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Abstract. We study the properties of the n-volumic scalar curvature in this note. Lott–
Sturm–Villani’s curvature-dimension condition CD(κ, n) was showed to imply Gromov’s
n-volumic scalar curvature ≥ nκ under an additional n-dimensional condition and we show
the stability of n-volumic scalar curvature ≥ κ with respect to smGH-convergence. Then we
propose a new weighted scalar curvature on the weighted Riemannian manifold and show
its properties.
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1 Introduction

The concept of lower bounded curvature on the metric space or the metric measure space has
evolved to a rich theory due to Alexandrov’s insight. The stability of Riemannian manifolds
with curvature bounded below is another deriving force to extend the definition of the curvature
bounded below to a broader space. However, the scalar curvature (of Riemannian metrics)
bounded below was yet absent from this picture. Gromov proposed a synthetic treatment of
scalar curvature bounded below, which was called the n-volumic scalar curvature bounded below,
and offered some pertinent conjectures in [18, Section 26]. Motivated by the CD(κ, n) condition,
we add an n-dimension condition to the Gromov’s definition and introduce the definition of Scα,β
on the smooth metric measure space. Details will be given later.

Theorem 1.1. Assume that the metric measure space (Xn, d, µ) satisfies n-dimensional con-
dition and the curvature-dimension condition CD(κ, n) for κ ≥ 0 and n ≥ 2, then (Xn, d, µ)
satisfies Scvoln(Xn) ≥ nκ.

Theorem 1.2. If compact metric measure spaces (Xn
i , di, µi) with Scvoln(Xn

i ) ≥ κ ≥ 0 and
SC-radius rxni ≥ R > 0 and (Xn

i , di, µi) strongly measured Gromov–Hausdorff converge to the
compact metric measure space (Xn, d, µ) with n-dimensional condition, then Xn also satisfies
Scvoln(Xn) ≥ κ and the SC-radius rXn ≥ R.

Theorem 1.3. Let
(
Mn, g, e−f dVolg

)
be the closed smooth metric measure space with Scα,β > 0,

then we have the following conclusions:

1. If Mn is a spin manifold, α ∈ R and β ≥ |α|
2

4 , then the harmonic spinors of Mn vanish.

2. If the dimension n ≥ 3, α ∈ R and β ≥ (n−2)|α|2
4(n−1) , then there is a metric g̃ conformal to g

with positive scalar curvature.

This paper is a contribution to the Special Issue on Scalar and Ricci Curvature in honor of Misha Gromov
on his 75th Birthday. The full collection is available at https://www.emis.de/journals/SIGMA/Gromov.html
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3. If the dimension n ≥ 3, α = 2, β ≥ n−2
n−1 and

(
Nn−1, ḡ

)
is the compact Lf -stable min-

imal hypersurface of
(
Mn, g, e−f dVolg

)
, then there exists a PSC-metric conformal to ḡ

on Nn−1, where ḡ is the induced metric of g on Nn−1.

4. Assume Mn is a spin manifold and there exists a smooth 1-contracting map h : (Mn, g)→
(Sn, gst) of non-zero degree. If α ∈ R , β ≥ |α|2

4 and Scα,β ≥ n(n − 1), then h is an
isometry between the metrics g and gst.

The paper is organized as follows. In Section 2, we introduce the notions and show that
CD(κ, n) implies Scvoln ≥ (n−1)κ. In Section 3, we show the stability of spaces with Scvoln ≥ κ.
In Section 4, we present the properties of the smooth metric measure space with Scα,β > 0.

2 CD meets n-volumic scalar curvature

The n-dimensional Aleksandrov space with curvature ≥ κ equipped with the volume-measure
satisfies Lott–Villani–Sturm’s weak curvature-dimension condition for dimension n and curva-
ture (n− 1)κ, i.e., CD((n− 1)κ, n), was shown by Petrunin for κ = 0 (and said that for general
curvature ≥ κ the result followed in a similar way) [32] and then Zhang–Zhu investigated the
general case [43]. We will modify Gromov’s definition of n-volumic scalar curvature bounded
below in [18, Section 26] to fill the picture, which means Lott–Sturm–Villani’s Ricci curvature
≥ 0 implies Gromov’s scalar curvature ≥ 0.

The metric measure space (mm-space) X = (X, d, µ) means that d is the complete separable
length metric on X and µ is the locally finite full support Borel measure on X equipped with
its Borel σ-algebra. Say that an mm-space X = (X, d, µ) is locally volume-wise smaller (or not
greater) than another such space X ′ = (X ′, d′, µ′) and write X <vol X

′ (X ≤vol X
′), if all ε-balls

in X are smaller (or not greater) than the ε-balls in X ′, µ(Bε(x)) < µ′(Bε(x
′))(µ(Bε(x)) ≤

µ′(Bε(x
′)), for all x ∈ X,x′ ∈ X ′ and the uniformly small ε which depends on X and X ′.

From now on, the Riemannian 2-sphere
(
S2(γ), dS , volS

)
is endowed with round metric such

that the scalar curvature equal to 2γ−2,
(
Rn−2, dE , volE

)
is endowed with Euclidean metric with

flat scalar curvature and the product manifold S2(γ)×Rn−2 is endowed with the Pythagorean

product metrics dS×E :=
√
d2
S + d2

E and the volume volS×E := volS ⊗ volE .

Thus, we have S2(γ) <vol R2. If 0 < γ1 < γ2, then S2(γ1) <vol S
2(γ2). Furthermore,

S2(γ)×Rn−2 <vol Rn. If 0 < γ1 < γ2, then S2(γ1)×Rn−2 <vol S
2(γ2)×Rn−2.

Definition 2.1 (Gromov’s n-volumic scalar curvature). Gromov’s n-volumic scalar curvature
of X is bounded below by 0 for X = (X, d, µ) if X is locally volume-wise not greater than Rn.

Gromov’s n-volumic scalar curvature of X bounds from below by κ > 0 for X = (X, d, µ)

if X is locally volume-wise smaller than S2(γ)×Rn−2 for all γ >
√

2
κ , i.e., X <vol S

2(γ)×Rn−2

and γ >
√

2
κ , where S2(γ)×Rn−2 =

(
S2(γ)×Rn−2, dS×E , volS×E

)
.

The n-volumic scalar curvature is sensitive to the scaling of the measure, but the curvature
condition CD(κ, n) of Lott–Villani–Sturm [38, Definition 1.3] is invariant up to scalars of the
measure only [38, Proposition 1.4(ii)]. Therefore, the n-dimensional condition needs to be put
into the definition of Gromov’s n-volumic scalar curvature. In fact, the n-dimensional condition
is the special case of Young’s point-wise dimension in dynamical systems [41, Theorem 4.4].

Definition 2.2 (n-dimensional condition). For given positive natural number n, the mm-space
X = (X, d, µ) satisfies the n-dimensional condition if

lim
r→0

µ(Br(x))

volE(Br(Rn))
= 1
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for every x ∈ X, where Br(R
n) is the closed r-ball in the Euclidean space Rn and the Br(x) is

the closed r-ball with the center x ∈ X.

From now on, the superscript of n in the space Xn means the mm-space (Xn, d, µ) satisfies
n-dimensional condition.

Note that a closed smooth n-manifold Mn (n ≥ 3) admits a Riemannian metric with constant
negative scalar curvature and a Riemannian metric of non-negative scalar curvature which is
not identically zero, then by a conformal change of the metric we get a metric of positive
scalar curvature according to Kazdan–Warner theorem [25]. Furthermore, if there is a scalar-
flat Riemannian metric g on Mn, but g is not Ricci-flat metric, then g can be deformed to
a metric with positive scalar curvature according to Kazdan theorem [24, Theorem B] or by
using Ricci-flow with an easy argument. Hence we will focus more on promoting the positive
scalar curvature to positive n-volumic scalar curvature.

Definition 2.3 (n-volumic scalar curvature). Assume Xn = (Xn, d, µ) is the compact mm-space
and satisfies the n-dimensional condition, we call

1. the n-volumic scalar curvature ofXn is positive, i.e., Scvoln(Xn) > 0, if there exists rXn > 0
such that the measures of ε-balls in Xn are smaller than the volumes of ε-balls in Rn for
0 < ε ≤ rXn .

2. the n-volumic scalar curvature of Xn is bounded below by 0, i.e., Scvoln(Xn) ≥ 0, if there
exists rXn > 0 such that the measures of ε-balls in Xn are not greater than the volumes
of ε-balls in Rn for 0 < ε ≤ rXn .

The rXn is called scalar curvature radius (SC-radius) of Xn for Scvoln(Xn) ≥ 0.

3. the n-volumic scalar curvature of Xn is bounded below by κ > 0, i.e., Scvoln(Xn) ≥ κ > 0,

if, for any γ with γ >
√

2
κ , there exists rXn,γ > 0 such that the measures of ε-balls in Xn

are smaller than the volumes of ε-balls in S2(γ)×Rn−2 for 0 < ε ≤ rXn,γ .

We call rXn := inf
γ>

√
2
κ

rXn,γ is the SC-radius of Xn for Scvoln(Xn) ≥ κ > 0.

In particular, we will focus on the case of inf
γ>

√
2
κ

rXn,γ 6= 0 for stability in Section 3.

If the mm-space Xn is locally compact, then the definition of the n-volumic scalar curvature
bounded below only modifies the definition of the rXn,γ > 0 to a positive continuous function
of Xn.

Two mm-spaces (Xn, d, µ) and (Xn
1 , d1, µ1) are isometric if there exists a one-to-one map

f : Xn → Xn
1 such that d1(f(a), f(b)) = d(a, b) for a and b are in Xn and f∗µ = µ1, where f∗µ is

the push-forward measure, i.e., f∗µ(U) = µ
(
f−1(U)

)
for a measureable subset U ⊂ Xn

1 . If Xn

satisfies Scvoln(Xn) ≥ κ ≥ 0, then each mm-space (Xn
1 , d1, µ1) that is isometric to (Xn, d, µ)

also satisfies Scvoln(Xn
1 ) ≥ κ ≥ 0.

Proposition 2.4. Let g be a C2-smooth Riemannian metric on a closed oriented n-manifold Mn

with induced metric measure space (Mn, dg, dVolg), then the scalar curvature of g is positive,
Scg > 0, if and only if Scvoln(Mn) > 0, and Scg ≥ κ > 0 if and only if Scvoln(Mn) ≥ κ > 0.

Proof. For a C2-smooth Riemannian metric g, one has

dVolg(Br(x)) = volE(Br(R
n))

[
1− Scg(x)

6(n+ 2)
r2 +O

(
r4
)]

for Br(x) ⊂Mn as r → 0. Hence (Mn, dg,dVolg) satisfies the n-dimensional condition.
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If we have Scg > 0, then, since Mn is compact, there exists rMn > 0, so that dVolg(Br(x)) <
volE(Br(R

n)) for all 0 < r ≤ rMn . On the other hand, if there exists rMn > 0 such that
dVolg(Br(x)) < volE(Br(R

n)) for all 0 < r ≤ rMn , then Scg must be greater than 0.
If Scvoln(Mn) ≥ κ > 0, then Scg ≥ κ > 0. Otherwise, assume there exist small ε > 0 such

that Scg ≥ κ− ε > 0. That means that there exists a point x0 in Mn such that Scg(x0) = κ− ε,
as Mn is compact and the scalar curvature is a continuous function on Mn. Thus, we can find
a small r-ball Br(x0) such that the volume of Br(x0) is greater than the volume of the r-ball in

the S2(γ)×Rn−2 for γ =
√

2
κ− ε

2
, which is a contradiction.

On the other hand, Scg ≥ κ > 0 implies Scvoln(Mn) ≥ κ > 0. Assume Scg(x1) = κ for some
x1 ∈Mn, then there exists r1 such that dVolg(Br1(x)) ≤ dVolg(Br1(x1)) for r1-balls in Mn and

dVolg(Br(x1)) = volE(Br(R
n))

[
1− κ

6(n+ 2)
r2 +O

(
r4
)]

as r → 0. Thus, for any γ with γ >
√

2
κ , there exists rMn,γ > 0 such that the measures of

ε-balls in Mn are smaller than the volumes of ε-balls in S2(γ) ×Rn−2 for 0 < ε ≤ rMn,γ , i.e.,
Scvoln(Mn) ≥ κ > 0. �

Therefore, we have Snκ
n−1

<vol S
2(γ)×Rn−2 for all γ >

√
2
nκ . Here Snκ

n−1
is the Riemannian

manifold Sn with constant sectional curvature κ
n−1 .

Remark 2.5. For a closed smooth Riemannian manifold (Mn, g), Scvoln(Mn) ≥ 0 implies
Scg ≥ 0. Otherwise, there exists a point in Mn such that the scalar curvature is negative, then
the volume of small ball will be greater than the volume of the small ball in Euclidean space,
which is a contradiction.

On the other hand, one can consider the case of the scalar-flat metric, i.e., Scg ≡ 0. If g
is a strongly scalar-flat metric, meaning a metric with scalar curvature zero such that Mn has
no metric with positive scalar curvature, then g is also Ricci flat according to Kazdan theorem
above. Thus, we have

dVolg(Br(x)) = volE(Br(R
n))

[
1−

‖Rie(x)‖2g
120(n+ 2)(n+ 4)

r4 +O
(
r6
)]

for Br(x) ⊂Mn as r → 0 [14, Theorem 3.3]. Here Rie is the Riemannian tensor. Therefore, if g
is a not flat metric, then Mn <vol Rn. If g is a flat metric, then Mn ≤vol Rn. Thus Scg ≥ 0
implies Scvoln(Mn) ≥ 0 for a strongly scalar-flat metric g.

However, Scg ≥ 0 may not imply Scvoln(Mn) ≥ 0. There are a lot of scalar-flat metrics but
not strongly scalar flat metrics, i.e., Scg ≡ 0 but not Riccg 6= 0. For instance, the product
metric on S2(1) × Σ, where Σ is a closed hyperbolic surface, is the scalar-flat metric, but not
the Ricci-flat metric. For those metrics, we have

dVolg(Br(x)) = volE(Br(R
n))

[
1 +
−3‖Rie(x)‖2g + 8‖Ricc(x)‖2g

360(n+ 2)(n+ 4)
r4 +O

(
r6
)]

for Br(x) ⊂Mn as r → 0 [14, Theorem 3.3]. If 8‖Ricc(x)‖2g > −3‖Rie(x)‖2g for some point, then

Scg ≥ 0 does not imply Scvoln(Mn) ≥ 0.

Theorem 2.6. Assume that the mm-space (Xn, d, µ) satisfies n-dimensional condition and
the curvature-dimension condition CD(κ, n) for κ ≥ 0 and n ≥ 2, then (Xn, d, µ) satisfies
Scvoln(Xn) ≥ nκ.
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Proof. In fact, one only needs the generalized Bishop–Gromov volume growth inequality, which
is implied by the curvature-dimension of Xn [38, Theorem 2.3].

(i) If κ = 0, then

µ(Br(x))

µ(BR(x))
≥
( r
R

)n
for all 0 < r < R. That is

µ(Br(x))

volE(Br(Rn))
=
µ(Br(x))

α(n)rn
≥ µ(BR(x))

α(n)Rn
=

µ(BR(x))

volE(BR(Rn))
,

where α(n) = volE(Br(Rn))
rn . Combining the n-dimensional condition,

lim
r→0

µ(Br(x))

volE(Br(Rn))
= 1,

that implies Scvoln(X) ≥ 0.
(ii) If κ > 0, then

µ(Br(x))

µ(BR(x))
≥

∫ r
0

[
sin
(
t
√

κ
(n−1)

)]n−1
dt∫ R

0

[
sin
(
t
√

κ
(n−1)

)]n−1
dt

for all 0 < r ≤ R ≤ π
√

(n−1)
κ .

Since the scalar curvature of the product manifold S2(γ)×Rn−2 is nκ, where γ =
√

2
nκ , then

there exists C1, C2 > 0 such that

1− nκ

6(n+ 2)
r2

1 − C2r
4
1 ≤ ˜volS×E(Br1(y)) :=

volS×E(Br1(y))

volE(Br1(Rn))
≤ 1− nκ

6(n+ 2)
r2

1 + C2r
4
1,

for y ∈ S2(γ)×Rn−2 and r1 ≤ C1, where C1, C2 are decided by the product manifold S2(γ)×
Rn−2.

Let

˜µ(Br(x)) :=
µ(Br(x))

volE(Br(Rn))

and

f(r) :=

∫ r
0

[
sin
(
t
√

κ
(n−1)

)]n−1
dt

volE(Br(Rn))
,

then the generalized Bishop–Gromov inequality can be re-formulated as

˜µ(BR(x)) ≤ ˜µ(Br(x))
f(R)

f(r)

for all 0 < r < R ≤ π
√

(n−1)
κ . The asymptotic expansion of f(r) is

f(r) =

1
nr

n
[

κ
(n−1)

] (n−1)
2 − (n−1)

6(n+2)r
n+2
[

κ
(n−1)

]n+1
2 +O

(
rn+4

)
volE(Br(Rn))
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as r → 0. Thus, the asymptotic expansion of f(R)
f(r) is

f(R)

f(r)
=

1− nκ
6(n+2)R

2 +O
(
R4
)

1− nκ
6(n+2)r

2 +O
(
r4
)

as R→ 0, r → 0. The n-dimensional condition, lim
r→0

˜µ(Br(x)) = 1, implies that

˜µ(BR(x)) ≤ 1− nκ

6(n+ 2)
R2 +O

(
R4
)

as R → 0. Therefore, for any κ′ with 0 < κ′ < κ, there exists εκ′ > 0 such that for any
0 < R ≤ εκ′ , we have

˜µ(BR(x)) < ˜volS×E(BR(y)),

where ˜volS×E(BR(y)) =
volS×E(BR(y))
volE(BR(Rn)) is defined as before, the balls BR(y) are in S2(γ)×Rn−2

and γ =
√

2
nκ′ . That is Xn <vol S

2(γ)×Rn−2, for all γ >
√

2
nκ , i.e., Scvoln(Xn) ≥ nκ.

In fact, one has the classical Bishop inequality by adding the n-dimensional condition to the
generalized Bishop–Gromov volume growth inequality. It means that

� if κ = 0, µ(BR(x)) ≤ volE(BR(Rn)) for all R > 0,

� if κ > 0, µ(BR(x)) ≤ volSn
(
BR
(
Snκ
n−1

))
for 0 < R ≤ π

√
(n−1)
κ .

In other words, if κ = 0, Xn ≤vol Rn. If κ > 0, Xn ≤vol S
n
κ
n−1

. We have Snκ
n−1

<vol S
2(γ)×Rn−2

for all γ >
√

2
nκ . Then Xn <vol S

2(γ)×Rn−2 for all γ >
√

2
nκ .

Thus, we also get Scvoln(Xn) ≥ nκ. �

Remark 2.7. Hence the mm-space (Xn, d, µ) with Scvoln(Xn) ≥ nκ includes the mm-spaces
that satisfies n-dimensional condition and the generalized Bishop–Gromov volume growth in-
equality as stated in the proof, e.g., the mm-spaces with the Riemannian curvature condition
RCD(κ, n) [2] or with the measure concentration property MCP(κ, n) [29].

Question 2.8. Let Aln(1) be an orientable compact n-dimensional Aleksandrov space with cur-
vature ≥ 1, then do all continuous maps φ from Aln(1) to the sphere Sn with standard metric of
non-zero degree satisfy Lip(φ) ≥ C(n)? Here Lip(φ) is the Lipschitz constant of φ, φ maps the
boundary of Aln(1) to a point in Sn and C(n) is a constant depending only on the dimension n.

Question 2.9. Assume the compact mm-space (X, d, µ) satisfies the curvature-dimension con-
dition CD(n− 1, n), n-dimensional condition and the covering dimension is also n, then do all
continuous maps φ from (X, d, µ) to the sphere Sn with standard metric, where φ is non-trivial
in the homotopy class of maps, satisfy Lip(φ) ≥ C1(n), where C1(n) is a constant depending
only on n?

Remark 2.10. The questions above are inspired by Gromov’s spherical Lipschitz bounded
theorem in [19, Section 3] and the results above. The finite covering dimension is equal to
the cohomological dimension over integer ring Z for the compact metric space according to the
Alexandrov theorem. The best constant of C(n) and C1(n) would be 1 if both questions have
positive answers.
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Proposition 2.11 (quadratic scaling). Assume the compact mm-space (Xn, d, µ) satisfies
Scvoln(Xn) ≥ κ > 0, then Scvoln(λXn) ≥ λ−2κ > 0 and rλXn = λrXn for all λ > 0, where
λXn := (Xn, λ · d, λn · µ).

Proof. First, we will show that the n-dimensional condition is stable under scaling. Let d′ :=
λ · d, µ′ := λn ·µ, B′r(x) be an r-ball in the (Xn, d′), and Br(x) be an r-ball in the (Xn, d), then
B′r(x) = B r

λ
(x) as the subset in the Xn. One has

lim
r→0

µ′(B′r(x))

volE(Br(Rn))
= lim

r→0

µ′(B r
λ

(x))

volE(Br(Rn))
= lim

r→0

λn · µ(B r
λ

(x))

λn · volE(B r
λ

(Rn))
= 1,

then λXn satisfies the n-dimensional condition.
Since λ ·

(
S2(γ)×Rn−2

)
= λ · S2(γ)× λ ·Rn−2 = S2(λγ)× λ ·Rn−2, we have

λ ·Xn <vol λ ·
(
S2(γ)×Rn−2

)
= S2(λγ)× λ ·Rn−2

for all λγ >
√

2
λκ and 0 < ε ≤ λrXn . That means Scvoln(λXn) ≥ λ−2κ > 0 and rλ·Xn =

λrXn . �

We also have Scvoln(λXn) ≥ 0 (> 0), if Scvoln(Xn) ≥ 0 (> 0).

Remark 2.12. Since the n-dimensional condition and definition of n-volumic scalar curvature
is locally defined, we have the following construction.

� Global to local: Let the locally compact mm-space (Xn, d, µ) satisfy Scvoln(Xn) ≥ κ ≥ 0
and Y n ⊂ X be an open subset. Then, if (Y n, dY ) is a complete length space, (Y n, dY , µxY )
satisfies Scvoln(Y n) ≥ κ ≥ 0 and rY n = rXn . Where dY is the induced metric of d and µxY
is the restriction operator, namely, µxY (A) := µ(Y n ∩A) for A ⊂ Xn.

� Local to global: Let {Y n
i }i∈I be a finite open cover of a locally compact mm-space

(Xn, d, µ). Assume that (Y n
i , dYi) is a complete length space and (Y n

i , dYi , µxYi) satis-
fies Scvoln(Y n

i ) ≥ κ ≥ 0, then (Xn, d, µ) satisfies Scvoln(Xn) ≥ κ ≥ 0 and rXn can be
chosen as a partition of unity of the functions {rY ni }i∈I .

Question 2.13. Assume that Scvoln1 (Xn1
1 ) ≥ κ1(≥ 0) for the compact mm-space (Xn1

1 , d1, µ1)
and Scvoln2

(
Xn2

2

)
≥ κ2(≥ 0) for the compact mm-space (Xn2

2 , d2, µ2), then do we have

Scvoln1+n2
(
Xn1

1 ×X
n2
2

)
≥ κ1 + κ2, rXn

1 ×Xn
2

= min{rXn
1
, rXn

2
}

for
(
Xn1

1 ×X
n2
2 , d3, µ3

)
? Here Xn1

1 ×X
n2
2 is endowed with the measure µ3 := µ1 ⊗ µ2 and with

the Pythagorean product metric d3 :=
√
d2

1 + d2
2.

3 smGH-convergence

Let {µn}n∈N and µ be Borel measures on the space X, then the sequence {µn}n∈N is said to
converge strongly (also called setwise convergence in other literature ) to a limit µ if lim

n→∞
µn(A) =

µ(A) for every A in the Borel σ-algebra.
A map f : X → Y is called an ε-isometry between compact metric spaces X and Y , if

|dX(a, b) − dY (f(a), f(b))| ≤ ε for all a, b ∈ X and it is almost surjective, i.e., for every y ∈ Y ,
there exists an x ∈ X such that dY (f(x), y) ≤ ε.

In fact, if f is an ε-isometry X → Y , then there is a (4ε)-isometry f ′ : Y → X such that for
all x ∈ X, y ∈ Y , dX(f ′ ◦ f(x), x) ≤ 3ε, dY (f ◦ f ′(y), y) ≤ ε.
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Definition 3.1 (smGH-convergence). Let (Xi, di, µi)i∈N and (X, d, µ) be compact mm-spaces.
Xi converges to X in the strongly measured Gromov–Hausdorff topology (smGH-convergence)
if there are measurable εi-isometries fi : Xi → X such that εi → 0 and fi∗µi → µ in the strong
topology of measures as i→∞.

If the spaces (Xi, dn, µi, pi)i∈N and (X, d, µ, p) are locally compact pointed mm-spaces, it
is said that Xi converges to X in the pointed strongly measured Gromov–Hausdorff topolo-
gy (psmGH-convergence) if there are sequences ri → ∞, εi → 0, and measurable pointed
εi-isometries fi : Bri(pi)→ Bri(p), such that fi∗µi → µ, where the convergence is strong conver-
gence.

Remark 3.2. Let (Xi, di, µi)i∈N converge to (X, d, µ) in the measured Gromov–Hausdorff topo-
logy, then there are measurable εi-isometries fi : Xi → X such that fi∗µi weakly converges to µ.
If there is a Borel measure ν on X such that sup

i
fi∗µi ≤ ν, i.e., sup

i
fi∗µi(A) ≤ ν(A) for every A

in the Borel σ-algebra on X, then Xi smGH-converges to X (see [26, Lemma 4.1]).

Remark 3.3. The n-dimensional condition is not preserved by the measured Gromov–Hausdorff
convergence as the following example shows. Let

{
aiS

2 :=
(
S2, aidS

)}
(ai ∈ (0, 1)) be a sequence

of space, then the limit of aiS
2 under the measured Gromov–Hausdorff convergence is a point

when ai goes to 0. The limit exists as the Ricci curvature of aiS
2 is bounded below by 1.

Remark 3.4. The n-dimensional condition is not preserved by the smGH-convergence since the
limits of lim

r→0
lim
i→∞

µi(Br(x))
volE(Br(Rn)) may not be commutative for some mm-spaces (X, d, µi). Assume

the total variation distance of the measures goes to 0 as i→∞, i.e.,

dTV (µi, µ) := sup
A
|µi(A)− µ(A)| → 0,

where A runs over the Borel σ-algebra of X, then the limits are commutative.

One can also define the total variation Gromov–Hausdorff convergence (tvGH-convergence)
for mm-spaces by replacing the strong topology with the topology induced by the total variation
distance in definition of smGH-convergence. Then tvGH-convergence implies smGH-convergence
and the n-dimensional condition is preserved by tvGH-convergence.

Theorem 3.5 (stability). If compact mm-spaces (Xn
i , di, µi) with Scvoln(Xn

i ) ≥ κ ≥ 0, SC-
radius rXn

i
≥ R > 0, and (Xn

i , di, µi) smGH-converge to the compact mm-space (Xn, d, µ) with

n-dimensional condition, then Xn also satisfies Scvoln(Xn) ≥ κ and the SC-radius rXn ≥ R.

Proof. Fix an x ∈ Xn and let Br(x) be the small r-ball on Xn where r < R, then there exists
xi ∈ Xn

i such that f−1
i (Br(x)) ⊂ Br+4εi(xi) where Br+4εi(xi) ⊂ Xn

i and r + 4εi ≤ R. Thus,
fi∗µi(Br(x)) ≤ µi(Br+4εi(xi)).

� For κ = 0, since Scvoln(Xn
i ) ≥ 0 and SC-radius≥ R > 0, then µi(Br(xi)) ≤ volE(Br(R

n))
for all 0 < r ≤ R and all i. Therefore, fi∗µi(Br(x)) < µi(Br+4εi(xi)) ≤ volE(Br+4εi(R

n))
for r+ 4εi ≤ R. Since εi that is not related to r can be arbitrarily small, then µ(Br(x)) ≤
volE(Br(R

n)).

� For κ > 0, we have µi(Br(xi)) < volS×E
(
Br
(
S2(γ) × Rn−2

))
for all 0 < r ≤ R, all i,

and γ >
√

2
κ . Thus, fi∗µi(Br(x)) < µi(Br+4εi(xi)) < volS×E

(
Br+4εi

(
S2(γ) ×Rn−2

))
for

r + 4εi ≤ R. Since εi that is not related to r can be arbitrarily small, then µ(Br(x)) ≤
volS×E

(
Br
(
S2(γ) × Rn−2

))
for γ >

√
2
κ . Thus, µ(Br(x)) < volS×E

(
Br
(
S2
(√

2
κ+ε′

)
×

Rn−2
))

, where 0 < ε′ is independence on r and ε′ can as small as we want. Therefore, we

have Scvoln(Xn) ≥ κ. �
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Definition 3.6 (tangent space). The mm-space (Y, dY , µY , o) is a tangent space of (Xn, d, µ)
at p ∈ Xn if there exists a sequence λi →∞ such that (Xn, λi · d, λni ·µ, p) psmGH-converges to
(Y, dY , µY , o) as λi →∞.

Therefore, (Y, dY , µY , o) also satisfies the n-dimensional condition and can be written as Y n.

Corollary 3.7. Assume the compact mm-space (Xn, d, µ) with Scvoln(Xn) ≥ κ ≥ 0 and the
tangent space (Y n, dY , µY , o) of Xn exists at the point p, then (Y n, dY , µY , o) satisfies Scvoln(Y n)
≥ 0 and the SC-radius≥ rXn.

Proof. Since the n-volumic scalar curvature has the quadratic scaling property, i.e., Scvoln(λXn)
≥ λ−2κ ≥ 0 and rλXn = λrXn for all λ > 0, where λXn := (Xn, λ ·d, λn ·µ), then Scvoln(Y n) ≥ 0
is implied by the stability theorem. �

The mm-spaces with Scvoln ≥ 0 includes some of the Finsler manifolds, for instance, Rn equip-
ped with any norm and with the Lebesgue measure satisfies Scvoln ≥ 0 and any smooth compact
Finsler manifold is a CD(κ, n) space for appropriate finite κ and n [30]. It is well-known that
Gigli’s infinitesimally Hilbertian [12] can be seen as the Riemannian condition in RCD(κ, n)
space. Thus, infinitesimally Hilbertian can also be used as a Riemannian condition in the mm-
spaces with Scvoln ≥ 0.

Definition 3.8 (RSC(κ, n) space). The compact mm-space (Xn, d, µ) with the n-dimensional
condition is a Riemannian n-volumic scalar curvature≥ κ space (RSC(κ, n) space) if it is in-
finitesimally Hilbertian and satisfies the Scvoln(Xn) ≥ κ ≥ 0.

Note that any finite-dimensional Alexandrov spaces with curvature bounded below are in-
finitesimally Hilbertian. Then

Aln(κ)⇒ RCD((n− 1)κ, n)⇒ RSC((n(n− 1)κ, n)

on (Xn, d,Hn), where the measure Hn is the n-dimensional Hausdorff measure that satisfies the
n-dimensional condition.

Question 3.9. Are RSC(κ, n) spaces stable under tvGH-convergence?

Remark 3.10 (convergence of compact mm-spaces). For the compact metric measure spaces
with probability measures, one can consider mGH-convergence, Gromov–Prokhorov conver-
gence, Gromov–Hausdorff–Prokhorov convergence, Gromov–Wasserstein convergence, Gromov–
Hausdorff–Wasserstein convergence, Gromov’s 2-convergence, Sturm’s D-convergence [39, Sec-
tion 27], and Gromov–Hausdorff-vague convergence [3]. smGH-convergence implies those con-
vergences for compact metric measure spaces with probability measures, since the measures
converge strongly in smGH-convergence and converge weakly in other situations.

Note that mm-spaces with infinitesimally Hilbertian are not stable under mGH-convergen-
ce [12]. It is not clear if the infinitesimally Hilbertian are preserved under smGH-convergence
or tvGH-convergence.

4 Smooth mm-space with Scα,β > 0

Let the smooth metric measure space
(
Mn, g, e−f dVolg

)
(also known as the weighted Rieman-

nian manifold in some references), where f is a C2-function on Mn, g is a C2-Riemannian metric
and n ≥ 2, satisfy the curvature-dimension condition CD(κ, n) for κ ≥ 0, then Mn also satisfies
Scvoln(Mn) ≥ nκ.
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Motivated by the importance of the Ricci Bakry-Emery curvature, i.e.,

RicMf = Ricc + Hess(f),

the weighted sectional curvature of smooth mm-space was proposed and discussed in [40]. On
the other hand, Perelman defined and used the P-scalar curvature in his F-functional in [31,
Section 1]. Inspired by the P-scalar curvature, i.e., Scg + 24g f −‖5g f‖2g, we propose another
scalar curvature on the smooth mm-space.

Definition 4.1 (weighted scalar curvature Scα,β). The weighted scalar curvature Scα,β on the
smooth mm-space

(
Mn, g, e−f dVolg

)
is defined by

Scα,β := Scg + α4g f − β‖ 5g f‖2g.

Note that the Laplacian 4g here is the trace of the Hessian and Scvoln(Mn) ≥ κ ≥ 0
is equivalent to Scα,β ≥ κ ≥ 0 for α = 3 and β = 3 (see [33, Theorem 8] or the proof of
Corollary 4.10 below).

Example 4.2.

1. For α = 2(n−1)
n and β = (n−1)(n−2)

n2 , the Sc 2(n−1)
n

,
(n−1)(n−2)

n2
is the Chang–Gursky–Yang’s

conformally invariant scalar curvature for the smooth mm-space [7]. That means for a C2-
smooth function w on Mn, one has

Sc 2(n−1)
n

,
(n−1)(n−2)

n2

(
e2wg

)
= e−2wSc 2(n−1)

n
,
(n−1)(n−2)

n2
(g).

2. For α = 2 and β = m+1
m , where m ∈ N ∪ {0,∞}, the Sc2,m+1

m
is Case’s weighted scalar

curvature and Case also defined and studied the weighted Yamabe constants in [6]. Case’s
weighted scalar curvature is the classical scalar curvature if m = 0. If m = ∞, then it is
Perelman’s P -scalar curvature.

Note that the results in this paper are new for those examples.

4.1 Spin manifold and Scα,β > 0

For an orientable closed surface with density
(
Σ, g, e−f dVolg

)
with Scα,β > 0 and β ≥ 0, then

the inequality,

0 <

∫
Σ

Scα,β dVolg =

∫
Σ

(
Scg + α4g f − β‖ 5g f‖2g

)
dVolg = 4πχ(Σ)− β

∫
Σ
‖ 5g f‖2g dVolg,

implies that χ(Σ) > 0. Thus, Σ is a 2-sphere.
The following proposition of vanishing harmonic spinors is owed to Perelman essentially and

the proof is borrowed from [1, Proposition 1].

Proposition 4.3 (vanishing harmonic spinors). Assume the smooth mm-space
(
Mn,g,e−fdVolg

)
is closed and spin. If α ∈ R, β ≥ |α|

2

4 and Scα,β > 0, then the harmonic spinor of Mn vanishes.

Proof. Let ψ be a harmonic spinor, though the Schrödinger–Lichnerowicz–Weitzenboeck for-
mula

D2 = 5∗ 5+
1

4
Scg,
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one has

0 =

∫
M

[
‖ 5g ψ‖2g +

1

4

(
Scα,β − α4g f + β‖ 5g f‖2g

)
‖ψ‖2g

]
dVolg

=

∫
M

[
‖ 5g ψ‖2g +

(
1

4
Scα,β +

β

4
‖ 5g f‖2g

)
‖ψ‖2g +

α

4

〈
5g f,5g‖ψ‖2g

〉
g

]
dVolg.

Then one gets

|α|
4
|
〈
5g f,5g‖ψ‖2g

〉
g
| ≤ |α|

4

(
c‖ 5g f‖g‖ψ‖g × 2c−1‖ 5g ψ‖g

)
≤ |α|c

2

8
‖ 5g f‖2g‖ψ‖2g +

c−2|α|
2
‖ 5g ψ‖2g.

Therefore,

0 ≥
∫
M

[(
1− c−2|α|

2

)
‖ 5g ψ‖2g +

2β − c2|α|
8

‖ 5g f‖2g‖ψ‖2g +
1

4
Scα,β‖ψ‖2g

]
dVolg,

where c 6= 0. If c−2|α| ≤ 2, β ≥ c2|α|
2 and Scα,β > 0, then ψ = 0. So the conditions α ∈ R and

β ≥ |α|
2

4 are needed

|α|
4
|
〈
5g f,5g‖ψ‖2g

〉
g
| ≤ |α|

4

(
‖ 5g f‖g‖ψ‖g × 2‖ 5g ψ‖g

)
=
|α|
2

(
c1‖ 5g f‖g‖ψ‖g × c−1

1 ‖ 5g ψ‖g
)

≤ |α|
4

(
c2

1‖ 5g f‖2g‖ψ‖2g + c−2
1 ‖ 5g ψ‖2g

)
.

Thus,

0 ≥
∫
M

[(
1− c−2

1 |α|
4

)
‖ 5g ψ‖2g +

β − c2
1|α|

4
‖ 5g f‖2g‖ψ‖2g +

1

4
Scα,β‖ψ‖2g

]
dVolg,

where c1 6= 0. If c−2
1 |α| ≤ 4, β ≥ c2

1|α| and Scα,β > 0, then ψ = 0. Also the conditions α ∈ R
and β ≥ |α|

2

4 are needed. �

The following 3 corollaries come from the proposition of vanishing of harmonic spinors.

Corollary 4.4. Assume the smooth mm-space
(
Mn, g, e−f dVolg

)
is closed and spin. If α ∈ R,

β ≥ |α|
2

4 and Scα,β > 0, then the Â-genus and the Rosenberg index of Mn vanish.

Proof. Since the C∗(π1(Mn))-bundle in the construction of the Rosenberg index [35] is flat,
there are no correction terms due to curvature of the bundle. Then the Schrödinger–Lichnero-
wicz–Weitzenboeck formula and the argument in the proof of vanishing harmonic spinors can
be applied without change. �

Corollary 4.5. Assume that Mn is a closed spin n-manifold and f is a smooth function on Mn.
If one of the following conditions is met,

(1) N ⊂ Mn is a codimension one closed connected submanifold with trivial normal bundle,
the inclusion of fundamental groups π1

(
Nn−1

)
→ π1(Mn) is injective and the Rosenberg

index of N does not vanish, or
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(2) N ⊂ Mn is a codimension two closed connected submanifold with trivial normal bundle,
π2(Mn) = 0, the inclusion of fundamental groups π1

(
Nn−1

)
→ π1(Mn) is injective and

the Rosenberg index of N does not vanish, or

(3) N = N1 ∩ · · · ∩Nk, where N1 · · ·Nk ⊂ M are closed submanifolds that intersect mutually
transversely and have trivial normal bundles. Suppose that the codimension of Ni is at
most two for all i ∈ {1k̇} and π2(N)→ π2(M) is surjective and Â(N) 6= 0,

then Mn does not admit a Riemnannian metric g such that the smooth mm-space
(
Mn, g,

e−f dvolg
)

satisfies Scα,β > 0 for the dimension n ≥ 3, α ∈ R and β ≥ |α|
2

4 .

Proof. The results in the [22, Theorem 1.1] and [42, Theorem 1.9] can be applied to show that
the Rosenberg index of Mn does not vanish and Corollary 4.4 implies the theorem. �

Let Rf (Mn) := {(g, f)} be the space of densities, where g is a smooth Riemannian metric
on Mn and f is a smooth function on Mn and R+

f (Mn) ⊂ Rf (Mn) is the subspace of densities

such that the smooth mm-space
(
Mn, g, e−f dvolg

)
satisfies Scα,β > 0. Furthermore, letR+

f (Mn)
be endowed with the smooth topology.

Corollary 4.6. Assume Mn is a closed spin n-manifold, n ≥ 3, α ∈ R and β ≥ |α|2
4 and

R+
f (Mn) 6= ∅, then there exists a homomorphism

Am−1 : πm−1(R+
f (Mn))→ KOn+m

such that

� A0 6= 0, if n ≡ 0, 1 (mod 8),

� A1 6= 0, if n ≡ −1, 0 (mod 8),

� A8j+1−n 6= 0, if n ≥ 7 and 8j − n ≥ 0.

Proof. Since the results in the [23, Section 4.4] and [9] depend on the existence of exotic
spheres with non-vanishing α-invariant. Let φ : Mn → Mn be a diffeomorphism of Mn and
(g, f) ∈ R+

f (Mn), then (φ∗g, f ◦ φ) is also in R+
f (Mn). Combining it with Proposition 4.3

shows that Hitchin’s construction of the map A [23, Proposition 4.6] can be applied to the case
of R+

f (Mn) and then we can finish the proof with the arguments in [23, Section 4.4] and [9,
Section 2.5]. �

4.2 Conformal to PSC-metrics

Proposition 4.7 (conformal to PSC-metrics). Let
(
Mn, g, e−f dVolg

)
be a closed smooth mm-

space with Scα,β > 0. If the dimension n ≥ 3, α ∈ R and β ≥ (n−2)|α|2
4(n−1) , then there is a metric g̃

conformal to g with positive scalar curvature (PSC-metric).

Proof. One only needs to show for all nontrivial u,
∫
M −uLgudVolg > 0 as in the Yamabe

problem [36], where

Lg := 4g −
n− 2

4(n− 1)
Scg
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is conformal Laplacian operator. To see this,∫
M
−uLgudVolg =

∫
M

[
‖ 5g u‖2g +

n− 2

4(n− 1)
Scgu

2
]

dVolg

=

∫
M

[
‖ 5g u‖2g +

n− 2

4(n− 1)

(
Scα,β − α4g f + β‖ 5g f‖2g

)
u2

]
dVolg

=

∫
M

[
‖ 5g u‖2g +

n− 2

4(n− 1)
(Scα,β + β‖ 5g f‖2g)u2

+
α(n− 2)

2(n− 1)
〈5gf,5gu〉gu

]
dVolg.

Through the inequality

〈5gf,5gu〉gu ≤ c2‖ 5g f‖gu× c−1
2 ‖ 5g u‖g ≤

c2
2‖ 5g f‖2gu2 + c−2

2 ‖ 5g u‖2g
2

,

one gets∫
M
−uLgudVolg ≥

∫
M

[(
1− |α|c

−2
2 (n− 2)

4(n− 1)

)
‖ 5g u‖2g

+

(
β − |α|c−2

2

)
(n− 2)

4(n− 1)
‖ 5g f‖2gu2 +

n− 2

4(n− 1)
Scα,βu

2

]
dVolg,

where c2 6= 0.
If |α|c−2

2 ≤ 4(n−1)
n−2 , β ≥ c2

2|α| and Scα,β > 0, then∫
M
−uLgudVolg > 0.

So the conditions n > 2, α ∈ R and β ≥ (n−2)α2

4(n−1) are needed. �

Remark 4.8. The proof was borrowed from [1, Proposition 2]. The two propositions above offer
a geometric reason why the condition of the vanishing of Â-genus (without simply connected
condition) does not imply that Mn can admit a PSC-metric for the closed spin manifold Mn.

The proposition of conformal to PSC-metrics has following 3 corollaries.

Corollary 4.9 (weighted spherical Lipschitz bounded). Let
(
Mn, g, e−f dVolg

)
be a closed ori-

entable smooth mm-space with Scα,β ≥ κ > 0, 3 ≤ n ≤ 8, α ∈ R and β ≥ (n−2)|α|2
4(n−1) , then

the Lipschitz constant of the continuous map φ from
(
Mn, g, e−f dVolg

)
to the sphere Sn with

standard metric of non-zero degrees has uniformly non-zero lower bounded.

Proof. There is a metric g̃ conformal to g with scalar curvature ≥ n(n− 1) by the proposition
of conformal PSC-metrics. For the continuous map φ from (Mn, g̃) to Sn of non-zero degrees,
the Lipschitz constant of φ is greater than a constant that depends only on the dimensions n
by Gromov’s spherical Lipschitz bounded theorem [19, Section 3]. Since the conformal function
has the positive upper bound by the compactness of the manifold, then the Lipschitz constant
has uniformly non-zero lower bounded. �

Corollary 4.10. For the closed smooth mm-space
(
Mn, g, e−f dVolg

)
(n ≥ 3) with Scvoln(Mn)

> 0, there is a metric ĝ conformal to g with PSC-metric. In particular, the Â-genus and
Rosenberg index vanish with additional spin condition.

For the closed orientable smooth mm-space
(
Mn, g, e−f dVolg

)
(3 ≤ n ≤ 8) with Scvoln(Mn) ≥

κ > 0, then the Lipschitz constant of the continuous map φ from
(
Mn, g, e−f dVolg

)
to the

sphere Sn with standard metric of non-zero degrees has uniformly non-zero lower bounded.
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Proof. The volume of the small disk of
(
Mn, g, e−f dVolg

)
was computed in [33, Theorem 8],

µ(Br(x)) = volE(Br(R
n))

[
1−

Scg + 34g f − 3‖ 5g f‖2g
6(n+ 2)

r2 +O
(
r4
)]

as r → 0. Since Scvoln(Mn) > 0, i.e., µ(Br(x)) < volE(Br) as r → 0, then

Scg + 34g f − 3‖ 5g f‖2g > 0.

Therefore, the propositions of vanishing harmonic spinors and of conformal PSC-metrics and
Corollary 4.4 imply it. �

Remark 4.11. Since any weighted Riemannian manifold (with non-trivial Borel measure)
is infinitesimally Hilbertian (see [28]), Corollary 4.10 also works for

(
Mn, g, e−f dVolg

)
with

RSC(κ, n) condition.

Enlargeability as an obstruction to the existence of a PSC-metric on a closed manifold was
introduced by Gromov–Lawson. We call a manifold enlargeable as Gromov–Lawson’s definition
in [21, Definition 5.5]

Corollary 4.12. Assume Mn (n ≥ 3) is a closed spin smooth enlargeable manifold, then

R+
f (Mn) is an empty set for α ∈ R and β ≥ (n−2)|α|2

4(n−1) .

In particular,
(
Tn, g, e−f dVolg

)
does not satisfy Scvoln(Tn) > 0 for any C2-smooth Rieman-

nian metrics g and C2-smooth functions f on the torus Tn.

Proof. Since a closed enlargeable manifold cannot carry a PSC-metric [21, Theorem 5.8], Propo-

sition 4.7 implies R+
f (Mn) = ∅ for α ∈ R and β ≥ (n−2)|α|2

4(n−1) .
Tn is an important example of enlargeable manifolds and then Corollary 4.10 implies that(

Tn, g, e−f dVolg
)

does not satisfy Scvoln(Tn) > 0 for n ≥ 3. For dimension 2, the conditions of
Scα,β > 0 and β ≥ 0 imply that the oriented surface is 2-sphere. �

4.3 f-minimal hypersurface and Scα,β > 0

In addition to using the Dirac operator method, Schoen–Yau’s minimal hypersurface method [37]
is another main idea. For an immersed orientable hypersurface Nn−1 ⊂Mn, the weighted mean
curvature vector Hf of Nn−1 is defined by Gromov in [16, Section 9.4.E],

Hf = H + (5gf)⊥,

where H is the mean curvature vector field of the immersion, (·)⊥ is the projection on the normal
bundle of Nn−1. The first and second variational formulae for the weighted volume functional
of Nn−1 were derived in Bayle’s thesis (also see [34]). We take the detailed presentation of such
derivation for [8]. The

(
Nn−1, ḡ

)
with the induced metric is called f -minimal hypersurface if

the weighted mean curvature vector Hf vanishes identically.
In fact, the definition of f -minimal hypersurface can also be derived from the first variational

formula. Furthermore, an f -minimal hypersurface is a minimal hypersurface of (Mn, g̃), where g̃

is the conformal metric of g, g̃ = e−
2f
n−1 g.

The connection between the geometry of the ambient smooth mm-space and the f -minimal
hypersurfaces occurs via the second variation of the weighted volume functional. For a hyper-
surface

(
Nn−1, ḡ

)
, the Lf operator is defined by

Lf := 4f + |A|2 + RiccMf (ν, ν),
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where ν is the unit normal vector, |A|2 denotes the square of the norm of the second fundamental
form A of Nn−1 and

4f := 4ḡ − 〈5ḡf,5ḡ·〉

is the weighted Laplacian. Through the second variational formula, a two-sided f -minimal
hypersurface Nn−1 is stable (called Lf -stable) if for any compactly supported smooth function
u ∈ C∞c

(
Nn−1

)
, it holds that

−
∫
N
uLfue−f dVolḡ ≥ 0.

Proposition 4.13. Let
(
Mn, g, e−f dVolg

)
be a closed orientable smooth mm-space with

Scα,β > 0 and
(
Nn−1, ḡ

)
be the compact Lf -stable minimal hypersurface of

(
Mn, g, e−f dVolg

)
.

If the dimension n ≥ 3, α = 2, and β ≥ n−2
n−1 , then there exists a PSC-metric conformal to ḡ

on Nn−1.

Proof. The f -minimal hypersurface
(
Nn−1, ḡ

)
is Lf -stable if and only if

(
Nn−1, ¯̃g

)
is stable as

a minimal hypersurface on (Mn, g̃), where g̃ := e−
2f
n−1 g and ¯̃g is the induced metric of g̃ (see [8,

Appendix]). On the other hand, the scalar curvature of (Mn, g̃) is

Scg̃ = e
f
n−1

(
Scg + 24g f −

n− 2

n− 1
‖ 5g f‖2g

)
.

Thus, Scα,β > 0 with n ≥ 3, α = 2, and β ≥ n−2
n−1 imply Scg̃ > 0. Then the standard Schoen–

Yau’s argument can be applied to show that ¯̃g conformal to a PSC-metric on Nn−1. �

Remark 4.14. The minimal hypersurface method poses a stricter condition to the valid range
of α, β than that of the Dirac operator method.

Since the oriented closed manifolds with a PSC-metric in 2 and 3 dimensions are classified by
Gauess–Bonnet theorem and Perelman–Thurston geometrization theorem, then Proposition 4.13
can give the following elementary applications:

Corollary 4.15. Let
(
Mn, g, e−f dVolg

)
be a closed orientable smooth mm-space with Scα,β > 0.

1. If n = 3, α = 2, and β ≥ 1
2 , then there is no closed immersed Lf -stable minimal 2-dimen-

sional surface with positive genus.

2. If n = 4, α = 2, and β ≥ 2
3 , then the closed immersed Lf -stable minimal 3-dimensional

submanifold must be spherical 3-manifolds, S2 × S1 or the connected sum of spherical
3-manifolds and copies of S2 × S1.

Remark 4.16 (historical remark). The prototype of Corollary 4.15(1) is the Schoen–Yau’s
classic result, which said that the oriented closed 3-manifold with a PSC-metric has no com-
pact immersed stable minimal surface of positive genus [37]. The Schoen–Yau result had been
generalized to Perelman’s P-scalar curvature > 0 by Fan [10]. Note that one can also con-
sider the noncompact immersed Lf -stable minimal 2-dimensional surface under the condition
of Corollary 4.15(1) since an oriented complete stable minimal surface in a complete oriented
3-manifold with a PSC-metric is conformally equivalent to the complex plane C showed by
Fischer–Colbrie–Schoen [11].

The smooth mm-space with Scα,β > 0 under suit ranges of α and β implies the manifold
admits PSC-metrics, but the manifold (itself) that can admit PSC-metrics does not necessarily
imply there exists Scα,β > 0.
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Question 4.17. Does the smooth mm-space with Scα,β > 0 under suitable ranges of α and β
give more topological restriction on the manifold than the PSC-metric on the manifold?

Question 4.18. Let M be a closed smooth manifold, f be a smooth function on M and h be
a smooth function that is negative for some point p on M . What is the range of α and β such
that there exists a smooth Riemannian metric g on M satisfying

Scg + α4g f − β‖ 5g f‖2g = h,

i.e., Scα,β(g) = h?

Let (M, gi) be smooth Riemannian manifolds and {gi}i∈N C0-converges to g, then {gi}i∈N
also smGH-converges to g. Gromov showed that the scalar curvature≥ κ is stable under C0-
convergence in [17, Section 1.8].

Question 4.19. Assume smooth mm-spaces
(
Mn, gi, e

−f dVolgi
)

all satisfy Scvoln(Mn) ≥ 0
such that {gi}i∈N C2-converges to the smooth Riemannian metric g on Mn, then does

(
Mn, g,

e−f dVolg
)

also satisfy Scvoln(Mn) ≥ 0?

Question 4.20. Let mm-spaces
(
Mn, g, e−f dVolg

)
with Scvoln(Mn) ≥ κ > 0, where Mn is

a closed smooth manifold, g and f are C0-smooth, then does there exist a PSC-metric on Mn?

Since the role of Scα,β > 0 on the smooth mm-space is similar to the role of Sc > 0 on the
manifold, one can try to extend the knowledge about Sc > 0 to Scα,β > 0.

4.4 Weighted rigidity

Gromov’s conjecture that said if a smooth Riemannian metric g satisfies g ≥ gst and Sc(g) ≥
Sc(gst) = n(n − 1) on Sn then g = gst, was proved by Llarull [27] and called Llarull rigidity
theorem. A map h : (Mn, gM ) → (Nn, gN ) is said to be ε-contracting if ‖h∗v‖gN ≤ ε‖v‖gN for
all tangent vectors v on Mn

Proposition 4.21 (weighted rigidity). Assume the smooth mm-space
(
Mn, g, e−f dVolg

)
is

closed and spin and there exists a smooth 1-contracting map h : (Mn, g) → (Sn, gst) of non-

zero degree. If α ∈ R, β ≥ |α|2
4 and Scα,β ≥ n(n − 1), then h is an isometry between the

metrics g and gst. Furthermore, if α > 0, then f is a constant function.

Proof. One just need to insert the tricks in the proof of Proposition 4.3 to the proof in [27,
Theorem 4.1]. Following the setup of Llarull, we only prove the even-dimensional (2n) case
without loss of generality.

First, we will show that h is an isometry. Fix p ∈M2n. Let {e1, . . . , e2n} be a g-orthonormal
tangent fame near p such that (5gek)p = 0 for each k. Let {ε1, . . . , ε2n} be a gst-orthonormal
tangent frame near h(p) ∈ S2n such that (5gstεk)h(p) = 0 for each k. Moreover, the bases
{e1, . . . , e2n} and {ε1, . . . , ε2n} can be chosen so that εj = λjh∗ej for appropriate {λj}2nj=1. This
is possible since h∗ is symmetric. Since h is 1-contracting map, λk ≥ 1 for each k.

Then one constructs the twisted vector bundles S
⊗
E over M2n as Llarull did. Let RE be

the curvature tensor of E and ψ be a twisted spinor, then one gets

〈
REψ,ψ

〉
g
≥ −1

4

∑
i 6=j

1

λiλj
‖ψ‖g.
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For the twisted Dirac operator DE , one has D2
E = 5∗ 5+1

4Scg +RE and∫
M

〈
D2
Eψ,ψ

〉
g

dVolg =

∫
M

[
‖ 5g ψ‖2g +

1

4

(
Scα,β − α4g f + β‖ 5g f‖2g

)
‖ψ‖2g

+
〈
REψ,ψ

〉
g

]
dVolg

=

∫
M

[
‖ 5g ψ‖2g +

(
1

4
Scα,β +

β

4
‖ 5g f‖2g

)
‖ψ‖2g

+
α

4
〈5gf,5g‖ψ‖2g〉g +

〈
REψ,ψ

〉
g

]
dVolg.

Because λk ≥ 1 for each k, one gets〈
REψ,ψ

〉
g
≥ −2n(2n− 1)

4
‖ψ‖g

and then

|α|
4
|
〈
5g f,5g‖ψ‖2g

〉
g
| ≤ |α|

4

(
‖ 5g f‖g‖ψ‖g × 2‖ 5g ψ‖g

)
=
|α|
2

(
c1‖ 5g f‖g‖ψ‖g × c−1

1 ‖ 5g ψ‖g
)

≤ |α|
4

(
c2

1‖ 5g f‖2g‖ψ‖2g + c−2
1 ‖ 5g ψ‖2g

)
,

where c1 6= 0. Therefore,∫
M

〈
D2
Eψ,ψ

〉
g

dVolg ≥
∫
M

[(
1− c−2

1 |α|
4

)
‖ 5g ψ‖2g +

β − c2
1|α|

4
‖ 5g f‖2g‖ψ‖2g

+
1

4
(Scα,β − 2n(2n− 1))‖ψ‖2g

]
dVolg.

Furthermore, since α ∈ R, β ≥ |α|2
4 and Scα,β ≥ 2n(2n − 1), one can choose c1 such that

c−2
1 |α| ≤ 4, then β − c2

1|α| ≥ 0. Thus,∫
M

〈
D2
Eψ,ψ

〉
g

dVolg ≥
∫
M

1

4
[Scα,β − 2n(2n− 1)]‖ψ‖2g dVolg ≥ 0.

The fact Index(DE+) 6= 0 implies ker(DE) 6= 0 and then Scα,β = 2n(2n− 1). Then using the
inequality

〈
REψ,ψ

〉
g
≥ −1

4

∑
i 6=j

1
λiλj
‖ψ‖g, one gets∫

M

〈
D2
Eψ,ψ

〉
g

dVolg ≥
∫
M

1

4

[∑
i 6=j

(
1− 1

λiλj

)]
‖ψ‖2g dVolg ≥ 0.

Choosing ψ 6= 0 such that DEψ = 0, one has

0 ≤ 1− 1

λiλj
≤ 0

for i 6= j. Thus, λk = 0 for all 1 ≤ k ≤ 2n and h is an isometry.
Second, we will show that f is a constant function. Since Scα,β = 2n(2n−1), Scg = 2n(2n−1),

α > 0 and β ≥ |α|
2

4 , then 4gf ≥ 0. One has∫
M
4gf dVolg = 0

for a closed manifold Mn, so one gets 4gf = 0. That implies 5gf = 0 so that f is a constant
function on Mn. �
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Corollary 4.22. Let the closed and spin smooth mm-space
(
Mn, g, e−f dVolg

)
with Scvoln(Mn)

≥ n(n − 1) and there exists a smooth 1-contracting map h : (Mn, g) → (Sn, gst) of non-zero
degree, then h is an isometry between the metrics g and gst.

Proof. Combining the weighted rigidity theorem and the proof of Corollary 4.10 can imply
it. �

As Llarull rigidity theorem (and the weighted rigidity theorem) still holds if the condition
that h is 1-contracting is replaced by the condition that h is area-contracting, Gromov called
such metrics area-extremal metrics, asked which manifolds possess area-extremal metrics, and
conjectured that Riemannian symmetric spaces should have area-extremal metrics [15], [18,
Section 17] and [20, Section 4.2]. Goette–Semmelmann showed that several classes of symmetric
spaces with non-constant curvatures are area-extremal [13].

Question 4.23. Can Goette–Semmelmann’s results [13] be generalized to the smooth mm-space
with Scα,β > 0 under other suitable conditions?

Since Corollary 4.15(1) showed that the closed orientable immersed Lf -stable minimal 2-
dimensional surface in the closed orientable smooth mm-space

(
Mn, g, e−f dVolg

)
with Sc2,β > 0(

β ≥ 1
2

)
is 2-sphere, then one can consider rigidity of area-minimizing 2-sphere in 3-dimensional

smooth mm-space. Bray’s volume comparison theorem [4, Chapter 3, Theorem 18] is another
rigidity theorem that needs the conditions of Ricci curvature and scalar curvature bounded
below. There are other rigidity phenomena involving scalar curvature, see [5].

Question 4.24. Can Bray’s volume comparison theorem be extended to the smooth mm-space?

Question 4.25. What is the correct Einstein field equation on the smooth mm-space?
If one replaces the Ricci and scalar curvature on the left hand side of Einstein field question

by RiccMf and Scα,β for the smooth mm-space
(
Mn, g, e−f dVolg

)
, then what is the stress–energy

tensor on the right hand side in this case?
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