Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 17 (2021), 004, 22 pages      arXiv:1908.06641      https://doi.org/10.3842/SIGMA.2021.004

The Arithmetic Geometry of AdS$_2$ and its Continuum Limit

Minos Axenides a, Emmanuel Floratos ab and Stam Nicolis c
a) Institute of Nuclear and Particle Physics, NCSR ''Demokritos'', Aghia Paraskevi, GR-15310, Greece
b) Physics Department, University of Athens, Zografou University Campus, Athens, GR-15771, Greece
c) Institut Denis Poisson, Université de Tours, Université d'Orléans, CNRS (UMR7013), Parc Grandmont, 37200 Tours, France

Received April 02, 2020, in final form January 02, 2021; Published online January 09, 2021

Abstract
According to the 't Hooft-Susskind holography, the black hole entropy, $S_\mathrm{BH}$, is carried by the chaotic microscopic degrees of freedom, which live in the near horizon region and have a Hilbert space of states of finite dimension $d=\exp(S_\mathrm{BH})$. In previous work we have proposed that the near horizon geometry, when the microscopic degrees of freedom can be resolved, can be described by the AdS$_2[\mathbb{Z}_N]$ discrete, finite and random geometry, where $N\propto S_\mathrm{BH}$. It has been constructed by purely arithmetic and group theoretical methods and was studied as a toy model for describing the dynamics of single particle probes of the near horizon region of 4d extremal black holes, as well as to explain, in a direct way, the finiteness of the entropy, $S_\mathrm{BH}$. What has been left as an open problem is how the smooth AdS$_2$ geometry can be recovered, in the limit when $N\to\infty$. In the present article we solve this problem, by showing that the discrete and finite AdS$_2[\mathbb{Z}_N]$ geometry can be embedded in a family of finite geometries, AdS$_2^M[\mathbb{Z}_N]$, where $M$ is another integer. This family can be constructed by an appropriate toroidal compactification and discretization of the ambient $(2+1)$-dimensional Minkowski space-time. In this construction $N$ and $M$ can be understood as ''infrared'' and ''ultraviolet'' cutoffs respectively. The above construction enables us to obtain the continuum limit of the AdS$_2^M[\mathbb{Z}_N]$ discrete and finite geometry, by taking both $N$ and $M$ to infinity in a specific correlated way, following a reverse process: Firstly, we show how it is possible to recover the continuous, toroidally compactified, AdS$_2[\mathbb{Z}_N]$ geometry by removing the ultraviolet cutoff; secondly, we show how it is possible to remove the infrared cutoff in a specific decompactification limit, while keeping the radius of AdS$_2$ finite. It is in this way that we recover the standard non-compact AdS$_2$ continuum space-time. This method can be applied directly to higher-dimensional AdS spacetimes.

Key words: arithmetic geometry of AdS$_2$; continuum limit of finite geometries; Fibonacci sequences.

pdf (849 kb)   tex (372 kb)  

References

  1. Almheiri A., Dong X., Harlow D., Bulk locality and quantum error correction in AdS/CFT, J. High Energy Phys. 2015 (2015), no. 4, 163, 34 pages, arXiv:1411.7041.
  2. Almheiri A., Marolf D., Polchinski J., Sully J., Black holes: complementarity or firewalls?, J. High Energy Phys. 2013 (2013), no. 2, 062, 20 pages, arXiv:1207.3123.
  3. Arnol'd V.I., Avez A., Ergodic problems of classical mechanics, The Mathematical Physics Monograph Series, W.A. Benjamin, Inc., New York - Amsterdam, 1968.
  4. Athanasiu G.G., Floratos E.G., Coherent states in finite quantum mechanics, Nuclear Phys. B 425 (1994), 343-364.
  5. Athanasiu G.G., Floratos E.G., Nicolis S., Fast quantum maps, J. Phys. A: Math. Gen. 31 (1998), L655-L662, arXiv:math-ph/9805012.
  6. Axenides M., Floratos E., Nicolis S., Modular discretization of the AdS$_{2}$/CFT$_{1}$ holography, J. High Energy Phys. 2014 (2014), no. 2, 109, 31 pages, arXiv:1306.5670.
  7. Axenides M., Floratos E., Nicolis S., Chaotic information processing by extremal black holes, Internat. J. Modern Phys. D 24 (2015), 1542012, 7 pages, arXiv:1504.00483.
  8. Axenides M., Floratos E., Nicolis S., The quantum cat map on the modular discretization of extremal black hole horizons, Eur. Phys. J. C 78 (2018), 412, 15 pages, arXiv:1608.07845.
  9. Banks T., Holographic space-time and quantum information, Front. Phys. 8 (2020), 111, 10 pages, arXiv:2001.08205.
  10. Bao N., Carroll S.M., Singh A., The Hilbert space of quantum gravity is locally finite-dimensional, Internat. J. Modern Phys. D 26 (2017), 1743013, 5 pages, arXiv:1704.00066.
  11. Baragar A., Lattice points on hyperboloids of one sheet, New York J. Math. 20 (2014), 1253-1268.
  12. Bengtsson I., Anti-de Sitter space, http://3dhouse.se/ingemar/Kurs.pdf.
  13. Bousso R., Black hole entropy and the Bekenstein bound, in Jacob Bekenstein, The Conservative Revolutionary, World Scientific, 2019, 139-158, arXiv:1810.01880.
  14. Bressoud D., Wagon S., A course in computational number theory, Key College Publishing, Emeryville, CA, 2000.
  15. Cadoni M., Mignemi S., Asymptotic symmetries of ${\rm AdS}_2$ and conformal group in $d=1$, Nuclear Phys. B 557 (1999), 165-180, arXiv:hep-th/9902040.
  16. Carlip S., The small-scale structure of spacetime, in Foundations of Space and Time, Cambridge University Press, Cambridge, 2012, 69-84, arXiv:1009.1136.
  17. Carlip S., Mosna R.A., Pitelli J.P.M., Vacuum fluctuations and the small scale structure of spacetime, Phys. Rev. Lett. 107 (2011), 021303, 4 pages, arXiv:1103.5993.
  18. Cesaratto E., Plagne A., Vallée B., On the non-randomness of modular arithmetic progressions: a solution to a problem by V.I. Arnold, in Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, Discrete Math. Theor. Comput. Sci. Proc., AG, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2006, 271-287.
  19. Coxeter H.S.M., Discrete groups generated by reflections, Ann. of Math. 35 (1934), 588-621.
  20. Duke W., Rudnick Z., Sarnak P., Density of integer points on affine homogeneous varieties, Duke Math. J. 71 (1993), 143-179.
  21. Dyson F.J., Falk H., Period of a discrete cat mapping, Amer. Math. Monthly 99 (1992), 603-614.
  22. Feingold A.J., Kleinschmidt A., Nicolai H., Hyperbolic Weyl groups and the four normed division algebras, J. Algebra 322 (2009), 1295-1339, arXiv:0805.3018.
  23. Floratos E.G., The Heisenberg-Weyl group on the $Z_N\times Z_N$ discretized torus membrane, Phys. Lett. B 228 (1989), 335-340.
  24. Gibbons G.W., Anti-de-Sitter spacetime and its uses, in Mathematical and Quantum Aspects of Relativity and Cosmology (Pythagoreon, 1998), Lecture Notes in Phys., Vol. 537, Springer, Berlin, 2000, 102-142, arXiv:1110.1206.
  25. Giddings S.B., Black holes, quantum information, and unitary evolution, Phys. Rev. D 85 (2012), 124063, 17 pages, arXiv:1201.1037.
  26. Gubser S.S., A $p$-adic version of AdS/CFT, Adv. Theor. Math. Phys. 21 (2017), 1655-1678, arXiv:1705.00373.
  27. Hawking S.W., Spacetime foam, Nuclear Phys. B 144 (1978), 349-362.
  28. Hawking S.W., Information loss in black holes, Phys. Rev. D 72 (2005), 084013, 4 pages, arXiv:hep-th/0507171.
  29. Horadam A.F., A generalized Fibonacci sequence, Amer. Math. Monthly 68 (1961), 455-459.
  30. Jefferson R.A., Myers R.C., Circuit complexity in quantum field theory, J. High Energy Phys. 2017 (2017), no. 10, 107, 81 pages, arXiv:1707.08570.
  31. Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990.
  32. Knuth D.E., The art of computer programming, Vol. 2, Seminumerical algorithms, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass., 1981.
  33. Kontorovich A.V., The hyperbolic lattice point count in infinite volume with applications to sieves, Duke Math. J. 149 (2009), 1-36, arXiv:0712.1391.
  34. Lenstra H., Profinite groups, 2003, available at http://websites.math.leidenuniv.nl/algebra/Lenstra-Profinite.pdf.
  35. Lenstra H., Profinite Fibonacci numbers, Nieuw Arch. Wiskd. 6 (2005), 297-300.
  36. Lenstra H., Profinite number theory, Eur. Math. Soc. Newsl. 100 (2016), 14-18.
  37. Lowry-Duda D., On some variants of the Gauss circle problem, arXiv:1704.02376.
  38. Ma C.-T., Lattice AdS geometry and continuum limit, Internat. J. Modern Phys. A 35 (2020), 2050079, 12 pages, arXiv:1807.08871.
  39. Maldacena J., Black holes and quantum information, Nature Rev. Phys. 2 (2020), 123-125.
  40. Maldacena J., Susskind L., Cool horizons for entangled black holes, Fortschr. Phys. 61 (2013), 781-811, arXiv:1306.0533.
  41. Naik V., Order formulas for symplectic groups, https://groupprops.subwiki.org/wiki/Order_formulas_for_symplectic_groups.
  42. Oh H., Shah N.A., Limits of translates of divergent geodesics and integral points on one-sheeted hyperboloids, Israel J. Math. 199 (2014), 915-931, arXiv:1104.4988.
  43. Papadodimas K., Raju S., An infalling observer in AdS/CFT, J. High Energy Phys. 2013 (2013), no. 10, 212, 73 pages, arXiv:1211.6767.
  44. Patricot C., A group theoretical approach to causal structures and positive energy on space-times, arXiv:hep-th/0403040.
  45. Preskill J., Quantum information and physics: some future directions, J. Modern Opt. 47 (2000), 127-137, arXiv:quant-ph/9904022.
  46. Rawnsley J., On the universal covering group of the real symplectic group, J. Geom. Phys. 62 (2012), 2044-2058.
  47. Schild A., Discrete space-time and integral Lorentz transformations, Phys. Rev. 73 (1948), 414-415.
  48. Schild A., Discrete space-time and integral Lorentz transformations, Canad. J. Math. 1 (1949), 29-47.
  49. Sen A., Arithmetic of quantum entropy function, J. High Energy Phys. 2009 (2009), no. 8, 068, 22 pages, arXiv:0903.1477.
  50. Sen A., Quantum entropy function from $\rm AdS_2/CFT_1$ correspondence, Internat. J. Modern Phys. A 24 (2009), 4225-4244, arXiv:0809.3304.
  51. Shanks D., A sieve method for factoring numbers of the form $n^{2}+1$, Math. Tables Aids Comput. 13 (1959), 78-86.
  52. Srednicki M., Chaos and quantum thermalization, Phys. Rev. E 50 (1994), 888-901, arXiv:cond-mat/9403051.
  53. Susskind L., Dear qubitzers, GR = QM, arXiv:1708.03040.
  54. Susskind L., Black holes and complexity classes, arXiv:1802.02175.
  55. Susskind L., Three lectures on complexity and black holes, arXiv:1810.11563.
  56. 't Hooft G., How quantization of gravity leads to a discrete space-time, J. Phys. Conf. Ser. 701 (2016), 012014, 14 pages.
  57. Tan L., The group of rational points on the unit circle, Math. Mag. 69 (1996), 163-171.
  58. Verlinde E., On the origin of gravity and the laws of Newton, J. High Energy Phys. 2011 (2011), no. 4, 029, 27 pages, arXiv:1001.0785.
  59. Vinberg E.B., Discrete groups generated by reflections in Lobačevskiǐ spaces, Math. USSR Sb. 1 (1967), 429-444.
  60. Witten E., Quantum gravity in de Sitter space, in Strings, 2001 (Mumbai), Clay Math. Proc., Vol. 1, Amer. Math. Soc., Providence, RI, 2002, 351-365, arXiv:hep-th/0106109.

Previous article  Next article  Contents of Volume 17 (2021)