Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 17 (2021), 015, 13 pages      arXiv:2010.03638      https://doi.org/10.3842/SIGMA.2021.015

Stäckel Equivalence of Non-Degenerate Superintegrable Systems, and Invariant Quadrics

Andreas Vollmer ab
a) Institute of Geometry and Topology, University of Stuttgart, 70550 Stuttgart, Germany
b) Dipartimento di Scienze Matematiche (DISMA), Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy

Received October 09, 2020, in final form February 02, 2021; Published online February 17, 2021

Abstract
A non-degenerate second-order maximally conformally superintegrable system in dimension 2 naturally gives rise to a quadric with position dependent coefficients. It is shown how the system's Stäckel class can be obtained from this associated quadric.The Stäckel class of a second-order maximally conformally superintegrable system is its equivalence class under Stäckel transformations, i.e., under coupling-constant metamorphosis.

Key words: Stäckel equivalence; quadrics; superintegrable systems.

pdf (370 kb)   tex (23 kb)  

References

  1. Bertrand J.M., Mémoire sur quelques-unes des forms les plus simples que puissent présenter les intégrales des équations différentielles du mouvement d'un point matériel, J. Math. Pures Appl. 2 (1857), 113-140.
  2. Błaszak M., Marciniak K., On reciprocal equivalence of Stäckel systems, Stud. Appl. Math. 129 (2012), 26-50, arXiv:1201.0446.
  3. Błaszak M., Marciniak K., Classical and quantum superintegrability of Stäckel systems, SIGMA 13 (2017), 008, 23 pages, arXiv:1608.04546.
  4. Bolsinov A.V., Matveev V.S., Pucacco G., Normal forms for pseudo-Riemannian 2-dimensional metrics whose geodesic flows admit integrals quadratic in momenta, J. Geom. Phys. 59 (2009), 1048-1062, arXiv:0803.0289.
  5. Boyer C.P., Kalnins E.G., Miller Jr. W., Stäckel-equivalent integrable Hamiltonian systems, SIAM J. Math. Anal. 17 (1986), 778-797.
  6. Capel J.J., Invariant classification of second-order conformally flat superintegrable systems, Ph.D. Thesis, University of New South Wales, 2014.
  7. Darboux G., Sur un probléme de mécanique, Arch. Néerl. 6 (1901), 371-376.
  8. Daskaloyannis C., Quadratic Poisson algebras of two-dimensional classical superintegrable systems and quadratic associative algebras of quantum superintegrable systems, J. Math. Phys. 42 (2001), 1100-1119, arXiv:math-ph/0003017.
  9. Daskaloyannis C., Ypsilantis K., Unified treatment and classification of superintegrable systems with integrals quadratic in momenta on a two-dimensional manifold, J. Math. Phys. 47 (2006), 042904, 38 pages, arXiv:math-ph/0412055.
  10. Dini U., Sopra un problema che si presenta nella teoria generale delle rappresentazioni geografiche di una superficie su di un'altra, Ann. di Matem. 3 (1869), 269-293.
  11. Genest V.X., Ismail M.E.H., Vinet L., Zhedanov A., The Dunkl oscillator in the plane: I. Superintegrability, separated wavefunctions and overlap coefficients, J. Phys. A: Math. Theor. 46 (2013), 145201, 21 pages, arXiv:1212.4459.
  12. Hietarinta J., Grammaticos B., Dorizzi B., Ramani A., Coupling-constant metamorphosis and duality between integrable Hamiltonian systems, Phys. Rev. Lett. 53 (1984), 1707-1710.
  13. Kalnins E.G., Kress J.M., Miller Jr. W., Second-order superintegrable systems in conformally flat spaces. I. Two-dimensional classical structure theory, J. Math. Phys. 46 (2005), 053509, 28 pages.
  14. Kalnins E.G., Kress J.M., Miller Jr. W., Second order superintegrable systems in conformally flat spaces. II. The classical two-dimensional Stäckel transform, J. Math. Phys. 46 (2005), 053510, 15 pages.
  15. Kalnins E.G., Kress J.M., Miller Jr. W., Second order superintegrable systems in conformally flat spaces. IV. The classical 3D Stäckel transform and 3D classification theory, J. Math. Phys. 47 (2006), 043514, 26 pages.
  16. Kalnins E.G., Kress J.M., Miller Jr. W., Nondegenerate 2D complex Euclidean superintegrable systems and algebraic varieties, J. Phys. A: Math. Theor. 40 (2007), 3399-3411.
  17. Kalnins E.G., Kress J.M., Miller Jr. W., Nondegenerate three-dimensional complex Euclidean superintegrable systems and algebraic varieties, J. Math. Phys. 48 (2007), 113518, 26 pages, arXiv:0708.3044.
  18. Kalnins E.G., Kress J.M., Miller Jr. W., Separation of variables and superintegrability. The symmetry of solvable systems, IOP Expanding Physics, IOP Publishing, Bristol, 2018.
  19. Kalnins E.G., Kress J.M., Miller Jr. W., Post S., Laplace-type equations as conformal superintegrable systems, Adv. in Appl. Math. 46 (2011), 396-416.
  20. Kalnins E.G., Kress J.M., Pogosyan G.S., Miller Jr. W., Completeness of superintegrability in two-dimensional constant-curvature spaces, J. Phys. A: Math. Gen. 34 (2001), 4705-4720, arXiv:math-ph/0102006.
  21. Kalnins E.G., Miller Jr. W., Post S., Contractions of 2D 2nd order quantum superintegrable systems and the Askey scheme for hypergeometric orthogonal polynomials, SIGMA 9 (2013), 057, 28 pages, arXiv:1212.4766.
  22. Kalnins E.G., Pogosyan G.S., Miller Jr. W., Completeness of multiseparable superintegrability in two dimensions, Phys. Atomic Nuclei 65 (2002), 1033-1035.
  23. Kress J.M., Equivalence of superintegrable systems in two dimensions, Phys. Atomic Nuclei 70 (2007), 560-566.
  24. Kress J., Schöbel K., An algebraic geometric classification of superintegrable systems in the Euclidean plane, J. Pure Appl. Algebra 223 (2019), 1728-1752, arXiv:1602.07890.
  25. Kress J., Schöbel K., Vollmer A., An algebraic geometric foundation for a classification of superintegrable systems in arbitrary dimension, arXiv:1911.11925.
  26. Kress J., Schöbel K., Vollmer A., Algebraic conditions for conformal superintegrability in arbitrary dimension, arXiv:2006.15696.
  27. Maciejewski A.J., Przybylska M., Tsiganov A.V., On algebraic construction of certain integrable and super-integrable systems, Phys. D 240 (2011), 1426-1448, arXiv:1011.3249.
  28. Manno G., Vollmer A., (Super-)integrable systems associated to 2-dimensional projective connections with one projective symmetry, J. Geom. Phys. 145 (2019), 103476, 22 pages, arXiv:1905.01396.
  29. Manno G., Vollmer A., Normal forms of two-dimensional metrics admitting exactly one essential projective vector field, J. Math. Pures Appl. 135 (2020), 26-82, arXiv:1705.06630.
  30. Matveev V.S., Two-dimensional metrics admitting precisely one projective vector field, Math. Ann. 352 (2012), 865-909.
  31. Post S., Coupling constant metamorphosis, the Stäckel transform and superintegrability, AIP Conf. Proc. 1323 (2011), 265-274.
  32. Post S., Models of quadratic algebras generated by superintegrable systems in 2D, SIGMA 7 (2011), 036, 20 pages, arXiv:1104.0734.
  33. Sergyeyev A., Błaszak M., Generalized Stäckel transform and reciprocal transformations for finite-dimensional integrable systems, J. Phys. A: Math. Theor. 41 (2008), 105205, 20 pages, arXiv:0706.1473.
  34. Topalov P., Matveev V.S., Geodesic equivalence via integrability, Geom. Dedicata 96 (2003), 91-115, arXiv:math.DG/9911062.
  35. Tsiganov A.V., Duality between integrable Stäckel systems, J. Phys. A: Math. Gen. 32 (1999), 7965-7982, arXiv:solv-int/9812001.
  36. Tsiganov A.V., Transformation of the Stäckel matrices preserving superintegrability, J. Math. Phys. 60 (2019), 042701, 13 pages, arXiv:1809.05824.
  37. Tsiganov A.V., Superintegrable systems and Riemann-Roch theorem, J. Math. Phys. 61 (2020), 012701, 14 pages, arXiv:1910.08269.
  38. Vollmer A., Projectively equivalent 2-dimensional superintegrable systems with projective symmetries, J. Phys. A: Math. Theor. 53 (2020), 095202, 25 pages, arXiv:1812.03591.

Previous article  Next article  Contents of Volume 17 (2021)