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Abstract. We extend the results of Riemannian geometry over finite groups and provide
a full classification of all linear connections for the minimal noncommutative differential cal-
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continuous limits.
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1 Introduction

Noncommutative geometry [8, 14, 24] offers new insight into spaces and their generalizations
by allowing to skip the traditional assumptions of points and to use the methods of differential
geometry that are adaptable to the algebraic language. The construction of differential calculi
has been one of the first steps that allowed the extension of the formalism of gauge theory to
the realm of noncommutative spaces. In particular, the spaces that consist of a finite number
of points or discrete lattices have appeared not only as discrete approximations of differentiable
spaces but as manifolds in the generalized sense [2, 13, 17].

One of the crucial aspects of differential geometry is, however, the link between the metric
aspects, that is, distances and the norm on the space of states with the relevant objects in the
differential algebra. In the classical differential geometry this link is provided by the metric tensor
and leads to the notion of metric compatible and torsion-free linear connections that provide
relevant and physically significant constructions of the curvature and appropriate geometrical
objects like Ricci tensor and the scalar curvature. The noncommutative geometry has been,
so far, unable to retrace these steps in full generality despite many efforts. Apart from the
usual problem of the choice of the differential calculus for the given algebra, the main problem
is the definition of the metric over the bimodule of differential forms and the linear connection
[25, 29]. The choice of the metric and the linear connection that are compatible with the
bimodule structure of the differential forms lead necessarily to severe restrictions not only on
the possible metrics [31] but also on connections [19] and curvature [18].
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Recently an updated version of the approach to linear connections for a special type of
differential calculi was studied in general and for particular examples of noncommutative spaces
[9, 10, 11, 12].

A systematic approach to the general issue of bimodule linear connections and bimodule
metrics over the differential forms was started by Majid [5, 7] and developed in [6]. The formalism
used there allows to generalize in a systematic way almost all classical notions like torsion-freeness
and Ricci and scalar curvature [8] (depending on certain choices).

It is worth mentioning that the Connes’ spectral approach based on the Dirac operators [14]
that was much successful in the reconstruction of the Einstein–Hilbert gravity action for the
standard and modified almost-commutative geometries [15] can be applied to the studies of
the generalized scalar of curvature for certain noncommutative manifolds, in particular the
noncommutative tori (see [20, 21] and [16] for the specific example of an asymmetric torus).
Recently progress in recovering some geometric objects like Ricci tensor was made [22], yet
there is currently no method to recover all such objects, e.g., the torsion, through the spectral
methods. Nevertheless, there exists a huge discrepancy between the usual methods of recovering
the geometric objects like the scalar of curvature for the manifolds and their deformations and
the attempt to use of spectral methods [3, 4, 23, 30] in the finite-dimensional case.

In this paper we start systematic computations of linear connections for finite groups, starting
with the easiest example of finite cyclic groups and their products.

This extends the known results to metrics, which are more general than the so-called quantum
symmetric or edge symmetric already explored in [1, 26]. We provide a complete classification of
linear connections that are torsion-free and compatible with any nondegenerate metric, demon-
strating that there are severe restrictions on possible metrics and only a certain class of them
allows the existence of non-unique compatible linear connections. The existence of large num-
ber of possible solutions (i.e., the non-triviality of the moduli space of Levi-Civita connection)
without imposing additional conditions was already observed in [27] for the case Z2 × Z2 (see
also [8, Chapter 8.2]). Some of the arguments we use here were already present in [27, 28].

The main result of this paper is that for the special case of left-right symmetric metric there
still exist a choice of linear connections that are torsion-free and compatible with the metric,
a scalar curvature that vanishes only for the constant (equivariant) metric (for some canonical
choices of the arbitrary constants in the theory). We demonstrate that the freedom is much
larger in the case of the products of two discrete circles even in the case of the constant metric.

2 Preliminaries

We start by recalling basic definitions and known results about differential calculi over finite
groups.

In what follows for a group G with its neutral element e we denote G× = G\{e}. For a subset
H ⊂ G× by H⊥ we shall always denote G× \H. Furthermore, for X ⊂ G we denote by χX the
characteristic function of the set X, i.e.,

χX(g) =

{
1, g ∈ X,
0, g 6∈ X.

Definition 2.1. The (first-order) differential calculus over an algebra A over a field k is a pair(
Ω1(A), d

)
, where Ω1(A) is a bimodule over A, d is a linear map d: A→ Ω1(A), which satisfies

the Leibniz rule,

d(ab) = a db+ (da)b,

and Ω1(A) is generated as a left module by the image of d. We say that
(
Ω1(A),d

)
is connected

if ker d ∼= k.
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In case the algebra A is a Hopf algebra (with a coproduct ∆, counit ε and antipodal map S)
we have the following.

Definition 2.2. We say that the differential calculus over a Hopf algebra A is left-covariant if
there exists a coassociative left coaction of A on Ω1(A), δL : Ω1(A)→ A⊗ Ω1(A), such that

δL(aωb) = ∆(a)δL(ω)∆(b),

for every a, b ∈ A, ω ∈ Ω1(A), and

δL ◦ d = (id⊗ d) ◦∆.

In a similar manner we define the right-covariance and bicovariance (as simultaneous left and
right covariance). The canonical example of a first-order differential calculus is given by the
universal calculus, with Ω1

u(A) = kerm ⊆ A ⊗ A, where m : A ⊗ A → A is the multiplication
map for A, and the universal differential du : A→ kerm of the form dua := a⊗ 1− 1⊗ a. The
universal calculus over a Hopf algebra is bicovariant. The bicovariant calculi over an arbitrary
Hopf algebra were classified by Woronowicz [33].

For a ∗-algebra A we can consider differential calculi that in addition possess a ∗-structure,
that is we assume d is a derivation of a ∗-algebra, i.e., d(a∗) = (da)∗ for every a ∈ A.

2.1 Finite cyclic groups

Geometric aspects of finite groups have been intensively studied by several authors, including
[13, 17], and also recently in [27] for the infinite cyclic group Z and [28] in case of the group
Z2 × Z2. As we consider finite cyclic groups ZN with N ≥ 2 many results are much simpler
and therefore we skip the derivation of them, which are mostly adaptations of well-known ones
published in the aforementioned literature.

We denote by eg, g ∈ G a function that vanishes everywhere apart from g, eg(h) = δg,h.
By Rg(f) we denote the right translation Rg(f)(h) = f(hg). In a similar manner we introduce
the left translation Lg. Note that the left covariance of the calculus is equivalent to the fact
that for all ω ∈ Ω1(A) and all g ∈ G we have Lgω ∈ Ω1(A).

The following theorem summarizes the properties of calculi on finite cyclic groups, which we
will intensively use in the rest of the paper. Since these results are well-known, we only sketch
the proof.

Theorem 2.3. Let G = ZN . Each connected, star-compatible first-order bicovariant differential
calculus over C(ZN ) is determined by a subset H ⊂ G× such that H = H−1 and H generates the
entire group ZN . By |H| we denote the number of elements in H. There are |H| left invariant
forms

θh =
∑
g∈G

degh eg, h ∈ H,

such that the star- and the bimodule structure over Ω1(C(ZN )) is

(θh)∗ = −θh−1 , fθg = θgRg(f),

and the calculus is inner

df = [θ, f ], θ = −
∑
h∈H

θh.

Moreover, there exists a unique minimal extension of the first order differential calculus (as
defined by Woronowicz) so that

θg ∧ θh = −θh ∧ θg, h, g ∈ H.
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Proof. The first part follows directly from [17, Section 2]. From [33, Proposition 3.1], for any
bicovariant differential calculus

(
Ω1
H(ZN ), d

)
there exists a unique bimodule automorphism σW

of Ω1
H(ZN )⊗C(ZN ) Ω1

H(ZN ) given by

σW (θg ⊗ θh) = θg−1hg ⊗ θh.

Then we introduce the symmetrization map as the extension of the σW to the tensor algebra
of Ω1(A). Its kernel is identified with the exterior algebra over A. �

Theorem 2.4. Consider the cyclic group ZN , N > 2 with the generator p. Denote by p̃ its
inverse in ZN . Then there exists a minimal bicovariant, star-compatible connected differential
calculus, generated by θp, θp̃ with the following structure:

fθp = θpRp(f), fθp̃ = θp̃Rp̃(f),

θ∗p = −θp̃, df = −[θp + θp̃, f ],

dθp = 0, dθp̃ = 0,

dω = θ ∧ ω + ω ∧ θ.

Proof. Since N 6= 2 we have p 6= p̃. The first order differential calculus generated by H = {p, p̃}
is then bicovariant, connected and compatible with the star structure.

By a direct computation we see that for any g ∈ H:

dθg =
∑
a∈H

χH
(
ga−1

)
θa ∧ θga−1 .

Since H = {p, p̃} and if p ∈ H, then for N > 3 we get pp̃−1 6∈ H (otherwise p = e or is order 3),
we immediately infer that dθp = dθp̃ = 0. For N = 3 in the above sum there is only one term:
dθg = θg−1 ∧ θg−1 for g = p, p̃, and as a result dθp = dθp̃ = 0 also for this case.

Notice that since dθp = dθp̃ = 0, for ω = ωpθp + ωp̃θp̃ we get

dω = dωp ∧ θp + dωp̃ ∧ θp̃.

Furthermore,

dωp = −ωpθ −Rp(ωp)θp̃ −Rp̃(ωp)θp,
dωp̃ = −ωp̃θ −Rp(ωp̃)θp̃ −Rp̃(ωp̃)θp.

As a result

dω = −
[
(ωp − ωp̃)θp ∧ θp̃ + θp̃ ∧

(
ωp −Rp̃2ωp̃

)
θp
]
,

which is exactly θ ∧ ω + ω ∧ θ. �

3 Bimodule linear connections

Following [6], for a first-order differential calculus
(
Ω1(A), d

)
, we set

Definition 3.1. A linear connection on the bimodule Ω1(A) is a pair (∇, σ), a linear map

∇ : Ω1(A)→ Ω1(A)⊗A Ω1(A),

and a bimodule map,

σ : Ω1(A)⊗A Ω1(A)→ Ω1(A)⊗A Ω1(A),
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called the generalized braiding, such that

∇(aω) = da⊗A ω + a∇ω,
∇(ωa) = (∇ω)a+ σ(ω ⊗A da),

for all a ∈ A, ω ∈ Ω1(A).

Notice that (see, e.g., [5, Proposition 2.1.3]) with such a definition, the linear connection can
be naturally extended to the whole tensor algebra T •Ω1

H(A) with T 0Ω1
H(A) := A, ∇|A := d and

σ|A⊗AΩ1
H(A) = id.

In our case of the algebra C(ZN ) since the calculus is inner, we can use

Remark 3.2. If there exists θ ∈ Ω1(A) such that da = [θ, a], then any bimodule connection is
of the form

∇ω = θ ⊗ ω − σ(ω ⊗ θ) + α(ω), (3.1)

for some bimodule maps σ, α [26, Theorem 2.1].

As an immediate consequence of the above definition we get the following result:

Proposition 3.3. For a minimal bicovariant calculus over C(ZN ) with N 6= 3 a bimodule linear
connection is determined by a bimodule map σ.

Proof. The argument is exactly the same as in [27, 28] for groups Z2 ×Z2 and Z, respectively.
We use shortened notation Ω1(A) to denote Ω1

H(C(ZN )) from Theorem 2.4. First of all,
observe that there are no bimodule maps apart from the zero map between and Ω1(A) and
Ω1(A)⊗A Ω1(A). Indeed, there are no objects in Ω1(A)⊗A Ω1(A) that have the same bimodule
commutation rules as in Ω1(A). Otherwise p would be of order 3. Therefore, necessarily α ≡ 0.
Hence, the bimodule connection ∇ and σ are mutually determined. �

3.1 Torsion-free connection

Let us now concentrate on the notion of a torsion. We define torsion as a map T∇ : Ω1
H(A) →

Ω2
H(A) given by

T∇ = ∧ ◦ ∇ − d.

Following [26] we say that the connection is compatible with a torsion if Im(id + σ) ⊆ ker∧.
The connection is said to be torsion-free if T∇ = 0. Observe first that we have the following
result.

Proposition 3.4. For a minimal bicovariant calculus over C(ZN ) with the torsion-free connec-
tion, the map σ must satisfy,

ω ∧ θ = −∧ ◦ σ(ω ⊗A θ). (3.2)

Proof. Comparing

∇(ωf) = ∇(ω)f + σ(ω ⊗A df),

d(ωf) = dωf − ω ∧ df,

we immediately get ω ∧ df = −∧ ◦ σ(ω ⊗A df), which gives us the claimed formula. �

Notice that it follows from the last proposition that the torsion-free connection is compatible
with a torsion. This is a manifestation of the more general result:
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Proposition 3.5. For an inner calculus (3.1) with the extension to Ω2(A) such that θ ∧ θ = 0,
the connection is torsion-free if and only if is torsion-compatible and imα ⊆ ker∧.

Remark 3.6. Notice that the similar result was stated in [26, Theorem 2.1(3)] but in that
formulation α was forced to be a zero bimodule map instead of satisfying imα ⊆ ker∧. This was
later corrected in [8, Proposition 8.11]. As one can easily see in the example of the Z3 group with
a generator p, there exists a torsion-free connection with nontrivial α, namely α(θp) = θp2⊗A θp2
(because p2p2 = p).

From Proposition 3.3 it follows that for N 6= 3 the pair (∇, σ) is mutually unambiguously
determined. The case with N = 3 has to be considered separately. Even the torsion-freeness
does not guarantee vanishing of α.

Definition 3.7 (see [8, p. 572]). We say that the connection is star-compatible, if

∇ ◦ ∗ = σ ◦ † ◦ ∇,

where (ω ⊗A η)† = η∗ ⊗A ω∗, i.e., † is the induced ∗-structure on higher tensors.

As an immediate consequence we obtain the following two results, which were already for-
mulated in [1] (see also [28] for the case G = Z).

Proposition 3.8. The torsion-free bimodule connections over the minimal bicovariant calculi
over C(ZN ) with N 6= 4 are determined by a family of functions Ap, Ap̃, Bp, Bp̃, so that σ is

σ(θp ⊗A θp) = Apθp ⊗A θp,
σ(θp̃ ⊗A θp̃) = Ap̃θp̃ ⊗A θp̃,
σ(θp ⊗A θp̃) = Bp(θp ⊗A θp̃ + θp̃ ⊗A θp)− θp ⊗A θp̃,
σ(θp̃ ⊗A θp) = Bp̃(θp ⊗A θp̃ + θp̃ ⊗A θp)− θp̃ ⊗A θp.

Proof. If follows directly from the fact that σ is a bimodule map, p2 6= p̃2 for N 6= 4, and the
compatibility condition of σ with the ∧ (3.2). �

The assumption for the connection to be compatible with the star structure imposes further
restrictions on the functions A and B.

Proposition 3.9. The connection in the Proposition 3.8 is star-compatible if and only if the
relations below are fulfilled:(

RgAg
)(
Rg−1Ag−1

)
= 1, |Bg − 1|2 +BgBg−1 = 1 (3.3)

for g ∈ {p, p̃}.

4 Metric

We use here the notion of metricity as introduced in [6] (see also [31]),

Definition 4.1. Let
(
Ω1
H(A),d

)
be a first order differential calculus over A. We define the

metric as a pair, an element

g = g(1) ⊗A g(2) ∈ Ω1
H(A)⊗A Ω1

H(A),

and a bimodule map

(·, ·) : Ω1
H(A)⊗A Ω1

H(A)→ A,
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such that the pairing between them is nondegenerate, in the following sense,(
ω,g(1)

)
g(2) = ω = g(1)

(
g(2), ω

)
for all ω ∈ Ω1

H(A).

Definition 4.2. We say that the metric g is compatible with ∗, if g∗ = g, that is

g∗ =
(
g(1) ⊗A g(2)

)∗
=
(
g(2)

)∗ ⊗A (g(1)
)∗

= g,

(ω∗, ρ∗) = (ρ, ω)∗, ∀ω, ρ ∈ Ω1(A).

Definition 4.3. We say that the metric is compatible with the higher-order differential calculus
iff g ∈ ker∧, that is

∧g = g(1) ∧ g(2) = 0.

Remark 4.4. The metric satisfying condition from Definition 4.3 is called quantum symmetric
in [6], while the condition in Definition 4.2 is called reality therein.

In our situation, we have:

Lemma 4.5. A nondegenerate metric over the minimal bicovariant calculus over C(ZN ) is given
by functions Gp, Gp̃, which are everywhere different from 0,

g = Gpθp ⊗A θp̃ +Gp̃θp̃ ⊗A θp, (4.1)

(θa, θb) =
1

Ra−1Ga−1

δa−1,b, a, b = {p, p̃}.

Corollary 4.6. If the metric in the Lemma 4.5 is also compatible with the higher-order diffe-
rential calculus (i.e., ∧g = 0), then it can be described by the only one function G := Gp = Gp̃.

Proof. Although this result is well-known (for example, the case with G = Z was proved in [28]
where also the consequences for the metric compatible with higher-order calculi were studied),
for completeness we demonstrate the proof.

Since

θgf =
(
Rg−1f

)
θg,

for arbitrary f ∈ C(G), then we can now analyse the conditions we have from the required
properties of a metric g. First, we obviously have

f(ρ, ω) = (ρ, ω)f, (ρf, ω) = (ρ, fω),

and

f(ρ, ω) = (fρ, ω), (ρ, ωf) = (ρ, ω)f,

for every f ∈ C(G) and every ρ, ω ∈ Ω1
H(A). Therefore, we have

f(θi, θj) = (θi, θj)f = (θi, θjf) =
(
θi,
(
Rj−1f

)
θj
)

=
(
θi
(
Rj−1f

)
, θj
)

=
((
Ri−1Rj−1f

)
θi, θj

)
=
(
Ri−1Rj−1f

)
(θi, θj).

Since the right action is free it implies that j = i−1 whenever (θi, θj) 6= 0. Therefore the
bimodule map (·, ·) has to be of the following form

(θa, θb) = δa−1,bFa,
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where Fa ∈ C(ZN ). We are now ready to explore conditions that follow from equation (4.1).
Let us write g in the basis, here H = {p, p̃},

g =
∑

a,b∈{p,p̃}

gabθa ⊗A θb,

and consider the condition ω = g(1)
(
g(2), ω

)
with ω = θc. We have

θc =
∑
a,b∈H

gabθa(θb, θc) =
∑
a,b∈H

gabθaFbδb,c−1 =
∑
a∈H

gac−1θaFc−1 .

The equality holds if and only if

gac−1Ra−1

(
Fc−1

)
= δa,c.

Taking a = c we immediately obtain the claimed result. �

It follows immediately that g is a central element in Ω1
H(A)⊗A Ω1

H(A) and we can compute
both contractions of the metric, that is not only

(
g(1),g(2)

)
but also

(
g(2),g(1)

)
make sense. We

have (
g(1),g(2)

)
= Gp(θp, θp̃) +Gp̃(θp̃, θp) =

Gp
Rp̃Gp̃

+
Gp̃
RpGp

,(
g(2),g(1)

)
= (θp̃, Gpθp) + (θp, Gp̃θp̃) = (RpGp)

1

RpGp
+ (Rp̃Gp̃)

1

Rp̃Gp̃
= 2. (4.2)

Definition 4.7. The metric is right-invariant if Rh(g) = g (resp. left-invariant if Lh(g) = g),
for every h ∈ G, where we have used the unique extension of right (resp. left) translations to
the whole differential algebra, so that

Rg(df) = d(Rgf), (resp. Lg(df) = d(Lgf)).

Lemma 4.8. The metric g is left-invariant if and only if for every g ∈ {p, p̃}, Gp = const.
A nondegenerate metric is ∗-compatible iff for the metric coefficients are real, Gg = G∗g.

Finally let us see when a ∗-compatible metric defines a norm on the module of one-forms.

Lemma 4.9. Let us define (see also [8, Proposition 8.40]):

〈·, ·〉 : Ω1(A)⊗A Ω1(A)→ A, 〈ω1, ω2〉 := (ω∗1, ω2).

If all Gg are real and negative then Ω1(A) equipped with 〈·, ·〉 is a Hilbert C∗-module over A.

Proof. The defined map is sesquilinear (right C-linear, left antilinear) and satisfies

〈ω1a1, ω2a2〉 = a∗1〈ω1, ω2〉a2,

for every a1, a2 ∈ A and all ω1, ω2 ∈ Ω1(A). Furthermore, if g = g∗ then also 〈ω1, ω2〉∗ = 〈ω2, ω1〉
and 〈ω, ω〉 ≥ 0 if all Gg are negative-valued. Moreover, in such a case 〈ω, ω〉 = 0 iff ω = 0. To
sum up, for g = g∗ with negative-valued Gg, we indeed have a pre-Hilbert module structure.

Therefore, ‖ω‖ := ‖〈ω, ω〉‖
1
2 defines a norm on Ω1(A), making its completion (which in a finite-

dimensional case is Ω1(A)) a Hilbert C∗-module over A. �
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5 Metric compatibility condition

Let us now concentrate on the metric compatibility condition for a bimodule linear connection
over the minimal bicovariant calculus on C(ZN ). Although we shall later concentrate on the
solutions that correspond to the real-valued metrics that provide nondegenerate scalar products
over Ω1, we solve the metric compatibility problem in all generality.

Definition 5.1 ([6], see also [8, Chapter 8]). A linear connection (∇, σ) is said to be compatible
with the metric g if

(∇⊗ id)g + (σ ⊗ id)(id⊗∇)g = 0.

Before we proceed with the conditions for the general ZN case, N > 4, let us consider a much
simpler case of N = 2.

Example 5.2 (Levi-Civita bimodule connections for Z2, compare [27, Lemma 2.1]). In the case
of Z2, we have p = p̃ and therefore the entire connection is determined by one function S:

∇(θp) = (S − 1)θp ⊗A θp, σ(θp ⊗A θp) = Sθp ⊗A θp,

the metric is given by Gθp ⊗A θp and the metric compatibility then reads:

(G−RpG) +G(S − 1) +GS(Rp(S)− 1) = 0.

Using notation G0 = G(e), G1 = G(p) and S0, S1 for the respective values of S we have

G0 −G1 +G0(S0 − 1) +G0S0(S1 − 1) = 0,

and

G1 −G0 +G1(S1 − 1) +G1S1(S0 − 1) = 0.

The above system of equations is equivalent to the following two

G1 = G0S0S1, G0 = G1S1S0,

which lead to G1 = ±G0 and

S0S1 = ±1.

Observe that even in the case of constant metric we can have a one-parameter family of torsion-
free, metric compatible connections given by

S0 = z, S1 =
1

z
.

Theorem 5.3. For the torsion-free bimodule connection for the minimal bicovariant calculus
over ZN with N > 4 the metric compatibility conditions takes the following form:

Gg
(
Rg−1Bg−1

)
Ag = Rg−1Gg,

Gg−1

(
RgBg − 1

)
Bg−1 +Gg(Bg − 1)

(
Rg−1Ag−1

)
= 0,

RgGg = Gg−1(RgBg − 1)
(
Bg−1 − 1

)
+GgBg

(
Rg−1Ag−1

)
, (5.1)

for g = p, p̃.
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Proof. First, notice that

(∇⊗ id)g = (GpAp −Rp̃Gp)θp ⊗A θp ⊗A θp̃ + (Gp̃Bp̃ −Rp̃Gp̃)θp ⊗A θp̃ ⊗A θp
+Gp̃(Bp̃ − 1)θp̃ ⊗A θp ⊗A θp +Gp(Bp − 1)θp ⊗A θp̃ ⊗A θp̃
+ (Gp̃Ap̃ −RpGp̃)θp̃ ⊗A θp̃ ⊗A θp + (GpBp −RpGp)θp̃ ⊗A θp ⊗A θp̃.

On the other hand

(σ ⊗ id)(id⊗∇)g = Gp(Rp̃Bp̃ − 1)Apθp ⊗A θp ⊗A θp̃ +Gp̃(RpBp − 1)Ap̃θp̃ ⊗A θp̃ ⊗A θp
+ [Gp(Rp̃Bp̃ − 1)(Bp − 1) +Gp̃Bp̃(RpAp − 1)]θp ⊗A θp̃ ⊗A θp
+ [Gp̃(RpBp − 1)(Bp̃ − 1) +GpBp(Rp̃Ap̃ − 1)]θp̃ ⊗A θp ⊗A θp̃
+ [Gp(Rp̃Bp̃ − 1)Bp +Gp̃(Bp̃ − 1)(RpAp − 1)]θp̃ ⊗A θp ⊗A θp
+ [Gp̃(RpBp − 1)Bp̃ +Gp(Bp − 1)(Rp̃Ap̃ − 1)]θp ⊗A θp̃ ⊗A θp̃.

Taking the sum of these two expressions we get the final result. �

Let us now solve the system of equations (5.1). To start we substitute Ag = ag + 1 and
Bg = bg + 1, then the equations read

Rg−1Gg = Gg(1 + ag)
(
1 +Rg−1bg−1

)
,

Ggbg
(
1 +Rg−1ag−1

)
+Gg−1(Rgbg)

(
1 + bg−1

)
= 0,

RgGg = Gg(1 + bg)
(
1 +Rg−1ag−1

)
+Gg−1bg−1(Rgbg). (5.2)

for g = p, p̃.
Introducing Xg =

RgGg
Gg−1

and combining the first and the third equation we obtain

bg−1(Rgbg) = Xg −Rg−1Xg. (5.3)

As the left-hand side is unchanged when we replace g by g−1 and act on the result with Rg,
we obtain

Xg −Rg−1Xg = Rg
(
Xg−1 −RgXg−1

)
,

Since Xg satisfies

RgXg−1 =
1

Xg
,

we obtain

Xg −Rg−1Xg =
1

Xg
−Rg

1

Xg
,

which leads to

Xg +Rg
1

Xg
= Rg−1

(
Xg +Rg

1

Xg

)
,

and as a result

Xg +
1

RgXg
= c = const. (5.4)

Notice that the above relation is, effectively equivalent to
(
g(1),g(2)

)
= c, which means that in

this case both contractions as computed in (4.2) are constant.
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Writing explicitly Xp, Xp̃ as functions over ZN , the relation (5.4) can be reformulated in the
form of the following recurrence system, here for simplicity we denote the function Xp as f and
choose p = 1 (so p̃ = −1),{

(c− f(n))f(n+ 1) = 1,

f(0) = f(N),
(5.5)

for a function f : N→ C. Note that we can equivalently choose the equation for Xp̃ (denote this
function as F ) but this corresponds to the choice of −1 as the generator of ZN and therefore
give the equations{

(c− F (n))F (n− 1) = 1,

F (0) = F (N),

which is equivalent to (5.5) since

F (n) =
1

f(n− 1)
.

5.1 Solving the recurrence relation

We begin with solving the following recurrence equation (5.5). First, let us choose γ such that
(c− γ)γ = 1. There are two possible solutions of this equation,

γ± = 1
2

(
c±

√
c2 − 4

)
,

which may be, in general, complex numbers and are mutual inverses, that is γ− = (γ+)−1.
Fixing one root γ we define f(n) = k(n) + γ, so that the equation we have to solve reduces to
an equivalent one,

k(n)k(n+ 1) =
1

γ
k(n+ 1)− γk(n).

Since γ 6= 0 then we either have k ≡ 0 or all k(n) are different from 0. In the first case we have
a constant (trivially periodic) solution,

f(n) = γ,

whereas in the second case we set h(n) = 1
k(n) and obtain

h(n+ 1) =
1

γ2
h(n)− 1

γ
.

The above relation has a solution,

h(n) =


γ

γ2 − 1

(
H2γ−2n−2 − 1

)
, γ2 6= 1,

H2 − nγ, γ2 = 1,

where H2 is an arbitrary constant up to the following restrictions:

γ2 6= 1: H2 6= γ2k+2, k ∈ {0, . . . , N − 1},
γ2 = 1: γ−1H2 /∈ {0, 1, . . . , N − 1}.
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Before we pass to f observe that in the case γ2 = 1 we cannot have a periodic solution for h,
since h(0) = h(N) enforces γ = 0, which contradicts our starting point. If γ2 6= 1 the periodicity
condition is

h(0) =
γ

γ2 − 1

(
H2γ−2 − 1

)
=

γ

γ2 − 1

(
H2γ−2N−2 − 1

)
= h(N),

which is possible only if γ2N = 1 or H = 0. The solution with H = 0 is nothing else as a constant
solution with γ−1 (corresponding to the other choice of the root of the equation (c− γ)γ = 1).

We can write explicit form of a non-constant (i.e., with H 6= 0) solution for f :

f(n) =
Hγ−n −H−1γn

Hγ−n−1 −H−1γn+1
. (5.6)

This form of the solution is very convenient, as it is easy to verify the multiplication property
for f :

N−1∏
n=0

f(n) =
H −H−1

Hγ−N −H−1γN
= γN ,

where we have used γ2N = 1. Note that this holds as well for the constant solution f(n) = γ.
There are 2N − 2 possible values of γ giving non-constant periodic solutions for f , however,

since c = γ + γ−1, both γ and γ−1 result in the same value of c, so that there are only N − 1
possible values of c, for which there exist non-constant solutions. Since γ2N = 1 those c are real.

5.1.1 The real-valued solutions

As we are interested in real metrics Gg, we consider real-valued solutions of the above recurrence
system. It immediately follows from (5.6) that non-constant real solutions exist only for |H| = 1,
i.e.. for H = eiφ with some φ. Using the fact that γ satisfies γ2N = 1, γ2 6= 1 and H2 6= γ2n+2,

n ∈ Z, we can choose γ = eπi l
N and obtain a set of solutions, parametrized by l = 1, . . . , N − 1,

N + 1, . . . , 2N − 1,

fl,φ(n) = cos

(
πl

N

)
+ sin

(
πl

N

)
cot

(
φ− πl

N
(n+ 1)

)
.

Some of the solutions are, however, repeated as f2N−l,φ = fl,−φ. Moreover, for such γ we have
c = 2 cos

(
πl
N

)
. Note that although we have excluded the case γ2 = 1, the above formula recovers

some of the constant real solutions, which arise for l = 0 (f(n) = 1) and l = N (f(n) = −1),
so in fact we can extend the range of l also into l = 0 and l = N . It is also easy to see that in
case of the real nonconstant solutions Xp cannot be a positive function. Finally, let us observe
that in case we do not demand reality of the metric, the formula above is still valid but with φ
allowed to be an arbitrary complex number.

5.1.2 The coefficients of the linear connection

In the next step we are going to solve the system of equations following from (5.2) without
restricting ourselves to real solutions of Xg. Using the first and second equation and (5.3) we
obtain a linear dependence between bg and ag−1 :

Gg−1(Rgbg +Xg) = Gg
(
1 +Rg−1ag−1

)
.

Reintroducing 1 +Rg−1ag−1 into the first equation we have

Rg−1Xg = (1 + bg)(Xg +Rgbg), (5.7)
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which, after splitting Xg +Rgbg into (Xg − 1) +Rg(1 + bg), is equivalent to

Rg(1 + bg) = 1−Xg +
Rg−1Xg

1 + bg
.

Note that 1 + bg cannot vanish at any point since Xg cannot vanish at any point, so we can
divide both sides by it. Next, substituting

Yg =
1 + bg
Rg−1Xg

+ 1,

we obtain

RgYg =
1

Xg

Yg
Yg − 1

.

This has an obvious solution Yg ≡ 0, which gives

bg = −Rg−1Xg − 1,

and apart from this solution Yg must be invertible at each point. Then, take yg = (Yg)
−1 to

obtain

Rgyg = Xg(1− yg).

To solve this equation it is sufficient to find just one solution y0
g of the inhomogeneous equation

and a family of solutions of the homogeneous equation

Rgy
hom
g = −yhom

g Xg.

The first problem is solved explicitly by verifying that

y0
g =

1

c+ 2

(
1 +Rg−1Xg

)
,

provided that c 6= −2. We shall discuss the special case c = −2 later.
Next, we solve the homogeneous equation. It is easy to see that all solutions are parametrized

by a multiplicative constants κp, κp̃,

yhom
p (n) = κp(−1)n

n−1∏
k=0

Xp(k), (5.8)

yhom
p̃ (n) = κp̃(−1)n

n−1∏
k=0

Xp(k) =
κp̃
κp
yhom
p (n)

for n ∈ ZN , where κg are such that yhom
g + y0

g 6= 0, since we require yg to be invertible.
Observe that for the function yg to be periodic we need to have

κg(−1)N
N−1∏
k=0

Xg(k) = κg,

which, after taking into account that the product of all Xg(k) in the non-constant case is γN

gives us

γN = (−1)N , or κg = 0,
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further restricting the possible solutions for Xg, which then must be parametrised by an integer
l = 0, 1, . . . , 2N − 1 such that N + l is always even. From now on we will always assume that
N + l is even, and proceed with the further analysis.

If we have Xg = const then either κg = 0 or XN
g = (−1)N . For real-valued solutions it

restricts constant Xg to be −1, or, for even N , to be 1. But since here c 6= −2 the first
possibility is not allowed.

Finally we go back to the case c = −2, for which there exists only the constant solution
Xg = −1. In this case the equation for bg reduces to

Rg(1 + bg) +
1

1 + bg
= 2,

which, as we already know from the previous subsection, has only one periodic solution bg = 0.
To summarize, we have three possible cases:

� Xg = −1. In this case bg = 0.

� Xg = const = γ, γ 6= −1 and γN 6= (−1)N . In this case the only periodic solutions are
constant ones with bg = 0 or bg = −1 − γ, however, from (5.3) we see that at least one
of bg, bg−1 must be 0, so we have three possible solutions: bg = bg−1 = 0, or bg = 0 and
bg−1 = −1− 1

γ , or bg = −1− γ and bg−1 = 0.

� Xg 6= const or Xg = γ with γN = (−1)N and γ 6= −1. In this case, combining the results,
we have two possibilities

bg =


−1−Rg−1Xg,

(c+ 2)Rg−1Xg

1 +Rg−1Xg + (c+ 2)yhom
g

−Rg−1Xg − 1.

where yhom
g is expressed in (5.8).

Now, what is left in the last case is the compatibility with (5.3). Indeed, although we had
determined possible solutions for bg and bg−1 we must further check whether they are related
with each other through (5.3). First observe that if bg is of the first type, then from (5.3) it
follows that the solution for bg−1 is

bg = −1−Rg−1Xg, bg−1 = −
Xg − c+ 1

Xg

1 +Xg
.

The last expression for bg−1 can be rewritten as

c+ 2

Xg + 1
− 1 +Xg

Xg
,

which is the solution of the second type with the homogeneous part vanishing. Similarly, insert-
ing the solution for bg of the second type with yhom

g = 0 to (5.3), we end up with the solution
for bg−1 of the first type.

Our goal is to establish a relation between yhom
g−1 and yhom

g . We have already discussed cases
with vanishing homogeneous parts, and have shown that they are coupled, in the aforementioned
sense, to the solutions of the first kind, so from now on we assume that for both g and g−1 we
have a solution for b of the second type and with yhom 6= 0.

Inserting these two solutions into (5.3) we end up with

yhom
g−1

(
Rgy

hom
g

)
=
Xg −Rg−1Xg

(c+ 2)2
. (5.9)
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Using (5.8) we can write (5.9) as(
κg(−1)n

n−1∏
k=0

Xg(k)

)(
κg−1(−1)n+1

n∏
k=0

Xg(k)

)
=
Xg(n)−Xg(n− 1)

(c+ 2)2
,

which gives

(c+ 2)2κgκg−1Xg(0) =
Xg(n− 1)−Xg(n)
n−1∏
k=0

Xg(k)Xg(k + 1)

.

Notice that since Xg satisfies (5.4), we have

Xg(n− 1)−Xg(n)

X(n− 1)X(n)
=

1

Xg(n)
− 1

Xg(n− 1)
= Xg(n− 2)−Xg(n− 1),

so the right hand side is independent on n, and the equation imposes a condition on the product
of κg and κg−1 :

κgκg−1 =
1

(c+ 2)2

(
Xg(N − 1)

Xg(0)
− 1

)
= −H2 (γ − 1)2

(γ + 1)2(H2 − 1)2
.

To sum up, we have proven the following result:

Theorem 5.4. For the minimal calculus on ZN , N > 4 with H = {p, p̃} the only allowed
torsion-free connections compatible with the metric g are determined by the bimodule map σ as
in Proposition 3.8, where

Ag =
Rg−1Gg

Gg
(
1 +Rg−1bg−1

) ,
and for Bg = 1 + bg we have the following possibilities depending on Xg,

Case I. If Xg 6= const the only following functions Xp are allowed

Xp(n) = cos

(
lπ

N

)
+ sin

(
lπ

N

)
cot

(
φ− (n+ 1)lπ

N

)
, (5.10)

for l = 1, . . . , N − 1, and an arbitrary constant φ such that e2iφ 6= e
2lπ
N

(n+1).
Then with c = 2 cos

(
lπ
N

)
there exist three possible solutions:

(a) bp = −1−Rp̃Xp, bp̃ =
c+ 2

Xp + 1
− 1 +Xp

Xp
.

(b) bp̃ = −1−RpXp̃, bp =
c+ 2

Xp̃ + 1
− 1 +Xp̃

Xp̃
.

and, provided that
∏

k∈ZN
Xg(k) = (−1)N ,

(c) bg =
(c+ 2)Rg−1Xg

1 +Rg−1Xg + (c+ 2)yhom
g

−Rg−1Xg − 1, g = {p, p̃},

where

yhom
p (n) = κp(−1)n

n−1∏
k=0

Xp(k), yhom
p̃ (n) = κp−1(−1)n

n−1∏
k=0

Xp(k).
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Furthermore, the constants κp and κp̃ are restricted via a constraint

κpκp̃ =
1

(c+ 2)2

(
Xp(N − 1)

Xp(0)
− 1

)
,

and also requirement that yhom
p + y0

p 6= 0.
Case II. If Xg = γ ≡ const:

� bg = bg−1 = 0 is always a solution (independently of γ),

� if γN 6= (−1)N , then there are two more independent solutions:

(a) bp = 0 and bp̃ = −1− 1
γ ,

(b) bp = −1− γ and bp̃ = 0.

� if γN = (−1)N and γ 6= −1 then (5.10) is also a solution.

Notice that for γ = −1 the cases (a) and (b) reduce to the first bullet point.

As the next step let us summarize the restrictions on the possible metrics. As we have
computed all possible solutions for

Xg =
RgGg
Gg−1

,

so that

Gg(n+ 1) = Gg−1(n)f(n),

we can always choose one of the functions Gp, Gp̃ arbitrarily, and then the second one will be
determined by the relation above.

Remark 5.5. For the real metric satisfying g = g∗, the constant solutions above are restricted
to real constant Xg, whereas the non-constant solutions are restricted by an additional demand
that φ is a real parameter. Only the solutions with Xg = const > 0 give the real metric g that
equips the module of one-forms with a Hilbert C∗-module structure (see Lemma 4.9).

Remark 5.6. If we further assume that the metric is compatible with the differential calculus,
∧g = 0, the solution for Xg provides the solution for Gp = Gp̃ given by

G(n) = G0

n−1∏
k=0

fl,φ(k).

The only real constant solutions that are compatible with the differential calculus are restricted
to Xg = 1, and, for even N , also −1, yet only the first one gives a Hilbert C∗-module structure.
Moreover, no non-constant solution gives rise to a Hilbert C∗-module structure since they are
not of constant sign.

We can further assume that in addition to compatibility of the metric with the star structure,
the connection itself is star-compatible, i.e., relations in (3.3) are satisfied.

Using the first relation in (5.2) we can express A in terms of B, and then the first relation
in (3.3) implies that

BgBg−1 =
Rg−1Xg

Xg
. (5.11)
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Observe that since Xg satisfies (5.4), the right-hand side of this equation is non-negative. Indeed,
using (5.4) we can write

1−
Rg−1Xg

Xg
= (Rg−1Xg)

2 − c(Rg−1Xg) + 1,

and the problem reduces to examine the quadratic equation x2 − cx + 1 = 0, which has no
real roots iff |c| < 2. Hence for those c, the right-hand side is always positive. Interestingly,
this is the same range of c for which there exist non-constant solutions for Xg. On the other
hand, for constant solutions Xg combining (5.11) with the Theorem 5.4 we see that in these
cases Bg has to be equal to 1. Let us further examine which non-constant solutions determined
in Theorem 5.4 are allowed when compatibility with the star structure is imposed, so we are
concentrate on Case I therein. By a straightforward computation we check that cases (a) and (b)
do not fulfil the condition (5.11). So, suppose now we take solutions as in the case (c) with non-
zero homogeneous parts yhom

g . Using 5.4 again, an the fact that c 6= −2, the condition (5.11)
can be reduced to

yhom
g−1 + yhom

g = 0.

On the other hand, yhom satisfy (5.9) and Rgy
hom
g = −yhom

g Xg, so together with the relation
above it implies that

(c+ 2)2
∣∣yhom
g

∣∣2 = 1−
Rg−1Xg

Xg
,

so we get a restriction for possible star-compatible solutions

|Bg − 1| =
∣∣(c+ 2)yhom

g

∣∣.
Parametrizing

Bg − 1 = reiρ, (c+ 2)yhom
g = reiϕ, r =

√
1−

Rg−1Xg

Xg
,

a = (c+ 2)Rg−1Xg, b = 1 +Rg−1Xg,

the relation for the solution Bg

Bg − 1 =
(c+ 2)Rg−1Xg

1 +Rg−1Xg + (c+ 2)yhom
g

−
(
1 +Rg−1Xg

)
can be rephrased as

b2 − a+ r2ei(ϕ+ρ) + rb
(
eiϕ + eiρ

)
= 0.

Simple calculations show that b2 − a = r2, so for r 6= 0 the star-compatibility condition for
a connection introduces the following constraints on phases ρ and ϕ:

eiρ = −r + beiϕ

b+ reiϕ
.

As a result we have the following.

Proposition 5.7. Suppose the conditions as specified in the Remark 5.5 are satisfied, i.e., we
have a Hilbert C∗-module structure on Ω1(A) given by the metric g. Then there exists a unique
torsion free, metric compatible and star-compatible linear connection.

Proof. It follows from the computations before that in such a case we have Xg = const > 0
and from the above discussion it follows that the star-compatibility of the connection fixes Bg
to be equal to 1. �

We finish with a remark that this corollary is in a complete agreement with the result obtained
in [1], where only the case Xg = 1 was assumed.
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6 The curvature

In this section we shall compute the curvature of the torsion-free linear connection compatible
with the metric g. Though it can be done for arbitrary metrics that satisfy the compatibility
connections, we shall restrict ourselves to the case of real metrics that equip the bimodule of
one-forms with a Hilbert C∗-module structure. This will restrict Xp = γ > 0.

Definition 6.1. The Riemannian curvature for a given connection ∇ is a map

R∇ : Ω1 → Ω2 ⊗A Ω1,

defined by the following prescription

R∇ = (d⊗A id− id ∧∇)∇.

By a straightforward computation we get the following:

Theorem 6.2. The Riemannian curvature for the connection ∇ from Theorem 5.4 is

R∇(θg) = θg ∧ θg−1 ⊗A ρg, g = p, p̃,

where

ρg =
[
Bg(RgAg)−Ag

(
Rg−1Bg

)
−
(
Rg−1Bg−1 − 1

)
(Bg − 1)

]
θg

+
[(
Rg−1Ag−1

)
(1−Bg) +Bg(RgBg − 1)

]
θg−1 .

To define the objects corresponding to Ricci and scalar curvature we need, however, some
more structure.

Definition 6.3. Let ι be a bimodule map representing two-forms in Ω1(A)⊗A Ω1(A),

ι : Ω2 → Ω1 ⊗A Ω1,

such that the following diagram commutes:

Ω2 Ω1 ⊗A Ω1

Ω2.

id

ι

∧

Then, we define

R̃∇ ≡ (ι⊗ id)R∇ : Ω1 → Ω1 ⊗A Ω1 ⊗A Ω1,

and the Ricci tensor is defined as

Ricci =
(
g(1), R̃∇

(
g(2)

)
(1)

)
R̃∇
(
g(2)

)
(2)
⊗A R̃∇

(
g(2)

)
(3)
,

where the Sweedler’s notation on Ω1 ⊗A Ω1 ⊗A Ω1 is used.

Observe that, the above definition uses the metric unlike the usual definition of the Ricci
tensor that is metric independent and uses the trace.

Following [6] we can further define the Einstein tensor and the scalar curvature,
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Definition 6.4.

Einstein = Ricci−
(
Ricci(1),Ricci(2)

)(
g(1),g(2)

) g,

R =
(
g(1), R̃∇

(
g(2)

)
(1)

)
·
(
R̃∇
(
g(2)

)
(2)
, R̃∇

(
g(2)

)
(3)

)
.

Obviously, R is an element of the algebra A.

In our case of A = C(ZN ) with N > 4 we observe that the most general form of the lifting
map ι is

ι(θp ∧ θp̃) = θp ⊗A θp̃ + β(θp ⊗A θp̃ + θp̃ ⊗A θp),

where β ∈ C(ZN ). As an immediate consequence we finally obtain for the Ricci tensor,

Ricci = −Rp̃β
Xp̃

θp ⊗A ρp̃ +
1 +Rpβ

Xp
θp̃ ⊗A ρp.

Since ρg has a form Mgθg +Ngθg−1 for g = p, p̃, we get for the scalar curvature

R = − 1

Xp̃
Rp̃

(
βMp̃

Gp̃

)
+

1

Xp
Rp

(
(1 + β)Mp

Gp

)
.

Since Ag =
Rg−1Gg

Gg(Rg−1Bg−1 ) we get

Mg = (1−Rg−1)

(
BgGg

Bg−1(RgGg)

)
+
(
1−Rg−1Bg−1

)
(Bg − 1),

and as a result

R = − 1

Xp̃
Rp̃

(
β

Gp̃

)[
(Rp̃ − 1)

(
Bp̃Gp̃

Bp(Rp̃Gp̃)

)
+ (1−Bp)(Rp̃Bp̃ − 1)

]
+

1

Xp
Rp

(
1 + β

Gp

)[
(Rp − 1)

(
BpGp

Bp̃(RpGp)

)
+ (1−Bp̃)(RpBp − 1)

]
.

We can formulate the main theorem.

Theorem 6.5. For a positive parameter Xp = γ > 0 and a metric g with G := Gp < 0,
for odd N there exist three possible torsion-free and metric compatible linear connections given
by the functions Bp, Bp̃ with the corresponding Ricci tensor and the scalar curvature (for an
arbitrary lift of Ω2 given by the function β):

Case (a)

Bp = 1, Bp̃ = 1,

Ricci(n) = γβ(n− 1)Z+(n)θp ⊗A θp̃ +
1 + β(n+ 1)

γ
Z−(n+ 1)θp̃ ⊗A θp,

R(n) = γ2β(n− 1)W+(n) +
1 + β(n+ 1)

γ
W−(n+ 1).

Case (b)

Bp = 1, Bp̃ = −1

γ
,

Ricci(n) = −β(n− 1)Z+(n)θp ⊗A θp̃ − (1 + β(n+ 1))Z−(n+ 1)θp̃ ⊗ θp
+ β(n− 1)S−(n)θp ⊗A θp,

R(n) = −γβ(n− 1)W+(n)− (1 + β(n+ 1))W−(n+ 1).
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Case (c)

Bp = −γ, Bp̃ = 1,

Ricci(n) = −β(n− 1)Z+(n)θp ⊗A θp̃ − (1 + β(n+ 1))Z−(n+ 1)θp̃ ⊗A θp
− (1 + β(n+ 1))S+(n+ 1)θp̃ ⊗ θp̃,

R(n) = −γβ(n− 1)W+(n)− (1 + β(n+ 1))W−(n+ 1),

where

Z+(n) =
G(n+ 1)

G(n)
− G(n)

G(n− 1)
, Z−(n) =

G(n)

G(n+ 1)
− G(n− 1)

G(n)
,

S+(n) =
γ + 1

γ2

(
G(n+ 1)

G(n)
− γ2

)
, S−(n) = γ(γ + 1)

(
G(n− 1)

G(n)
− 1

γ2

)
,

and

W±(n) =
Z±(n)

G(n)
.

On the other hand, for even N in addition to the above ones there are also solutions corresponding
to the last point in Case II of Theorem 5.4. In these cases the corresponding Ricci tensor and
the scalar curvature are given by

Ricci(n) = β(n− 1)V+(n)θp ⊗A θp̃ + (1 + β(n+ 1))V−(n)θp̃ ⊗A θp
− β(n− 1)T−(n)θp ⊗ θp + (1 + β(n+ 1))T+(n)θp̃ ⊗A θp̃,

R(n) =
β(n− 1)

G(n)
V+(n) +

1 + β(n+ 1)

G(n+ 1)
V−(n),

where

V+(n) =
Bp̃(n)

Bp(n)

G(n+ 1)

G(n)
− Bp(n)

Bp̃(n)

G(n)

G(n− 1)
,

V−(n) =
Bp̃(n)

Bp(n)

G(n+ 1)

G(n+ 2)
− Bp(n)

Bp̃(n)

G(n)

G(n+ 1)
,

T−(n) = (Bp̃(n)− 1)

(
G(n− 1)

G(n)
+

1

Bp̃(n)

)
,

T+(n) = (Bp(n)− 1)

(
G(n+ 2)

G(n+ 1)
+

1

Bp(n)

)
.

In the above formulas either Bp = 1 and Bp̃ is given by (5.10) or the other way around.

Theorem 6.6. In the case of left-right symmetric metric γ = 1 and the standard choice of the
lift β = −1

2 the scalar curvature is R(n) = ±1
2(W+(n)−W−(n+ 1)), i.e.,

R(n) = ±1

2

[
G(n+ 1)3 +G(n)3

G(n+ 1)2G(n)2
−
(

1

G(n− 1)
+

1

G(n+ 2)

)]
, (6.1)

with the sign − for the case (a) and + for cases (b) and (c). On the other hand, for the special
cases discussed at the end of the previous theorem, the scalar curvature is

R(n) =
1

2

[
Bp̃(n)

Bp(n)

(
1

G(n+ 2)
− G(n+ 1)

G(n)2

)
+
Bp(n)

Bp̃(n)

(
1

G(n− 1)
− G(n)

G(n+ 1)2

)]
.

In particular for the constant metric G, this curvature vanishes in all these cases.
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Remark 6.7. It is interesting to see the continuous limit of the expression (6.1). A simple
computation gives that if we denote by g(t) the limit of theG(n) function, for the parametrization
of the curve with t, then the curvature R(t) becomes

R(t) = ±g
′′(t)g(t)− g′(t)2

g(t)3
= ± 1

g(t)

d

dt

(
d
dtg(t)

g(t)

)
.

6.1 Examples of metrics and curvatures

It is interesting to see how the scalar curvature depends on the metric. Clearly it vanishes for
the constant metric, which can be depicted as an equilateral N -polygon. On the other hand, if
we consider a polygon that approximates the ellipse, that is the respective lengths of the sides
correspond to the lengths of lines connecting points on the ellipse like depicted on the Fig. 1,
we obtain a nontrivial scalar curvature.

Figure 1. Ellipse and ellipse-like polygon (N = 10).

We can then compute the scalar curvature for the assumed form of the metric, which becomes
as shown on the Fig. 2 and which very closely approximates its continuous limit.

(a) (b)

Figure 2. The metric (a) and the scalar curvature (b) for the ellipse-like polygon (N = 100).

Even more interesting is the inverse problem, of finding the metric such that the scalar
curvature is fixed. This shall be treated rather as an exercise in the N → ∞ limit, that is an
infinite lattice with the algebra C(Z), as we fix three distances and then compute the rest using
the recursive relation arising from the Theorem 6.5. It is clear that we cannot then guarantee
periodic solutions and, moreover, the choice of the initial values leads to solutions that differ
from the continuous approximations.

We have checked some example cases with the constant scalar curvature. It appears that
for the positive scalar curvature (see Fig. 3), and the initial data of equilateral sides we obtain
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oscillating distances, whereas for the negative (small) curvature (see Fig. 4) the metric tends
rapidly to zero.

Figure 3. The metric for constant positive scalar curvature.

Figure 4. The metric for constant negative scalar curvature.

7 Linear connections and curvature for products of ZN

In this section we shall extend the computations of linear connection to the tensor product of
two C(ZN ) algebras, which corresponds to the Cartesian product of discrete spaces.

Since we consider the minimal differential calculi over both algebras and their natural graded
tensor product, most of the results from previous sections can be transferred. In particular, it
is easy to see that the only possible metric is the diagonal one, that is for the algebra A1 ⊗A2,

g = g1 ⊗A2 +A1 ⊗ g2,

which means that the total metric is the sum of metrics, yet the coefficients can be elements of
the full algebra.

For simplicity we shall consider here the product of two algebras, this can be later extended to
an arbitrary number of component algebras in the product. Furthermore, we restrict ourselves
only to negative metrics, which then allows us to use the results of Theorem 6.5.

Let us introduce the notation used in this section. We denote by p and s the generators of
the groups ZN and ZM , with their inverses p̃ and s̃.

Lemma 7.1. The only bimodule metric over C(ZN )⊗ C(ZM ) is of the form

g = Gpθp ⊗ θp̃ +Gp̃θp ⊗ θp̃ +Gsθs ⊗ θs̃ +Gs̃θs̃ ⊗ θs,

where Gp, Gp̃, Gs, Gs̃ are functions over ZN × ZM .
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Lemma 7.2. The most general linear connection for the minimal differential calculus over
C(ZN )⊗ C(ZM ) with N,M > 4 is determined by the map σ given by

σ(θp ⊗A θp) = Apθp ⊗A θp,
σ(θp̃ ⊗A θp̃) = Ap̃θp̃ ⊗A θp̃,
σ(θs ⊗A θs) = Asθs ⊗A θs,
σ(θs̃ ⊗A θs̃) = As̃θs̃ ⊗A θs̃,
σ(θp ⊗A θp̃) = Bp (θp ⊗A θp̃ + θp̃ ⊗A θp)− θp ⊗A θp̃ +Wp(θs ⊗A θs̃ + θs̃ ⊗A θs),
σ(θp̃ ⊗A θp) = Bp̃ (θp ⊗A θp̃ + θp̃ ⊗A θp)− θp̃ ⊗A θp +Wp̃(θs ⊗A θs̃ + θs̃ ⊗A θs),
σ(θs ⊗A θs̃) = Bs (θs ⊗A θs̃ + θs̃ ⊗A θs)− θs ⊗A θs̃ +Ws(θp ⊗A θp̃ + θp̃ ⊗A θp),
σ(θs̃ ⊗A θs) = Bs̃ (θs ⊗A θs̃ + θs̃ ⊗A θs)− θs̃ ⊗A θs +Ws̃(θp ⊗A θp̃ + θp̃ ⊗A θp),

and

σ(θa ⊗A θb) = Cab(θa ⊗A θb + θb ⊗A θa)− θa ⊗A θb

for all a,∈ {p, p̃}, b ∈ {s, s̃} or a ∈ {s, s̃}, b ∈ {p, p̃}.

Proof. Since the calculus is inner we can apply (3.1). Furthermore, in a completely similar
manner as in the Proposition 3.3 we infer that if both N and M are different than 3, α has to
be a zero map. As a result, the connection is determined by the bimodule map σ only. Now,
form the bimodule structure, as in the proof of Proposition 3.8, we get the exact form of this
map, provided that N,M 6= 4. �

Lemma 7.3. The metric compatibility condition, which can be written in general as∑
g,h,k

Ggψ
a,b
g,k

(
Rg−1ψk,c

g−1,h

)
= Ra−1Gc−1δb,c−1 ,

for all a, b, c, where σ(θg ⊗A θh) =
∑
a,b

ψa,bg,hθa⊗A θb leads to the following system of 36 equations

which can be divided into six types written explicitly below (where we use the convention that
h 6= g, g−1):

Rg−1Gg = GgAg
(
Rg−1Bg−1

)
,

Rg−1Gg−1 = Gg(Bg − 1)
(
Rg−1Bg−1 − 1

)
+Gg−1Bg−1(RgAg)

+GhWhRh−1

(
Ch−1g − 1

)
+Gh−1Wh−1(RhChg − 1),

0 = Gg(Bg − 1)
(
Rg−1Ag−1

)
+Gg−1Bg−1(RgBg − 1)

+GhWh

(
Rh−1Ch−1g−1 − 1

)
+Gh−1Wh−1

(
RhChg−1 − 1

)
,

0 = Gg(Bg − 1)
(
Rg−1Cg−1h − 1

)
+Gg−1Bg−1(RgCgh − 1)

+GhWh

(
Rh−1Bh−1 − 1

)
+Gh−1Wh−1(RhAh),

0 = Gg(Cgh − 1)
(
Rg−1Cg−1h

)
+GhChg

(
Rh−1Wh−1

)
,

Rg−1Gh = Gg(Cgh − 1)
(
Rg−1Wg−1

)
+GhChg

(
Rh−1Ch−1g

)
.

Some simplification can arise from considering torsion-freeness together with vanishing of the
cotorsion, coT∇ = (d ⊗ id − id ∧ ∇)g, which is implied [32] by torsion-freeness together with
metric compatibility. These conditions are much simpler since they are linear and in principle
can lead to significant restrictions on possible solutions of the main problem.
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In our case the cotorsion-freeness can be written explicitly as a system of 16 equations for
functions A, B, C and W :

RgGg +Gg−1(RgBg − 1) = GgRg−1Ag−1 ,

Gg
(
Rg−1Cg−1h − 1

)
= Gg−1(RgCgh − 1),

Rh−1Gg +Gh
(
Rh−1Wh−1

)
= Gg

(
Rg−1Cg−1h

)
,

where h 6= g, g−1 and these indices are taken from {p, p̃, s, s̃}.
Observe that first of them can be used to express A in terms of B, and the last one to

determine C as a function of W . The second one is a compatibility condition for functions C.
It appears, however, that even using these linear dependencies the resulting set of nonlinear

equations is at present beyond the possibilities of exact analytical solutions. Instead we shall
concentrate on showing few possible solutions for the metrics and compatible linear connections,
in particular we want to answer the question whether for the constant metrics there exist only
one compatible linear connection.

7.1 Special cases of linear connection for the torus

7.1.1 The case with W = 0, C = 1

We begin with considering a special case with all W being zero, which then enforces all C to
be identically 1 and as a consequence the situation almost splits into the two parts related with
the two algebras for discrete circles ZN and ZM . Indeed, for W = 0 first three relation from the
list for the metric compatibility condition reduce to separate equations for groups ZN and ZM ,
whose solutions we have already found in the previous section. Furthermore, cotorsion-freeness
implies that for such a case we have

Rg−1Cg−1h =
Rh−1Gg
Gg

for all g and h 6= g, g−1. Using this result in the fifth condition for metric compatibility we
immediately infer that all functions C have to be constantly equal 1. As a result RhGg = Gg
for all g and h such that h 6= g, g−1. We say that in this case the metric is perpendicularly
constant. The remaining relations are automatically fulfilled. Furthermore, for W = 0 and
C = 1 the connection ∇θg =

∑
a,b Γga,bθa ⊗A θb contains only terms Γga,b with a, b, g ∈ {p, p̃} or

a, b, g ∈ {s, s̃} separately.
These Γ functions need to be as determined in Theorem 5.4 leaving us with the freedom of

choosing different solutions. So, although the connection splits into two parts corresponding to
two groups ZN and ZM both parts can have coefficients depending on both variables due to
this freedom. If we enforce that the solutions are constant along the perpendicular direction,
using, for example, star compatibility, we indeed have the product geometry and in this case
the Riemannian curvature splits into the sum of Riemannian curvatures for two discrete circles.
Otherwise, the dependence of each connection on both variables (which can be quite ad hoc)
generates mixed terms in Riemannian and Ricci tensors.

7.1.2 The case of the constant metric

The previous example shows the existence of nontrivial solutions in the case of the product
geometry yet does not show that the solutions are unique. Therefore, for the second example
we shall ask the question of all linear connections compatible with the constant metric. Suppose
now that the metric coefficients satisfy Gp = Gp̃ = Gs = Gs̃ and are constant. By symmetry
arguments we also assume that all A, B, C and W are also constant, which are identical
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(separately) for all A,B and W s (as there is symmetry in the change of the space), moreover
we assume that Cps = Csp = Cp̃s̃ = Cs̃p̃ = C1 and Cps̃ = Cp̃s = Cs̃p = Csp̃ = C2. The resulting
system of equation is then

BA− 1 = 0,

C1W +BA+B2 − 2B + C2W − 2W = 0,

BA−A+ C1W − 2W −B +B2 + C2W = 0,

C1W − C2 + C1C2 = 0,

C2W + C1C2 − 1−W = 0,

AW − 2B +BW − C2 −W + C1B + C2B + 1 = 0,

and indeed has a unique solution

A = 1, C1 = C2 = 1, W = 0, B = 1.

We infer from that at least in the case of the constant metric (which is the same for each
of the components of the torus) there exists a unique metric compatible linear connection with
certain symmetries. The more general case, with arbitrary constant coefficients leads to a huge
number of nonlinear equations for 20 variables, which is difficult to solve. Therefore, the only
method to proceed is step by step.

To see how this study is involved let us consider the most general case, with the assumption
that all W s are different from 0. We still assume that Gp = Gp̃ = Gs = Gs̃ are constant, likewise
all C and W and suppose now all W are non-zero. Moreover, we do not impose B to be constant
here. The fifth relation in metric compatibility can be now written in the form

2 +Wh−1 +Wg−1 = 0,

where the cotorsion-freeness was used in a completely similar manner as we did it in the previous
cases. Changing g into g−1 or h into h−1, it follows that Wg = Wg−1 and Wh = Wh−1 . The
fourth relation for metric compatibility can be therefore written as

Bg +Bg−1 + 2

(
1

Bh−1

− 1

)
= 0,

so by changing h ↔ h−1 and subtracting resulting equations we get Bh = Bh−1 and similarly
also Bg = Bg−1 . Therefore the above equation reduces to Bg + 1

Bh
= 1. The third relation for

metric compatibility is now of the form,(
1

Bg
− 1

)
(Bg − 1) + 2WgWh = 0,

hence by the symmetry of the second term we infer(
1

Bg
− 1

)
(Bg − 1) =

(
1

Bh
− 1

)
(Bh − 1).

Using now Bg + 1
Bh

= 1 it can be reduced to an algebraic equation

(1−Bg)3 = B3
g ,

which has three solutions

Bg = 1
2 , Bg = 1

2

(
1± i
√

3
)
.
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Since we still have an analogue of equation (5.7), RgBg = 1
Bg

, the first solution is excluded.
From the second one we deduce that the function Bg can take values only in the set{

1
2

(
1 + i
√

3
)
, 1

2

(
1− i
√

3
)}
,

and if Bg(n,m) = 1
2

(
1± i
√

3
)
, then Bg(n+ 1,m) has to be equal to 1

2

(
1∓ i
√

3
)
. Obviously such

solutions are possible only if N is even. Moreover, from 1
Bg

+ Bh = 1 we can deduce also that

Bh = Bg, hence RhBg = 1
Bg

, so we have a similar behaviour also in the second argument. As
a result there are two possible solutions

Bg(n,m) = 1
2

(
1 + (−1)n+mi

√
3
)
, Bg(n,m) = 1

2

(
1− (−1)n+mi

√
3
)
,

and moreover the existence of such solutions requires both N and M to be even. Furthermore,
in such a case we have 2WhWg = −1, which determines the values of W ’s (and, using cotorsion-
freeness, also of C’s). Indeed, using the fifth relation for metric compatibility (which now is of

the form Wg(2+Wh+Wg) = 0) together with the condition 2WhWg = −1 we get Wg = −1−
√

3
2

and Wh =
√

3
2 − 1, or with the exchanged role of indices h and g.

Therefore at least one of W s needs to vanish unless both N and M are even when the
aforementioned possibility occurs, however, if it is not the case, we shall see that it is not
possible that only one of W is zero. Indeed, suppose the contrary, i.e., without loss of generality
assume that only Wh−1 = 0. First notice that the last relation in cotorsion-freeness implies

Cg−1h − 1 = Wh−1 .

Applying the above relation (together with RhAh = 1
Bh−1

and the analogue of (5.7) which is

still valid here) in the fourth condition for metric compatibility we get

Wh−1(Bg +Bg−1) +

(
1

Bh−1

− 1

)
(Wh +Wh−1) = 0.

Since Wh−1 = 0 we get Bh−1 = 1 or Wh = 0. Since we had assumed only one W vanishes,
Bh−1 = 1. Applying the same technique to the third condition for metric compatibility as for
the fourth one, we infer(

1

Bg
− 1

)
(Bg−1 − 1) +Wg(Wh +Wh−1) = 0.

Replacing g with h, and using Bh−1 = 1, Wh 6= 0 we end up with Wg = −Wg−1 . If Wg 6= 0,
then also Wg−1 . In this case the fifth condition for metric compatibility (after using cotorsion-
freeness) reduces to Wg−1

(
2 + Wg−1

)
= 0, so both Wg−1 and Wg (since Wh,Wh−1 6= 0) are

equal to −2. But the only possibility to satisfy Wg = −Wg−1 is now Wg = Wg−1 = 0, which is
a contradiction. Therefore, the claim is proven.

Furthermore, notice that since from Wh 6= Wh−1 = 0 we were able to deduce that Wg =
Wg−1 = 0, it follows that if one W vanishes then there exists at least one pair of vanishing W s:
Wa = Wa−1 = 0. Therefore it is not possible that exactly two of W with indices in different
algebras vanish simultaneously.

Therefore even in the case of a constant metric, such that the lengths of sides are the same in
all directions, the solution is not uniquely determined by the requirement of torsion-freeness and
metric-compatibility. In addition to the trivial solution with all W being zero (which reduces
to the case discussed in the previous subsection), there are also other possibilities, e.g., with
Wh = Wh−1 = 0 and Wg = Wg−1 = −2. For N and M with even parities, there are even more
sophisticated solutions with alternating functions B.
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8 Conclusions and overview

In this paper we posed the question, whether it is possible to classify all linear connections over
the minimal differential calculi on the finite cyclic group that are torsion-free and compatible
with a given metric, extending the already known results and the program of systematic studies
of noncommutative Riemannian geometry (see [8] and the references therein).

Surprisingly, even though the problem is nonlinear the answer is positive yet only possible
for a class of metrics that are either proportional-symmetric (left and right metrics are pro-
portional to each other) or satisfy very special relations that are quantized. However, only the
proportional-symmetric solutions are meaningful in the sense of Riemann geometry, as only they
can lead to a norm on the space of one-forms. The resulting linear connections yield a nontrivial
scalar curvature for the Riemannian geometry of the discretized circle, which has an interesting
continuous limit.

The extension of the construction of bimodule connections and compatible metrics to the
products of two discretized circles leads to a highly nontrivial set of compatibility conditions
and this paper only scratches the surface of the problem. Yet, we were able to show that for
the constant metric there exists at least one torsion-free linear connection that is compatible
with it. This example shows that torsion-freeness and metric compatibility are not so restrictive
conditions as in the classical situation and even in the simplest case we can have a plenty of
non-trivial solutions.

There remain two important problems: the uniqueness of the linear connection for a class
of nonconstant metrics as well as the relation of the computed scalar curvature to the spectral
analysis through the Dirac operator [3, 4, 23] for discretized models, which we leave for the
forthcoming work.
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