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Abstract. We show that string-net models provide a novel geometric method to construct
invariants of mapping class group actions. Concretely, we consider string-net models for
a modular tensor category C. We show that the datum of a specific commutative symmetric
Frobenius algebra in the Drinfeld center Z(C) gives rise to invariant string-nets. The Frobe-
nius algebra has the interpretation of the algebra of bulk fields of the conformal field theory
in the Cardy case.
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1 Introduction

Two-dimensional conformal field theories, to which we refer as a CFT in the following, are quan-
tum field theories that apart from their intrinsic physical interest, are amenable to a precise
mathematical study. In this paper, we use string-net models to study consistent systems of bulk
field correlators in a class of such models.

A consistent system of correlators in a CFT is obtained by specifying elements in spaces
of conformal blocks, subject to certain consistency conditions. For a conformal field theory
with the monodromy data given by a braided monoidal category D, the spaces of conformal
blocks can be constructed as morphism spaces in D. They are endowed with projective actions
of mapping class groups given in terms of the structures on D. For a rational conformal field
theory, the category D is a (semisimple) modular tensor category and the spaces of conformal
blocks are provided by the state spaces of a three-dimensional topological field theory, namely the
Reshetikhin–Turaev TFT based on D. In this framework, the task of finding a consistent system
of correlators is equivalent to finding for each surface Σ a vector in the space of conformal blocks
on the double Σ̂. This element has to be invariant under the action of the mapping class group
of Σ and the set of elements has to be consistent under sewing of the surfaces. This problem has
been solved completely in [7, 10, 11, 12, 13], using in a non-trivial way the geometry of certain
3-manifolds. This is not only technically involved, but also a serious obstacle to extend the
approach to more general classes of CFTs, e.g., those based on non-semisimple modular tensor
categories, since a 3d-TFT of Reshetikhin–Turaev type with values in vector spaces can only be
constructed for semisimple MTCs.

In this article, we only consider bulk fields on oriented surfaces. Instead of considering the
double Σ̂ of the surface Σ, which for Σ oriented without boundary consists of two copies of Σ
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with opposite orientation, i.e., Σ̂ = Σ t Σ (see, e.g., [10, Section 5.1]), one uses the following
relation for the state space of the Reshetikhin–Turaev TFT:

ZRT,C(Σ̂) = ZRT,C(Σ t Σ) ∼= ZRT,C(Σ)⊗ ZRT,C(Σ) ∼= ZRT,Crev�C(Σ)

and can take the enveloping category Crev � C of a modular tensor category as the category D
and stick with the original surface Σ. Modularity implies that we have a braided equivalence:
Crev�C ' Z(C), where Z(C) is the Drinfeld center of C, see, e.g., [24] for a statement that includes
non-semisimple categories as well. It is shown in [3, 4, 18, 26] that the Reshetikhin–Turaev
construction for Z(C) is equivalent to the extended Turaev–Viro–Barrett–Westbury state-sum
construction based on C, hence we have

ZRT,Crev�C(Σ) ∼= ZRT,Z(C)(Σ) ∼= ZTV,C(Σ).

The string-net model was first introduced in the study of topological order in condensed
matter physics by Levin and Wen [22]. The collection of state spaces associated to surfaces are
described by equivalence classes of string-diagrams on compact oriented surfaces with boundaries
and can be extended to a once-extended TFT which has recently been shown to be equivalent
to the Turaev–Viro–Barrett–Westbury state-sum construction [15, 17]. The string-net model
has two advantages that are attractive in our context: first, a vector in the space of conformal
blocks can be described by a string-net, and second, the action of the mapping class group,
when expressed in terms of such vectors, is completely geometrical (in fact, the consideration
of mapping class groups actions on string-nets has already appeared in [19]).

In this paper, we first define fundamental string-nets on a generating set of surfaces for every
commutative symmetric Frobenius algebra F in the Drinfeld center Z(C), using the structure
morphisms of F . We show in Lemma 3.8 that those string-nets are invariant under the mapping
class group action. Moreover, the prescription extends to a consistent system of correlators
in the sense of [14] by sewing, where the Frobenius algebra F befits the algebra of bulk fields,
provided that the string-net on the torus with one boundary circle is invariant under the mapping
class group action. It can be inferred from the known result [21, Theorem 3.4] that a haploid
commutative symmetric Frobenius algebra F ∈ Z(C) satisfies this condition if and only if dim(F )
equals the global dimension of the category C. Then to each surface Σ, possibly with non-empty
boundary, the assigned correlator can be obtained as a string-net by decomposing the surface
into pairs of pants and placing the appropriate fundamental string-nets on each component. For
instance, for a surface of genus one with one ingoing and two outgoing boundary components,
we have the following string-net

F

F

F

Figure 1. The string-net assigned to the extended surface of genus one with one ingoing and two out-

going boundary circles according to a certain pairs of pants decomposition.
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Here the green lines are labeled by the Frobenius algebra F , the red and blue circular coupons
stand for the multiplication and co-multiplication of the Frobenius algebra F respectively, while
the purple circles stand for the boundary projectors (introduced in Remark 2.6) that account
for the half-braiding of F .

We then restrict to a specific algebra F1 satisfying the condition of modular invariance: the
bulk algebra for the Cardy case in which the modular invariant on a torus is given by the charge
conjugation matrix. The underlying object of the algebra F1 is

L =
⊕
i∈I(C)

X∨i ⊗Xi ∈ C

along with a certain half-braiding (see Section 4.1). Here I(C) stands for the set of isomorphism
classes of simple objects in C and Xi is a fixed representative for each i ∈ I(C). We show that
for the algebra F1, the string-nets describing the correlators are almost empty (Theorem 4.5).
For instance, the string-net shown in Figure 1, after substituting the algebra with F1, will be
shown to be the following string-net

∑
i,j,k,l,m,n∈I(C)

djdkdldmdn
D6

l

i

j
m

k
n

Figure 2. The simplified form of the string-net assigned to the extended surface Σ1
1|2.

These correlators have been constructed in terms of the evaluation of a 3d-TFT on certain
ribbon graphs in 3-manifolds in [6]. The geometry and the ribbon graphs are quite involved.
The fact that we can describe them by almost empty string-nets demonstrates the advantage
of the string-net construction.

This paper is organized as follows: in Section 2, we briefly review string-net models, follo-
wing [17]. We next recall some facts about modular tensor categories in Section 3.1, review the
notion of a consistent system of bulk field correlators in Section 3.2. We define the fundamental
string-nets in Section 3.3 and show that they give rise to a consistent system of correlators when
the used Frobenius algebra is modular. Section 4 is devoted to the Cardy case.

We expect that our results can be generalized in several directions: beyond the Cardy case
and to correlators including also boundary and defect fields. A generalization of the string net
construction to non-semisimple finite tensor categories remains, at the moment, a challenge.
It would allow us to address correlators of logarithmic conformal field theories as well in a two-
dimensional setting.

2 String-net models

2.1 Spherical fusion categories

String-net models are defined for spherical fusion categories. In this section, we review some
basic facts of spherical fusion categories and fix our notations. We denote by K an algebraically
closed field of characteristic 0.
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Recall that a right dual of an object V in a strict monoidal category C is an object V ∨

together with morphisms coevV ∈ HomC
(
I, V ⊗ V ∨

)
and evV ∈ HomC

(
V ∨ ⊗ V, I

)
satisfying

(idV ⊗ evV ) ◦ (coevV ⊗ idV ) = idV

and

(evV ⊗ idV ∨) ◦ (idV ∨ ⊗ coevV ) = idV ∨ .

We depict the right duality maps graphically as

V ∨V

coevV

=

V

,

V ∨ V

evV

=

V

.

Here we replaced V ∨ by V upon reversing the direction of the arrow. Left duality is defined
similarly by reversing the arrows in the graphical notation. A monoidal category in which every
object has both left and right duals is called a rigid monoidal category.

A pivotal structure on a rigid monoidal category is a monoidal natural isomorphism
ω : idC ⇒ (−)∨∨. A pivotal structure is called strict if idC = (−)∨∨ and ω = ididC . It is known
that every pivotal category is pivotally equivalent to a pivotal category with strict pivotal struc-
ture [23, Theorem 2.2], hence we will assume the pivotal structure to be strict in the following
without loss of generality. For a strict pivotal category, the left and right duality strictly coincide
as functors.

In a pivotal category we have the notions of right and left traces for any f ∈ EndC(V ).
Graphically

trr(f) :=

V

f ∈ EndC(I), trl(f) :=

V

f ∈ EndC(I).

When applied to idV ∈ EndC(V ), we get the definitions of the left and right categorical dimension
of the object V ∈ C. A pivotal category is called spherical if the left and right traces coincide,
i.e., tr(f) := trr(f) = trl(f) and dim(V ) := dimr(V ) = diml(V ).

Definition 2.1. A fusion category over K is a rigid K-linear monoidal category C that is finitely
semisimple, with the monoidal unit I being simple. A spherical fusion category over K is a sphe-
rical category C that is also a fusion category over K.

Here being K-linear means that the sets of morphisms are K-vector spaces and the com-
position as well as the monoidal product are bilinear. Being finitely semisimple means that
there are finitely many isomorphism classes of simple objects (objects with no non-trivial
subobject) and every object is a direct sum of finitely many simple objects. Note that K-
linearity and finite-semisimplicity together imply that the morphism spaces are finite dimen-
sional.

Let us denote the set of isomorphism classes of simple objects by I(C), and fix a representa-
tive Xi for each i ∈ I(C). In addition, we require 0 ∈ I(C) and X0 = I. Duality furnishes a invo-
lution on I(C), i.e., i 7→ ī :=

[
X∨i
]
. We require that Xī = X∨i whenever i 6= ī. Since K is assumed

to be algebraically closed, the only finite dimensional division algebra over K is K itself. Thus
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we have Schur’s lemma: HomC(Xi, Xj) ∼= δi,jK. In particular, dX := dim(X) ∈ EndC(I) ∼= K.
Define the global dimension of the spherical fusion category C to be

D2 :=
∑
i∈I(C)

d2
i .

Despite of the notation, we do not choose a square root of the global dimension. By [5, Theo-
rem 2.3], D2 6= 0.

We define the functor C � · · ·� C︸ ︷︷ ︸
n

→ VectK by

V1 � · · ·� Vn 7→ HomC(I, V1 ⊗ · · · ⊗ Vn).

The pivotal structure furnishes a natural isomorphism by

zV1�···�Vn : HomC(I, V1, . . . , Vn)
∼=−→ HomC(I, Vn, V1, . . . , Vn−1),

VnV1

ϕ

· · ·

7→

Vn V1

ϕ

· · ·

It can be seen that zn = id. Thus, up to a natural isomorphism, HomC(I, V1, . . . , Vn) de-
pends only on the cyclic order of V1, . . . , Vn. This allows us to represent an element ϕ ∈
HomC(I, V1, . . . , Vn) by a round coupon with n outgoing legs colored by V1, . . . , Vn in clockwise
order

ϕ

V1Vn

We are able to connect legs with dual labels: define the composition map

HomC
(
I, V1, . . . , Vn, X

∨)⊗KHomC(I, X,W1, . . . ,Wm) → HomC(I, V1, . . . , Vn,W1, . . . ,Wm),

ϕ⊗K ψ 7→ ϕ ◦X ψ := evX ◦ (ϕ⊗K ψ).

This gives rise to a pairing: HomC(I, V1, . . . , Vn)⊗K HomC
(
I, V ∨n , . . . , V ∨1

)
→ K. It is nondegen-

erate due to the nondegeneracy of the evaluation maps. Hence for any choice of bases {ϕα}α∈A
of HomC(I, V1, . . . , Vn), we define the dual bases {ϕα}α∈A with respect to this nondegenerate
pairing. In the following we will use the following summation convention

α

V1Vn

α

V ∨1 V ∨n

:=
∑
α∈A

ϕα ⊗K ϕα.

Such expressions are independent of the choice of bases.
We now introduce the following useful completeness relation:
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Proposition 2.2. For any V1, . . . , Vn ∈ C, we have

∑
i∈I(C)

di

α

α

V1 Vn. . .

i

V1 Vn. . .

=

V1 Vn. . .

V1 Vn. . .

2.2 The string-net construction

We now give a brief introduction to the string-net construction. We refer to [17] for more details,
and to [22] for motivations from physics.

Let’s consider finite graphs (i.e., the sets of the vertices and the edges are both finite) em-
bedded in an oriented surface Σ, which is not required to be compact and may have non-empty
boundary. For such a graph Γ, denote by Eor(Γ) the set of its oriented edges and V(Γ) the
set of its vertices. One-valent vertices are called endings. We denote the set of endings of Γ
by Ven(Γ), and define V in(Γ) := V(Γ) \ Ven(Γ). We require Γ ∩ ∂Σ = Ven(Γ). We will call the
edges terminating at endings legs. Note that we don’t make a choice of orientations for the edges
of the finite graphs.

Definition 2.3. Let C be a spherical fusion category, Σ and Γ be as defined above. A C-coloring
(or simply coloring when there is no ambiguity) of Γ is given by the following data:

� A map V : Eor(Γ)→ Obj(C) such that for every e ∈ Eor(Γ), we have V (e) = V (e)∗, where e
is the edge with opposite orientation of e.

� A choice of a vector ϕ(v) ∈ HomC(I, V (e1), . . . , V (en)) for every v ∈ V in(Γ), where
e1, . . . , en are incident to v, taken in clockwise order (when the orientation of the sur-
face is considered conterclockwise) and with outward orientation.

An isomorphism f of two colorings (V, ϕ) and (V ′, ϕ′) is a collection of isomorphisms fe : V (e)
∼=−→

V ′(e) that is compatible with V (e) = V (e)∗ and such that ϕ′(v) =
(⊗

e∈Eor(v)fe
)
◦ ϕ(v),

where Eor(v) is the set of edges that are incident to the vertex v.

Let B ⊂ ∂Σ be a finite collection of points on ∂Σ and V : B → Obj(C) a map. A C-colored
graph Γ with boundary value V is a colored graph such that Ven(Γ) = B and V (eb) = V(b),
where b ∈ B and eb is the edge incident to b with outgoing orientation. We define Graph(Σ,V)
to be the set of C-colored graphs in Σ with boundary value V, and VGraph(Σ,V) to be the
K-vector space freely generated by Graph(Σ,V).

When Σ happens to be a disc D ⊂ R2, a colored graph Γ ∈Graph(D,V) can be naturally
viewed as the graphical representation of some morphism in C. Indeed, graphical calculus for
spherical fusion categories provides a canonical linear surjection [17, Theorem 2.3]

〈−〉D : VGraph(Σ,V)→ HomC(I, V (e1), . . . , V (en)),

where B = {b1, . . . , bn} and e1, . . . , en are the corresponding outgoing legs, taken in the clockwise
order.

The finite dimensional vector space HomC(I, V (e1), . . . , V (en)) ∼= VGraph(D,V)/ker 〈−〉D
can be viewed as the space of linear combinations of C-colored graphs with a fixed boundary
value, where two combinations are identified if they represent the same morphism in C according
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to the graphical calculus. The identification in turn allows us to perform graphical calculus in this
space. This inspires us to use VGraph(D,V)/ker 〈−〉D as a local model to define a vector space
for an arbitrary oriented surface Σ with a prescribed boundary value V, so that we can perform
graphical calculus locally.

Definition 2.4. Let D ⊂ Σ be an embedded disc. A null graph with respect to D is a linear
combination of colored graphs Γ = c1Γ1 + · · ·+ cnΓn ∈ VGraph(Σ,V) such that

� Γ is transversal to ∂D (i.e., no vertex of Γi is on ∂D and the edges of each Γi intersect
with ∂D transversally).

� All Γi coincide outside of D.

� 〈Γ〉D =
∑
i

ci 〈Γi ∩D〉D = 0.

Denote by N(Σ,V) ⊂ VGraph(Σ,V) the subspace spanned by null graphs for all possible em-
bedded disks D ⊂ Σ.

Definition 2.5. Let Σ be an oriented surface and let V : B → Obj(C) be a boundary value.
Define the string-net space for (Σ,V) to be the quotient space

ZSN,C(Σ,V) := VGraph(Σ,V)/N(Σ,V).

As before, we have a linear surjection

〈−〉Σ : VGraph(Σ,V)→ ZSN,C(Σ,V).

The map has several nice properties. For instance, it is linear in the colors of vertices and
additive with respect to direct sums, isotopic graphs and graphs with isomorphic colorings have
the same image. But most importantly, it allows us to identify graphs that only differ by local
relations that are encoded by the definition of null graphs. That is to say, all equations from the
graphical calculus for the spherical fusion category C, e.g., the one from Proposition 2.2, holds
true inside any embedded disc on the surface.

2.3 Drinfeld center and the extended string-net spaces

One can associate to any monoidal category C a braided monoidal category Z(C), called the
Drinfeld center of C. Recall that the objects of the Drinfeld center Z(C) are given by the pairs
Y = (Ẏ , γY ), where Ẏ ∈ C and γY : Ẏ ⊗ − ⇒ − ⊗ Ẏ is a natural isomorphism called the half-
braiding subjected to certain conditions. We use the over-crossing of a green line labeled by
an object Y ∈ Z(C) to denote its half-braiding

γY ;W :=

Y W

YW

The definition of string-net spaces can be modified so that one assign to each boundary circle
an object in the Drinfeld center Z(C). We now give a working description of the extended string-
net spaces that are relevant to our construction of CFT correlators and refer to [17, Sections 6
and 7] for details.
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Remark 2.6. Let S1 be an oriented circle. One can define a K-linear category Ĉ
(
S1
)

whose
objects are oriented circles with finite numbers of points labeled by objects of C and whose
morphism space between two such circles are the string-net space on a cylinder with boundary
value induced by the inclusion of the two circles as the boundary of the cylinder. The composition
of morphisms are induced by the stacking of cylinders and the concatenation of string-nets,
see [17, Definition 6.1] for details. For all Y ∈ Z(C), the following string-net on a cylinder,
considered as a morphism in Ĉ

(
S1
)
, is a projector

PY :=
∑
i∈I(C)

di
D2 i

Y

This can be seen by the following calculation in the string-net space, using the completeness
relation in Proposition 2.2 and the naturality of the half-braiding

P 2
Y =

∑
i,j∈I(C)

didj
D4

j

Y

i
=

∑
i,j,k∈I(C)

didjdk
D4 k

Y

j

i
α α

=
∑

j,k∈I(C)

djdk
D4

k

Y

j

=
∑

k∈I(C)

dk
D2 k

Y

= PY .

We denote by an unoriented, unlabeled purple line the following morphism that is sometimes
called the canonical color, the Kirby color, or the surgery color

:=
∑
i∈I(C)

di
D2

i

∈ EndC
(⊕

i∈I(C)Xi

)
.

Therefore, the projector PY can be also expressed as

PY =

Y

We are interested in the case where Σ ∼= Σg
n, here Σg

n means a compact oriented surface
of genus g with n boundary components. Denote by

(
Σg
n, Y1, . . . , Yn

)
a Z(C)-marked surface,

i.e., Σg
n together with
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� a numbering of π0(∂Σ) with 1, . . . , n,

� a choice of a point in each connected component of ∂Σ,

� a choice of n objects Y1, . . . , Yn ∈ Z(C).

We denote the extended string-net space for the Z(C)-marked surface Σg
n with this boundary

value by ZSN,C
(
Σg
n, Y1, . . . , Yn

)
. This is defined to be a subspace of the (unextended) string-net

spaces of Σg
n with boundary value given by the underlying objects of Y1, . . . , Yn in C, which is

spanned by all the string-nets with the additional projectors introduced in Remark 2.6 placed
near the corresponding boundary circles. For instance, a generic vector in ZSN,C

(
Σ1

3, Y1, Y2, Y3

)
can be defined by a linear combination of equivalence classes of colored graphs on Σ1

3 such as

Y3

Y1 Y2

Figure 3. A generic string-net in ZSN,C(Σ1
3, Y1, Y2, Y3).

There is a canonical isomorphism

ZSN,C
(
Σg
n, Y1, . . . , Yn

) ∼= ZTV,C
(
Σg
n, Y1, . . . , Yn

)
,

where ZTV,C
(
Σg
n, Y1, . . . , Yn

)
is the state space for

(
Σg
n, Y1, . . . , Yn

)
in the extended Turaev–Viro–

Barrett–Westbury topological field theory [17]. Hence:

Proposition 2.7. There are isomorphisms

ZSN,C
(
Σg
n, Y1, . . . , Yn

) ∼= ZTV,C
(
Σg
n, Y1, . . . , Yn

) ∼= HomZ(C)
(
IZ(C), Y1 ⊗ · · · ⊗ Yn ⊗ L⊗gZ(C)

)
that are functorial with respect to the morphisms in Z(C), where LZ(C) :=

⊕
i∈I(Z(C)) Z

∨
i ⊗ Zi.

3 Bulk field correlators

3.1 Modular tensor categories

The categorical ingredient of the string-net construction is a spherical fusion category C, which is
not necessarily braided. However, for the application to conformal field theories, we need a cat-
egory with the structure of a ribbon fusion category over C with an additional nondegeneracy
property:

Definition 3.1. A modular tensor category C is a ribbon fusion category over C with the
braiding being nondegenerate in the sense that the matrix (si,j)i,j∈I(C) is invertible, where si,j :=
tr(βj,i ◦ βi,j).

It can be seen from the cyclic symmetry of the categorical trace that si,j = sj,i. Moreover,
one can show that (see, e.g., [2, Theorem 3.7.1])∑

k∈I(C)

si,ksk,j = D2δi,j̄ .
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For a spherical fusion category C, the Drinfeld center Z(C) is a modular tensor category.
We are going to use the following lemmas:

Lemma 3.2. For every i ∈ I(C), we have

i

j

=
sj,i
di

i and
∑
j∈I(C)

dj i

j

= D2δ0,i i .

Lemma 3.3. For every X ∈ C, we have

∑
i∈I(C)

di

i

X

X

= D2

X

X

α

α

In particular, for every i, j ∈ I(C), we have

∑
k∈I(C)

dk

k

i j

i j

=
D2

di
δi,j

i

i

For a ribbon category C, we denote by Crev its reverse category, i.e., the same monoidal
category with inverse braiding and twist. There is a canonical braided functor

Ξ: Crev � C → Z(C),
U � V 7→

(
U ⊗ V, γuo

U⊗V
)
,

where

γuo
U⊗V ;W :=

U V W

U VW

is the under-over half-braiding.
In fact, modularity can be formulated as follows, see, e.g., [24]:

Proposition 3.4. A ribbon fusion category C is a modular tensor category if and only if the
canonical functor Ξ is a braided equivalence.
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3.2 Consistent systems of correlators

We now give a summary of the concept of consistent systems of CFT bulk field correlators in the
form used in [14].

An extended surface Σ is an oriented surface with a partition of the boundary components
into ingoing and outgoing parts, i.e., ∂Σ = ∂inΣ t ∂outΣ and a marked point for each bound-
ary component. We denote by Σg

p|q an extended surface of genus g with p ingoing boundary
components and q outgoing boundary components.

Definition 3.5. The mapping class group Map(Σ) of an extended surface Σ is the group of homo-
topy classes of orientation preserving homeomorphisms Σ → Σ that map ∂inΣ to itself (hence
also ∂outΣ to itself) and map marked points to marked points.

Along with the action of the mapping class group on an extended surface, we also consider
the sewing of the surface: A sewing sα,β along (α, β) ∈ π0(∂inΣ) × π0(∂outΣ) gives us a new
extended surface sα,β(Σ) := ∪α,βΣ by identifying the boundary component ∂αΣ with ∂βΣ via
an orientation preserving homeomorphism f : ∂αΣ→ ∂βΣ that maps the marked point on ∂αΣ
to the marked point on ∂βΣ. The resulting surface is independent of f up to homeomorphisms.

Definition 3.6. The category Surf is the symmetric monoidal category having extended sur-
faces Σ as objects and the pairs (ϕ, sα,β) as morphisms Σ → ∪α,βΣ, where ϕ ∈ Map(Σ) is
a mapping class and sα,β a sewing. The monoidal product is given by the disjoint union.

In order to describe the composition of the morphisms in the category Surf, we need the
relations among the pairs of mapping classes and sewing. Such relations are discussed in detail
in [16].

In a local two-dimensional conformal field theory, specific spaces of conformal blocks for bulk
fields can be constructed as the morphism spaces in a braided monoidal category D involving
a fixed object F ∈ D. The object F ∈ D should be considered as the space of bulk fields.
We say that the CFT has the monodromy data based on D and the bulk object F . The reader is
invited to think of D as the representation category of both left moving and right moving chiral
symmetries. The collection of all bulk fields transforms in a representation of this symmetry
which also determines the monodromy data of the theory like braiding and fusing matrices.
Hence we say that the CFT has the monodromy data based on D and the bulk object F
describing all bulk fields.

Since we are interested in correlators of bulk fields, we consider conformal blocks that are
based on the modular tensor category D = Crev �C for a modular tensor category C (correlators
of bulk fields are obtained by combining conformal blocks for left movers with those for right
movers). Because of Proposition 3.4, we can replace D = Crev � C with the Drinfeld center Z(C)
and therefore apply the Turaev–Viro–Barrett–Westbury state-sum construction, or equivalently,
the string-net model described in Section 2.

We therefore define the pinned block functor

BlF : Surf→ VectC

by assigning to the extended surface Σg
p|q the finite dimensional vector space

BlF
(
Σg
p|q
)

:= ZSN,C
(
Σg
p+q, F

∨, . . . , F∨︸ ︷︷ ︸
p

, F, . . . , F︸ ︷︷ ︸
q

) ∼= HomZ(C)
(
IZ(C), (F

∨)⊗p ⊗ F⊗q ⊗ L⊗gZ(C)
)
,

and to a morphism (ϕ, s) between extended surfaces the natural action of the mapping class ϕ
followed by the concatenation of the string-net induced by the sewing s.
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As an auxiliary datum, we also define the trivial block functor ∆C : Surf → VectC by assig-
ning to every extended surface the vector space C and to every morphism the identity idC.
A consistent system of bulk field correlators is then a monoidal natural transformation

vF : ∆C → BlF

such that vF
(
Σ0

1|1
)

:=
(
vF
)

Σ0
1|1

(1) ∈ BlF
(
Σ0

1|1
) ∼= EndZ(C)(F ) is invertible.

Unpacking the rather compact definition above, we see that the so defined consistent system
of bulk field correlators amounts to a choice of a vector

vF
(
Σg
p|q
)

:=
(
vF
)

Σg
p|q

(1) ∈ BlF
(
Σg
p|q
)

for each extended surface Σg
p|q that is invariant under the action of the mapping class group

Map
(
Σg
p|q
)
, such that the linear map induced by a sewing maps the chosen vector to the chosen

vector for the sewn surface.

It is shown [14, Theorem 4.10] that for a (not necessarily semisimple) modular finite cate-
gory D, the consistent systems of bulk field correlators with monodromy data based on D and
with bulk object F ∈ D are in bijection with structures of a modular Frobenius algebra [14,
Definition 4.9] on F .

3.3 Fundamental correlators via string-nets

Let F ∈ Z(C) be a commutative symmetric Frobenius algebra. We define the following string-
nets on the set of surfaces that generates all extended surfaces by sewing

vF1|0 :=

F

vF0|1 :=

F

vF1|1 :=

F

F

vF2|1 :=

F F

F

vF1|2 :=

F F

F

Here the vertices are given by the coproduct of the Frobenius algebra F . A priori, our prescrip-
tion depends on the isotopy classes of the embeddings of the string diagrams into the surfaces.
However, by using the following cloaking relation, we can show that the string-nets above are in
fact well defined:

Lemma 3.7. Let Σ be a compact oriented surface, V a boundary value, and X,Y ∈ Z(C).
We have the following equation in the string-net space ZSN,C(Σ,V)
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X

Y
=

X

Y

here it is understood that the string-nets agree outside the depicted region, and the shaded area
may include boundary components.

Proof. By using Proposition 2.2 and the naturality of the half-braiding, we can see that both
sides are equal to

∑
i,j∈I(C)

didj
D2

X

Y
α

αi

j

�

Lemma 3.8. For a commutative symmetric Frobenius algebra F ∈ Z(C), vF1|0, vF0|1, vF1|1, vF2|1,

and vF1|2 are invariant under the mapping class groups.

Proof. The cases of vF1|0, vF0|1 are trivial, since the mapping class group of a disc is trivial.

The mapping class group of a cylinder is generated by a Dehn twist. By doing a Dehn twist T
along the projector on the cylinder, we have:

TvF1|1 :=

F

=

F

Here we have used the cloaking relation in Proposition 3.7. Since being commutative and
symmetric implies that F has trivial twist [8, Proposition 2.25], we have TvF1|1 = vF1|1.

Now consider the so-called B move on a pair of pants with two ingoing boundary components,
we have
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BvF2|1 :=

F F

F

=

F F

F

=

F F

F

= vF2|1.

Here we have used the cloaking relation twice on the line ending on the lower right circle and
then the commutativity and symmetry of F . Since the B move and the Dehn twists along the
boundary circles generate the mapping class group, we have shown the invariance. The inva-
riance of vF1|2 can be shown in a similar way by using cocommutativity of F . �

By setting vF
(
Σ0

1|0
)

= vF1|0, vF
(
Σ0

0|1
)

= vF0|1, vF
(
Σ0

1|1
)

= vF1|1, vF
(
Σ0

2|1
)

= vF2|1, vF
(
Σ0

1|2
)

= vF1|2,
we can extend our prescription to a consistent system of correlators via sewing, provided that
the string-net we get on the torus with one boundary component is invariant under the action
of the mapping class group. The argument is essentially the same as the one used in [14], i.e.,
via considering the Lego–Teichmüller game [1]. Notice that the consistency regarding surfaces
of genus zero follows purely from the fact that F is a commutative symmetric Frobenius algebra
in Z(C) and cloaking. For instance, since we can move the projectors around by using the
cloaking relation, the Frobenius property implies

vF
(
Σ0

2|2
)

:=

F

FF

F

=

F F

F F

=

F

F F

F

It was shown in [25, Lemma 6.6] that the condition of S-invariance of the string-net on the
torus with one boundary circle corresponds to the S-invariance condition in [21, Lemma 3.2],
which is equivalent to the modularity condition of the Frobenius algebra given in [14, Defini-
tion 4.9] in the semi-simple cases. The surprising result [21, Theorem 3.4] states that a haploid
commutative symmetric Frobenius algebra F ∈ Z(C) is modular if and only if dim(F ) = D2.

4 The Cardy case

4.1 The bulk algebra for the Cardy case

So far, we have been working with a general commutative symmetric Frobenius algebra. We now
consider a specific Frobenius algebra, which is the algebra of the bulk fields in the Cardy case.

We equip the object

L :=
⊕
i∈I(C)

X∨i ⊗Xi
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with the under-over half-braiding γuo
L introduced at the end of Section 3.1 and denote F1 :=(

L, γuo
L

)
∈ Z(C) in the following.

We next recall that it has a natural Frobenius algebra structure in Z(C), see a review [9,
Section 2.2] and references therein.

Proposition 4.1.
(
F1, µF1 , ηF1 ,∆F1 , εF1

)
is a commutative, symmetric Frobenius algebra in

Z(C), where

µF1 :=
⊕

i,j,k∈I(C) dk

α α

i ji j

k k

∆F1 :=
⊕

i,j,k∈I(C)
djdk
D2

α α

k k

i i

j j

ηF1 :=
⊕

i∈I(C) δ0,i

i i

εF1 :=
⊕

i∈I(C)D
2δ0,i

ii

In order to show that the prescription given in the Section 3.3 for the Frobenius algebra F1

extends to a consistent system of correlators, we need to show that the string-net we get on
the torus with one boundary circle is invariant under the mapping class group action. This is
guaranteed by its dimension according to [21, Theorem 3.4]. However, the consistency for the
Cardy case can be seen in a much more straight forward and geometric manner, and a closed
form of the correlators can be derived: it turns out that the string-nets we get, in their most
simplified forms, are as empty as possible.

4.2 Consistency made explicit

The coend L =
⊕

i∈I(C)X
∨
i ⊗ Xi can be also equipped with a different half-braiding that can

be understood from the central monad

γnon
L;X :=

⊕
i,j∈I(C)

dj

i i X

j jX

α α

We call it the non-crossing half-braiding for the obvious reason.
We denote F̃ :=

(
L, γnon

L

)
∈ Z(C). There is also a naturally defined Frobenius algebra

structure on this object, with the multiplication and co-multiplication given by

F̃

F̃ F̃

µ
F̃ :=

⊕
i∈I(C) d

−1
i

i i i i

i i

∆
F̃

F̃F̃

F̃

:=
⊕

i∈I(C)

i i i i

i i
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It is easy to show that this is a special symmetric Frobenius algebra.

Proposition 4.2. For a modular tensor category C, the morphism

SL :=
⊕

i,j∈I(C)

dj

i i

j j

∈ EndC(L)

is an isomorphism of Frobenius algebras in Z(C) from the Cardy bulk algebra
(
F1, µF1 , ηF1,

∆F1 , εF1

)
in Proposition 4.1 to the Frobenius algebra

(
F̃ , µ

F̃
, η
F̃
,∆

F̃
, ε
F̃

)
defined above, with the

inverse given by

S−1
L :=

⊕
i,j∈I(C)

dj
D2

i i

j j

Proof. A more general form of the fact that the given morphisms are isomorphisms of the
Frobenius algebras (regarded as Frobenius algebras in C) was proven in [20, Proposition 4.3].
We present here a simple proof of the special case we need. Note that this can be generalized
to non-semisimple settings.

Using Proposition 2.2, it is not hard to see that

SL ∈ HomZ(C)
(
F1, F̃

)
and S−1

L ∈ HomZ(C)
(
F̃ , F1)

For instance

SL

F̃

F1 X

X

=
⊕

i,j∈I(C) dj

j j

i X

X

i

=
⊕

i,j,k∈I(C) djdk

j j

i X

X

i

α α

k

=
SL

F̃

F1 X

X

The fact that SL and S−1
L are inverse to each other is equivalent to Lemma 3.3.

To show that SL is an isomorphism of algebras, we notice

S−1
L S−1

L

SL

µF1

F̃

F1

F̃

F̃

F1F1

=
⊕

i,j,k,l,m,n∈I(C)

dkdldmdn
D4

α α

i ji j

k l

n n

m

=
⊕

i,j,k,l,n∈I(C)

dkdldn
D4

i ji j

k l

n n

=
⊕

i,j,k,l,n∈I(C)

dkdldn
D4

i ji j

n n

k l =
⊕

i,j,l∈I(C)

dl
D2

i ji j

i i

l =
⊕
i∈I(C)

d−1
i

i ii i

i i

= µ
F̃

F̃ F̃

F̃
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Hence SL ◦ µF = µ
F̃
◦
(
SL ⊗ SL

)
. Similarly, one shows that SL is also an isomorphism of

coalgebras

SL SL

S−1
L

∆F1

F̃

F1

F̃

F̃

F1F1

=
⊕

i,j,k,l,m,n∈I(C)

djdkdldmdn
D4

α α

i i

j

k l

m nm n

=
⊕

i,j,k,m,n∈I(C)

djdkdmdn
D4

i i

j

k

m nm n

=
⊕

i,k,m∈I(C)

dkdm
D2

i i

k

m im i

=
⊕

i,k,m∈I(C)

dkdm
D2

i i

k

m im i

=
⊕

i,k,m∈I(C)

dkdm
D2

i i

k

m im i

=
⊕
i∈I(C)

i i

i ii i

= ∆
F̃

F̃ F̃

F̃ �

Corollary 4.3. For a modular tensor category C,
(
F̃ , µ

F̃
, η
F̃
,∆

F̃
, ε
F̃

)
is a commutative, sym-

metric Frobenius algebra in Z(C). In particular, F̃ has trivial twist.

Remark 4.4. In fact, Corollary 4.3 holds true for any spherical fusion category C.

It is a general fact that isomorphisms between bulk algebras induce isomorphisms of the spaces
of conformal blocks. In the case at hand, this is implemented by composing the string-nets with
the morphism SL near the outgoing boundary and precomposing the string-net with S−1

L near
the ingoing boundary. For instance, applying to the invariants on pairs of pants, we get

F̃ F̃

F̃

F1 F1

F1µF1 and

F̃ F̃

F̃

F1 F1

F1
∆F1
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Here the white boxes stand for SL and the gray ones stand for S−1
L . Since both are morphisms

in Z(C), it makes no difference which side of the projectors we put the boxes on, as long as we
use the correct half-braidings.

If we take F̃ as our bulk object, we get another set of conformal blocks

BlF̃ : Surf→ VectC

as well as a new set of correlators

vF̃ : ∆C → BlF̃ .

In fact, the induced isomorphisms of string-net spaces give rise to a natural isomorphisms of con-
formal blocks

BlSL : BlF1 → BlF̃ ,

since the isomorphisms intertwine the action of mapping class groups and sewing.

Moreover, due to the fact that

F̃ F̃

F̃

F1 F1

F1µF1 =

F̃ F̃

F̃

µ
F̃

and

F̃ F̃

F̃

F1 F1

F1
∆F1

=

F̃ F̃

F̃

∆
F̃

we get a commutative diagram of natural transformations

BlF̃

∆C

BlF1

vF1 vF̃

BlSL

Intuitively, the two isomorphic Frobenius algebras produce equivalent sets of correlators. The
natural isomorphism BlSL gives the precise way to relate them.

It turns out that the correlators given by the Frobenius algebra
(
F̃ , µ

F̃
, η
F̃
,∆

F̃
, ε
F̃

)
are

particularly easy to compute:

Theorem 4.5. Let Σg
p|q be a surface of genus g with p ingoing and q outgoing boundaries, where

p, q, g ∈ Z≥0.
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1. The correlator for Σg
p|q with bulk field F̃ is given by the following string net:

vF̃
(
Σg
p|q
)

=
∑

i1,...,ip,j1,...,jq∈I(C)

dj1 · · · djq
D2p

i1 ip

j1 jq. . .

. . .

. . .

. . .

. . .

2. Consequently, the correlator for Σg
p|q with bulk field F1 is given by the following string net:

vF1
(
Σg
p|q
)

=
∑

i1,...,ip,j1,...,jq ,
k1,...,kp,l1,...,lq∈I(C)

dj1 · · · djqdk1 · · · dkpdl1 · · · dlq
D2(p+q)

k1

j1
. . .

. . .

. . .

. . .

. . .

i1

kp

ip

jq
l1 lq

Proof. We only have to check the cases in which g = 0 and p+ q ≤ 3. For Σ0
2|1, we find

vF̃
(
Σ0

2|1
)

=

F̃ F̃

F̃

µ
F̃ =

∑
i,j,k,l,m,n,o∈I(C)

dkdldmdndo
D6

i i j j

kk

l

l

l

m n

o

=
∑

i,j,k,l∈I(C)

dkdl
D6

i

k

j

l =
∑

i,j,k∈I(C)

dk
D4

i

k

j
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Similarly, we have

vF̃
(
Σ0

1|2
)

=

F̃ F̃

F̃

∆
F̃

=
∑

i,j,k∈I(C)

djdk
D2

i

j k

The arguments concerning the unit and counit are even more straight forward. Notice that,
whenever we sew together a pair of boundaries, we get a contractible circle that cancels out
a factor of D2.

By applying the inverse of the natural isomorphism BlSL , we get the second part of the
statement. �

Remark 4.6. It can be seen from the proof above, even though the definition of the Frobenius
algebra F1 requires C to be braided and the construction of the isomorphisms in Proposition 4.2
requires C to be modular, the Frobenius algebra F̃ ∈ Z(C) gives rise to a consistent system
of bulk field correlators for any spherical fusion category C.

Theorem 4.5 allows us to compute in particular the zero-point correlator on a torus. Consider
the following set of vectors {Gi,j}i,j∈I(C) in the string-net space of a torus, where

Gi,j :=
∑

k∈I(C)

dk
D2

i

k

j

here the opposite sides of the square are identified so the resulting surface is a torus. For
a modular tensor category C, every simple object in Z(C) ' Crev � C is isomorphic to Z(i,j) :=(
Xi ⊗ Xj , γ(i,j)

)
for some i, j ∈ I(C) and the half braiding γ(i,j) given by the under-over half-

braiding. It can be seen from the following representation of the string-net space associated to
the torus

ZSN,C
(
Σ1

0

) ∼= ⊕
k∈I(Z(C))

ZSN,C
(
Σ0

2, Z
∨
k , Zk

) ∼= ⊕
i,j∈I(C)

ZSN,C
(
Σ0

2, Z
∨
(i,j), Z(i,j)

)
that follows from factorization that {Gi,j}i,j∈I(C), up to the action of the mapping class group
Map

(
Σ1

0|0
) ∼= SL(2,Z), is a basis for the vector space ZSN,C

(
Σ1

0

)
. As a result of Theorem 4.5,

the torus partition function vF1
(
Σ1

0|0
)

is the empty string-net, which is obviously invariant under
the mapping class group action. When written in the following form

vF1
(
Σ1

0|0
)

:=
F1

=
∑

i,j∈I(C)

dj
D2

i

j

i

=
∑
i∈I(C)

Gī,i,
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the correlator is expressed as a linear combination of the basis vectors {Gi,j}i,j∈I(C) with the
coefficients (δi,j̄)i,j∈I(C), which are the entries of the charge conjugation matrix.
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