Noumi M., Shiraishi J., A direct approach to the bispectral problem for the Ruijsenaars-Macdonald $q$-difference operators, arXiv:1206.5364.
  31. Okada S., Applications of minor summation formulas to rectangular-shaped representations of classical groups, J. Algebra 205 (1998), 337-367.
  32. Okounkov A., ${\rm BC}$-type interpolation Macdonald polynomials and binomial formula for Koornwinder polynomials, Transform. Groups 3 (1998), 181-207, arXiv:q-alg/9611011.
  33. Okounkov A., Olshanski G., Shifted Schur functions. II. The binomial formula for characters of classical groups and its applications, in Kirillov's Seminar on Representation Theory, Amer. Math. Soc. Transl. Ser. 2, Vol. 181, Amer. Math. Soc., Providence, RI, 1998, 245-271.
  34. Proctor R.A., Shifted plane partitions of trapezoidal shape, Proc. Amer. Math. Soc. 89 (1983), 553-559.
  35. Rains E.M., ${\rm BC}_n$-symmetric polynomials, Transform. Groups 10 (2005), 63-132, arXiv:math.QA/0112035.
  36. Rains E.M., $BC_n$-symmetric Abelian functions, Duke Math. J. 135 (2006), 99-180, arXiv:math.CO/0402113.
  37. Rains E.M., Limits of elliptic hypergeometric integrals, Ramanujan J. 18 (2009), 257-306, arXiv:math.CA/0607093.
  38. Rains E.M., Transformations of elliptic hypergeometric integrals, Ann. of Math. 171 (2010), 169-243, arXiv:math.QA/0309252.
  39. Rains E.M., Elliptic Littlewood identities, J. Combin. Theory Ser. A 119 (2012), 1558-1609, arXiv:0806.0871.
  40. Rains E.M., Multivariate quadratic transformations and the interpolation kernel, SIGMA 14 (2018), 019, 69 pages, arXiv:1408.0305.
  41. Rains E.M., Vazirani M., Vanishing integrals of Macdonald and Koornwinder polynomials, Transform. Groups 12 (2007), 725-759.
  42. Rains E.M., Warnaar S.O., Bounded Littlewood identities, Mem. Amer. Math. Soc., to appear, arXiv:1506.02755.
  43. Rosengren H., A proof of a multivariable elliptic summation formula conjectured by Warnaar, in $q$-series with applications to combinatorics, number theory, and physics (Urbana, IL, 2000), Contemp. Math., Vol. 291, Amer. Math. Soc., Providence, RI, 2001, 193-202, arXiv:math.CA/0101073.
  44. Rosengren H., Schlosser M.J., Multidimensional matrix inversions and elliptic hypergeometric series on root systems, SIGMA 16 (2020), 088, 21 pages, arXiv:2005.02203.
  45. Rosengren H., Warnaar S.O., Elliptic hypergeometric functions associated with root systems, in Encyclopedia of Special Functions: The Askey-Bateman Project, Vol. 2, Multivariable Special Functions, Cambridge University Press, Cambridge, 2020, 159-186, arXiv:1704.08406.
  46. Ruijsenaars S.N.M., First order analytic difference equations and integrable quantum systems, J. Math. Phys. 38 (1997), 1069-1146.
  47. Schumann B., Torres J., A non-Levi branching rule in terms of Littelmann paths, Proc. Lond. Math. Soc. 117 (2018), 1077-1100, arXiv:1607.08225.
  48. Shiraishi J., A conjecture about raising operators for Macdonald polynomials, Lett. Math. Phys. 73 (2005), 71-81, arXiv:math.QA/0503727.
  49. Spiridonov V.P., On the elliptic beta function, Russian Math. Surveys 56 (2001), 185-186.
  50. Spiridonov V.P., Theta hypergeometric series, in Asymptotic Combinatorics with Application to Mathematical Physics (St. Petersburg, 2001), NATO Sci. Ser. II Math. Phys. Chem., Vol. 77, Kluwer Acad. Publ., Dordrecht, 2002, 307-327, arXiv:math.CA/0303204.
  51. Stanley R.P., Enumerative combinatorics, Vol. 2, Cambridge Studies in Advanced Mathematics, Vol. 62, Cambridge University Press, Cambridge, 1999.
  52. Warnaar S.O., Summation and transformation formulas for elliptic hypergeometric series, Constr. Approx. 18 (2002), 479-502, arXiv:math.QA/0001006.
  53. Warnaar S.O., Extensions of the well-poised and elliptic well-poised Bailey lemma, Indag. Math. (N.S.) 14 (2003), 571-588, arXiv:math.CA/0309241.
  54. Warnaar S.O., Summation formulae for elliptic hypergeometric series, Proc. Amer. Math. Soc. 133 (2005), 519-527, arXiv:math.CA/0309242.

Previous article  Next article  Contents of Volume 16 (2020)