Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 17 (2021), 031, 27 pages      arXiv:1912.06488      https://doi.org/10.3842/SIGMA.2021.031

Representations of the Lie Superalgebra $\mathfrak{osp}(1|2n)$ with Polynomial Bases

Asmus K. Bisbo a, Hendrik De Bie b and Joris Van der Jeugt a
a) Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281-S9, B-9000 Gent, Belgium
b) Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Krijgslaan 281-S8, B-9000 Gent, Belgium

Received June 30, 2020, in final form March 10, 2021; Published online March 25, 2021

Abstract
We study a particular class of infinite-dimensional representations of $\mathfrak{osp}(1|2n)$. These representations $L_n(p)$ are characterized by a positive integer $p$, and are the lowest component in the $p$-fold tensor product of the metaplectic representation of $\mathfrak{osp}(1|2n)$. We construct a new polynomial basis for $L_n(p)$ arising from the embedding $\mathfrak{osp}(1|2np) \supset \mathfrak{osp}(1|2n)$. The basis vectors of $L_n(p)$ are labelled by semi-standard Young tableaux, and are expressed as Clifford algebra valued polynomials with integer coefficients in $np$ variables. Using combinatorial properties of these tableau vectors it is deduced that they form indeed a basis. The computation of matrix elements of a set of generators of $\mathfrak{osp}(1|2n)$ on these basis vectors requires further combinatorics, such as the action of a Young subgroup on the horizontal strips of the tableau.

Key words: representation theory; Lie superalgebras; Young tableaux; Clifford analysis; parabosons.

pdf (518 kb)   tex (34 kb)  

References

  1. Blank J., Havlívcek M., Irreducible $\ast$-representations of Lie superalgebras $B(0,n)$ with finite-degenerated vacuum, J. Math. Phys. 27 (1986), 2823-2831.
  2. Chaturvedi S., Canonical partition functions for parastatistical systems of any order, Phys. Rev. E 54 (1996), 1378-1382, arXiv:hep-th/9509150.
  3. Cheng S.-J., Kwon J.-H., Wang W., Kostant homology formulas for oscillator modules of Lie superalgebras, Adv. Math. 224 (2010), 1548-1588, arXiv:0901.0247.
  4. Cheng S.-J., Wang W., Dualities and representations of Lie superalgebras, Graduate Studies in Mathematics, Vol. 144, Amer. Math. Soc., Providence, RI, 2012.
  5. Cheng S.-J., Zhang R.B., Howe duality and combinatorial character formula for orthosymplectic Lie superalgebras, Adv. Math. 182 (2004), 124-172, arXiv:math.RT/0206036.
  6. Colombo F., Sabadini I., Sommen F., Struppa D.C., Analysis of Dirac systems and computational algebra, Progress in Mathematical Physics, Vol. 39, Birkhäuser Boston, Inc., Boston, MA, 2004.
  7. Deser S., Zumino B., Broken supersymmetry and supergravity, Phys. Rev. Lett. 38 (1977), 1433-1436.
  8. Dobrev V., Salom I., Positive energy unitary irreducible representations of the superalgebras ${\mathfrak{osp}}(1|2n,\mathbb{R})$ and character formulae, in Proceedings of 8th Mathematical Physics Meeting, Summer School and Conference on Modern Mathematical Physics (Belgrade, August 24-31, 2014), Belgrade Inst. Phys., 2015, 59-81, arXiv:1506.02272.
  9. Dobrev V.K., Zhang R.B., Positive energy unitary irreducible representations of the superalgebras ${\mathfrak{osp}}(1|2n,\mathbb R)$, Phys. Atomic Nuclei 68 (2005), 1660-1669, arXiv:hep-th/0402039.
  10. Frappat L., Sciarrino A., Sorba P., Dictionary on Lie algebras and superalgebras, Academic Press, Inc., San Diego, CA, 2000.
  11. Ganchev A.Ch., Palev T.D., A Lie superalgebraic interpretation of the para-Bose statistics, J. Math. Phys. 21 (1980), 797-799.
  12. Green H.S., A generalized method of field quantization, Phys. Rev. 90 (1953), 270-273.
  13. Greenberg O.W., Macrae K.I., Locally gauge-invariant formulation of parastatistics, Nuclear Phys. B 219 (1983), 358-366.
  14. Greenberg O.W., Messiah A.M.L., Selection rules for parafields and the absence of para particles in nature, Phys. Rev. 138 (1965), B1155-B1167.
  15. Iachello F., Van Isacker P., The interacting boson-fermion model, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1991.
  16. Ivanov E.A., Sorin A.S., Superfield formulation of ${\rm OSp}(1,4)$ supersymmetry, J. Phys. A: Math. Gen. 13 (1980), 1159-1188.
  17. Kac V.G., Lie superalgebras, Adv. Math. 26 (1977), 8-96.
  18. Kanakoglou K., Daskaloyannis C., A braided look at Green ansatz for parabosons, J. Math. Phys. 48 (2007), 113516, 19 pages, arXiv:0901.4320.
  19. King R.C., Palev T.D., Stoilova N.I., Van der Jeugt J., The non-commutative and discrete spatial structure of a 3D Wigner quantum oscillator, J. Phys. A: Math. Gen. 36 (2003), 4337-4362, arXiv:hep-th/0304136.
  20. Lávička R., Souček V., Fischer decomposition for spinor valued polynomials in several variables, arXiv:1708.01426.
  21. Lievens S., Stoilova N.I., Van der Jeugt J., Harmonic oscillators coupled by springs: discrete solutions as a Wigner quantum system, J. Math. Phys. 47 (2006), 113504, 23 pages, arXiv:hep-th/0606192.
  22. Lievens S., Stoilova N.I., Van der Jeugt J., The paraboson Fock space and unitary irreducible representations of the Lie superalgebra ${\mathfrak{osp}}(1|2n)$, Comm. Math. Phys. 281 (2008), 805-826, arXiv:0706.4196.
  23. Loday J.-L., Popov T., Parastatistics algebra, Young tableaux and the super plactic monoid, Int. J. Geom. Methods Mod. Phys. 5 (2008), 1295-1314, arXiv:0810.0844.
  24. Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995.
  25. Molev A.I., Gelfand-Tsetlin bases for classical Lie algebras, in Handbook of Algebra, Handb. Algebr., Vol. 4, Elsevier/North-Holland, Amsterdam, 2006, 109-170, arXiv:math.RT/0211289.
  26. Nishiyama K., Oscillator representations for orthosymplectic algebras, J. Algebra 129 (1990), 231-262.
  27. Ohnuki Y., Kamefuchi S., Quantum field theory and parastatistics, University of Tokyo Press, Tokyo, Springer-Verlag, Berlin, 1982.
  28. Salom I., Role of the orthogonal group in construction of ${\mathfrak{osp}}(1\vert 2n)$ representations, arXiv:1307.1452.
  29. Sezgin E., Sundell P., Supersymmetric higher spin theories, J. Phys. A: Math. Theor. 46 (2013), 214022, 25 pages, arXiv:1208.6019.
  30. Stanley R.P., Enumerative combinatorics, Vol. 2, Cambridge Studies in Advanced Mathematics, Vol. 62, Cambridge University Press, Cambridge, 1999.
  31. Vasiliev M.A., Conformal higher spin symmetries of 4D massless supermultiplets and ${\mathfrak{osp}}(L,2M)$ invariant equations in generalized (super)space, Phys. Rev. D 66 (2002), 066006, 34 pages, arXiv:hep-th/0106149.

Previous article  Next article  Contents of Volume 17 (2021)