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Abstract. We consider the complex eigenvalues of the induced spherical Ginibre ensemble
with symplectic symmetry and establish the local universality of these point processes along
the real axis. We derive scaling limits of all correlation functions at regular points both in
the strong and weak non-unitary regimes as well as at the origin having spectral singularity.
A key ingredient of our proof is a derivation of a differential equation satisfied by the
correlation kernels of the associated Pfaffian point processes, thereby allowing us to perform
asymptotic analysis.
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1 Introduction and results

The footprints of the universality in non-Hermitian random matrix theory began with the
work [41] of Ginibre. There, three classes of Gaussian random matrices with complex, real, and
quaternion elements were introduced, and they are now called the Ginibre ensembles. (We refer
to [21, 22] for recent reviews on these topics.) Although the eigenvalues of the matrices in each
symmetry class all follow the universal circular law at the macroscopic level, their statistical prop-
erties are quite different from many perspectives. For instance, in the complex symmetry class,
the real axis is not special due to the rotational invariance. On the other hand, in the real and
quaternion cases, there exist microscopic attraction and repulsion respectively along the real axis.

The difference among these three symmetry classes can also be found in their integrable
structures. More precisely, the eigenvalues of the complex matrices form determinantal point
processes, whereas those of the real and quaternion matrices form Pfaffian point processes.
Furthermore, while the correlation kernels of the complex matrices can be written in terms of
the planar orthogonal polynomials, their counterparts for the real and quaternion matrices are
described in terms of the (less understood) planar skew-orthogonal polynomials.

Due to the more complicated integrable structures of Pfaffian point processes, it is not surpris-
ing that the local universality classes (i.e., scaling limits of all eigenvalue correlation functions)
were first investigated in the complex symmetry class. Indeed, the bulk scaling limit of the
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complex Ginibre ensemble was already introduced in the work [41] of Ginibre. On the other
hand, the edge scaling limit of the complex Ginibre ensemble was discovered in [36]. For the
real symmetry class, the bulk and edge scaling limits of the Ginibre ensemble were investigated
in [15, 38, 60]. Finally, for the quaternion case, the bulk scaling limit was first introduced in the
second edition of Mehta’s book [57] and later rediscovered by Kanzieper [45]. In contrast, the
edge scaling limit in this symmetry class was discovered only recently in [4]. (See also [54] for
an alternative derivation for the 1-point function.)

From the above philosophy, it is not surprising again that the universality principle was first
established in the complex symmetry class. Among plenty of works in this direction, the bulk
universality of random normal matrix ensembles was obtained in [10]. More recently, the edge
universality of these models was obtained in [43], where the authors developed a general asymp-
totic theory of the planar orthogonal polynomials. However, the literature on the universality
in the other symmetry classes are more limited.

Nevertheless, there have been several recent works on the scaling limits of planar symplectic
ensembles, which are contained in the symmetry class of the quaternion Ginibre ensemble. (By
definition, these are point processes which follow the joint probability distribution (1.2).) For
instance, the universal scaling limits of the symplectic elliptic Ginibre ensemble at the origin were
obtained in [6] and were extended in [19] along the whole real axis. Furthermore, non-standard
universality classes under the presence of certain singularities have been discovered as well. To
name a few, the scaling limits at the singular origin were studied in [4] for the Mittag-Leffler
ensemble (a generalisation of the symplectic induced Ginibre ensemble), in [44] for the product
ensembles and in [2, 6] for the Laguerre ensembles. The boundary scaling limits under the hard
edge type conditions were investigated in [46] for the truncated symplectic unitary ensembles
and in [20] for the Ginbire ensemble with boundary confinements. Beyond the above-mentioned
cases, the scaling limits of the models interpolating one- and two-dimensional ensembles have
also been studied. In this direction, the scaling limits of the symplectic elliptic Ginibre ensemble
in the almost-Hermitian (or weakly non-Hermitian) regime were derived in [8, 20, 45]. Very
recently, the scaling limits of the symplectic induced Ginibre ensemble in the almost-circular (or
weakly non-unitary) regime were obtained in [18]. While the almost-Hermitian [5, 39, 40] and
almost-circular [9, 23] ensembles have the same bulk scaling limits in the complex symmetry
class, those are different in the symplectic symmetry class in the vicinity of the real line due to
the lack of the translation invariance; see [18] for further details.

In this work, we study the symplectic induced spherical ensembles with the goal to derive
their scaling limits in various regimes and to establish the universality of these point processes.
The symplectic induced spherical ensemble G is an N ×N quaternion matrix, which is defined
by the matrix probability distribution function proportional to

det
(
GG†)2L

det
(
1N +GG†

)2(n+N+L)
. (1.1)

Here n and L are parameters, with n ≥ N and L ≥ 0 also possibly dependent on N . In
particular, if n = N , L = 0, the model (1.1) is known as the spherical ensemble with sym-
plectic symmetry. The name “spherical” originates from the fact that their eigenvalues tend to
be uniformly distributed on the unit sphere under the (inverse) stereographic projection; see,
e.g., [37, 48]. And as discussed in the ensuing text, the term symplectic symmetry relates to
an invariance of the underlying Gaussian matrices. To realise the matrix probability distribu-
tion (1.1), following [29] and [56, Appendix B] first introduce a particular (N +L)×N random
matrix Y with each entry itself a 2×2 matrix representation of a quaternion. The matrix is said
to have quaternion entries for short; see, e.g., [32, Section 1.3.2]. The specification of Y is that
Y = XA−1/2, where X is an (N + L) × N standard Gaussian matrix with quaternion entries
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(also referred to as a rectangular quaternion Ginibre matrix), while A is an N × N Wishart
matrix with quaternion entries. More explicitly, A = Q†Q where Q is an n × N rectangular
quaternion Ginibre matrix; see, e.g., [32, Definition 3.1.2]. In terms of such Y, and a Haar
distributed unitary random matrix with quaternion entries (i.e., a symplectic unitary matrix U;
see, e.g., [27]), define G = U(Y†Y)1/2. It is the random matrix G which has matrix distribu-
tion (1.1); the corresponding eigenvalues, which must come in complex conjugate pairs, are used
in producing the plots of Figure 1.

(a) L = N , n = 2N (b) L = N2

ρ2 −N , n = N2

ρ2 , ρ =
√
10 (c) L = 1, n = 2N

(d) L = N , n = 2N (e) L = N2

ρ2 −N , n = N2

ρ2 , ρ =
√
10 (f) L = 1, n = 2N

Figure 1. The plots (a)–(c) display the eigenvalues of G for N = 100 and 200 realisations
with different values of n and L. In all figures (a)–(c), the local repulsion along the real axis is
visible. The plots (d)–(f) show a sample of the eigenvalues of G for N = 1000 projected onto
the unit sphere.

Several fundamental properties of the symplectic induced spherical ensemble were discovered
by Mays and Ponsaing [56]. (We also refer to an earlier work [55] on the induced spherical
ensemble with orthogonal symmetry.) In particular, it was shown in [56, Section 3] that the
joint probability distribution PN of its independent eigenvalues ζ = {ζj}Nj=1 is given by

dPN (ζ) =
1

N !ZN

∏
1≤j<k≤N

|ζj − ζk|2
∣∣ζj − ζk

∣∣2 N∏
j=1

∣∣ζj − ζj
∣∣2e−2NQ(ζj) dA(ζj), (1.2)

where dA(ζ) := d2ζ/π, and ZN is the normalisation constant. While the independent eigenvalues
should have each ζj in the upper half complex plane, relaxing this condition leaves (1.2) unaltered



4 S.-S. Byun and P.J. Forrester

and simplifies the presentation. Here the potential Q is given by

Q(ζ) :=
n+ L+ 1

N
log
(
1 + |ζ|2

)
− 2L

N
log |ζ|. (1.3)

We remark that the distribution (1.2) can be interpreted as a two-dimensional Coulomb gas
ensemble [34, 47] with additional complex conjugation symmetry; see also Appendix A.

We first briefly recall the macroscopic property of the ensemble (1.2). Combining the con-
vergence of the empirical measure [13] and the basic facts from the logarithmic potential theory
[59, Section IV.6], one can see that as N → ∞, the eigenvalues ζ tend to be distributed on the
droplet

S = {ζ ∈ C : r1 ≤ |ζ| ≤ r2}, r1 =

√
L

n
, r2 =

√
N + L

n−N
(1.4)

with the density

n+ L

N

1(
1 + |ζ|2

)2 . (1.5)

This property was also shown in [56, Section 6] using a different method. We also refer to [26]
and references therein for recent works on the equilibrium measure problems on the sphere under
the insertion of point charges.

For detailed statistical information about the ensemble (1.2), we study its k-point correlation
function

RN,k(ζ1, . . . , ζk) :=
N !

(N − k)!

∫
CN−k

PN (ζ)

N∏
j=k+1

dA(ζj). (1.6)

The following proposition provides useful formulas to analyse the correlation functions (1.6).

Proposition 1.1 (analysis at finite-N). For any N,L ≥ 0, n ≥ N , and k ∈ N, the following
holds.

(a) Eigenvalue correlation functions at finite-N . We have

RN,k(ζ1, . . . , ζk) = Pf

[
ω(ζj)ω(ζl)

(
κ̃κκN (ζj , ζl) κ̃κκN

(
ζj , ζ̄l

)
κ̃κκN (ζ̄j , ζl) κ̃κκN

(
ζ̄j , ζ̄l

))]k
j,l=1

k∏
j=1

(
ζ̄j − ζj

)
, (1.7)

where

ω(ζ) =

∣∣1 + ζ2
∣∣n+L− 1

2(
1 + |ζ|2

)n+L+1
. (1.8)

Here, the skew-kernel κ̃κκN (ζ, η) is given by

κ̃κκN (ζ, η) =
1((

1 + ζ2
)(
1 + η2

))n+L− 1
2

(
ĜN (ζ, η)− ĜN (η, ζ)

)
, (1.9)

where

ĜN (ζ, η) := π
Γ(2n+ 2L+ 2)

22L+2n+1

×
N−1∑
k=0

k∑
l=0

ζ2k+2L+1η2l+2L

Γ
(
k + L+ 3

2

)
Γ(n− k)Γ

(
n− l + 1

2

)
Γ(l + L+ 1)

.

(1.10)
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(b) Differential equation for the pre-kernel. The skew-kernel κ̃κκN (ζ, η) satisfies

∂ζκ̃κκN (ζ, η) =
1(

1 + ζ2
)n+L+ 1

2

(
IN (ζ, η)− IIN (ζ, η)− IIIN (ζ, η)

)
, (1.11)

where

IN (ζ, η) :=
(1 + ζη)2n+2L−1(
1 + η2

)n+L− 1
2

(2n+ 2L+ 1)(n+ L)

×
2N−1∑
k=0

(
2n+ 2L− 1

k + 2L

)
pk+2L(1− p)2n−k−1,

IIN (ζ, η) :=
ζ2N+2L

22L+2n

π Γ(2n+ 2L+ 2)

Γ
(
N + L+ 1

2

)
Γ(n−N)Γ

(
n+ L+ 1

2

)
×

N−1∑
k=0

(
n+ L− 1

2

k + L

)
qk+L(1− q)n−k− 1

2 ,

IIIN (ζ, η) :=
ζ2L−1

22L+2n

π Γ(2n+ 2L+ 2)

Γ
(
n+ 1

2

)
Γ(L)Γ

(
n+ L+ 1

2

)
×

N−1∑
k=0

(
n+ L− 1

2

k + L+ 1
2

)
qk+L+ 1

2 (1− q)n−k−1.

Here

p :=
ζη

1 + ζη
, q :=

η2

1 + η2
. (1.12)

Remark 1.2. We stress that Proposition 1.1 (a) is a direct consequence of the general theory
of planar symplectic ensembles [45] and the explicit formula of skew-orthogonal polynomials
associated with the potential (1.3) that can be found in [33, Proposition 4]. (Cf. see [44, p. 7]
and [6, Corollary 3.2] for a construction of skew-orthogonal polynomials associated with general
radially symmetric potentials.)

Nevertheless, the crux of Proposition 1.1 is the transforms (1.8) and (1.9) in the expres-
sion (1.7), which lead to a simple differential equation (1.11) stated in Proposition 1.1 (b). To
be more concrete, let us mention that in general, one strategy for performing an asymptotic
analysis on a double summation appearing in the skew-orthogonal polynomial kernel is to derive
a “proper” differential equation satisfied by the kernel; see [2, 4, 18, 19, 45]. (Such a differential
equation for the two-dimensional ensemble is broadly called the generalised Christoffel–Darboux
formula [4, 19, 52]). However, if we do not take well-chosen transforms, the resulting differential
equation may be difficult to analyse, cf. see [56, Section 6.2] for a similar discussion on the
spherical induced ensemble.

We also mention that the inhomogeneous term IN (ζ, η) in (1.11) corresponds to the kernel
of the complex counterpart [30]. Such a relation has been observed not only for the two-
dimensional ensembles [2, 4, 18, 19] but also for their one-dimensional counterparts [1, 64]. For
a comprehensive summary of this relation for planar ensembles, we refer the reader to [22].

Remark 1.3. The terms on the right-hand side of (1.11) are indeed expressed in a way that one
can easily derive their asymptotic behaviours. More precisely, the summations in these terms
can be written in terms of the incomplete beta functions (see (3.28), (3.29) and (3.30)) whose
asymptotic behaviours are well understood. This fact will play an important role in the proof
of Theorem 1.4 below.
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Let us now introduce our main results on various scaling limits of the induced spherical
ensembles. From the microscopic point of view, we first mention that the origin is special since
there exists an insertion of a point charge (i.e., 4L

N log |ζ| term in (1.3), or equivalently the
charge Nq1 at the north pole in the sphere picture as given by (A.5)), which is also known
as the spectral singularity ; see, e.g., [49]. The local statistics at singular points exhibit non-
standard universality classes due to the impact of singular points on the surrounding geometry,
which can lead to deviations from the typical behaviour observed at regular points, cf. [12].
Additionally, the insertion of a point charge, also known as the Christoffel perturbation has
a physical application for instance, in the context of the massive quantum field theory [3, 6]. Let
us also mention that the insertion of a point charge has been extensively studied in the context
of planar (skew-)orthogonal polynomials, see, e.g., [6, 14, 53] and references therein. On the
one hand, the local statistics of the ensemble also depends on the local geometry of the droplet.
Typically, the focus is on whether the droplet (at the point we zoom in) locally resembles the
complex plane or the strip, see, e.g., [11] and references therein. The strip regime arises when the
particles vary randomly within a thin band of height proportional to the their typical spacing.
In our present case, these regimes can be made by considering the cases where the width of the
droplet S in (1.4) is of order O(1) or O(1/N). The former is called strong non-unitarity and the
latter is called weak non-unitarity (or almost-circular regime). The latter regime is of particular
interest as it generates interpolations between typical one- and two-dimensional statistics.

In summary, we should distinguish the following three different regimes.

(a) At regular points in the limit of strong non-unitarity. (Cf. Figure 1 (a).) This means the
case where the width of the droplet S in (1.4) is of order O(1), and the zooming point
p ∈ R we look at the local statistics is away from the origin. To investigate this regime,
we set the parameters as

L = aN, n = (b+ 1)N, with fixed a, b ≥ 0,

which in the Coulomb gas picture of the Appendix A corresponds to the external charges
at the poles being proportional to N . Note that with this choice of the parameters, the
inner and outer radii in (1.4) satisfy

r1 =

√
a

b+ 1
+O

(
1

N

)
, r2 =

√
a+ 1

b
+O

(
1

N

)
as N → ∞. (1.13)

(b) At regular points in the limit of weak non-unitarity. (Cf. Figure 1 (b).) This means the
case where the droplet S is close to the unit circle and its width is of order O(1/N). For
this regime, we set

L =
N2

ρ2
−N, n =

N2

ρ2
, with fixed ρ > 0. (1.14)

This choice of parameters implies that we impose strong charges (proportional to N2) both
at the origin and the infinity which makes the droplet close to the unit circle. Indeed, one
can see that

r1 = 1− ρ2

2N
+O

(
1

N2

)
, r2 = 1 +

ρ2

2N
+O

(
1

N2

)
, as N → ∞.

(c) At the singular origin. (Cf. Figure 1 (c).) This covers the case where the droplet contains
the origin, i.e., r1 = o(1). For this, we set

L > 0 fixed, n = (b+ 1)N.
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Here the charge at the north pole in the Coulomb gas picture of Appendix A is O(1). Then
we have

r1 = O

(
1

N

)
, r2 =

1√
b
+O

(
1

N

)
, as N → ∞.

It is convenient to introduce and recall some notations to describe the scaling limits. Let us
define

fz(u) :=
1

2
erfc

(√
2(z − u)

)
. (1.15)

Recall that the two-parametric Mittag-Leffler function Ea,b(z) is given by

Ea,b(z) :=

∞∑
k=0

zk

Γ(ak + b)
. (1.16)

We also write W (f, g) := fg′ − gf ′ for the Wronskian. For a given p ∈ R, we set

δ :=
n+ L

N

1(
1 + p2

)2 , (1.17)

which corresponds to the density (1.5) of the ensemble at the point p. Now we are ready to
state our main results. Without loss of generality, it suffices to consider the case p ≥ 0.

Theorem 1.4 (scaling limits of the eigenvalue correlations). For a fixed p ≥ 0, let

RN,k(z1, . . . , zk) := RN,k

(
p+

z1√
Nδ

, . . . , p+
zk√
Nδ

)
, (1.18)

where RN,k and δ are given by (1.6) and (1.17). Then the following holds.

(a) At regular points in the limit of strong non-unitarity. Let L = aN , n = (b+1)N with fixed
a ≥ 0, b > 0. Let p > 0 be fixed. Then as N → ∞,

RN,k(z1, . . . , zk) = Pf

[
e−|zj |2−|zl|2

(
κ(s)(zj , zl) κ(s)(zj , z̄l)

κ(s)(z̄j , zl) κ(s)(z̄j , z̄l)

)]k
j,l=1

×
k∏

j=1

(z̄j − zj) + o(1),

uniformly for z1, . . . , zk in compact subsets of C, where

κ(s)(z, w) :=
√
πez

2+w2

∫
E
W (fw, fz)(u) du,

E =

{
(−∞,∞) if r1 < p < r2,

(−∞, 0) if p = r1 or p = r2.
(1.19)

Here fz is given by (1.15).

(b) At regular points in the limit of weak non-unitarity. Let L and n be given by (1.14). Let
p = 1. Then as N → ∞,

RN,k(z1, . . . , zk) = Pf

[
e−|zj |2−|zl|2

(
κ(w)(zj , zl) κ(w)(zj , z̄l)

κ(w)(z̄j , zl) κ(w)(z̄j , z̄l)

)]k
j,l=1
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×
k∏

j=1

(z̄j − zj) + o(1),

uniformly for z1, . . . , zk in compact subsets of C, where

κ(w)(z, w) :=
√
πez

2+w2

(∫ a

−a
W (fw, fz)(u) du+ fw(a)fz(−a)− fz(a)fw(−a)

)
,

a =
ρ

2
√
2
. (1.20)

(c) At the singular origin. Let L ≥ 0 be fixed and n = (b + 1)N with fixed b > 0. Let p = 0.
Then as N → ∞,

dRN,k(z1, . . . , zk) = Pf

[
e−|zj |2−|zl|2

(
κ(o)(zj , zl) κ(o)(zj , z̄l)

κ(o)(z̄j , zl) κ(o)(z̄j , z̄l)

)]k
j,l=1

×
k∏

j=1

(z̄j − zj) + o(1),

uniformly for z1, . . . , zk in compact subsets of C, where

κ(o)(z, w) = 2(2zw)2L
∫ 1

0
s2L
(
ze(1−s2)z2 − we(1−s2)w2)

E2,1+2L

(
(2szw)2

)
ds. (1.21)

Here, Ea,b is the two-parametric Mittag-Leffler function (1.16).

The limiting kernel of the form (1.19) was introduced in [4, Theorem 2.1] as a scaling limit
of the planar symplectic Ginibre ensemble. Here E = (−∞,∞) corresponds to the bulk case,
whereas E = (−∞, 0) corresponds to the edge case. (We also refer to [4, Remark 2.4] for more
discussions on the role of the integral domain E.) Therefore Theorem 1.4 (a) shows that in the
limit of strong non-unitarity, the spherical induced symplectic Ginibre ensemble is contained
in the universality class of the planar Ginibre ensemble. Note also that for the bulk case
when E = (−∞,∞), the integral in (1.19) can be further simplified, which gives rise to the
expression

κ(s)(z, w) =
√
π ez

2+w2
erf(z − w) if E = (−∞,∞). (1.22)

This form of the kernel appeared in [45, 57].
The limiting kernel (1.20) was introduced very recently in [18, Theorem 1.1 (b)] as a scaling

limit of the planar induced symplectic ensemble in the almost-circular regime. Thus Theo-
rem 1.4 (b) also establishes the universality in this regime. An interesting feature of the ker-
nel (1.20) is that it interpolates the bulk scaling limits of the symplectic Ginibre ensemble which
form Pfaffian point processes (ρ → ∞) and those of the chiral Gaussian unitary ensemble (ρ → 0)
which form determinantal point processes. We refer to [18, Remark 1.4 and Proposition 1.5] for
more details about this interpolating property.

Finally, the limiting kernel of the form (1.21) appeared in [4, Theorem 2.4 and Example 2.6]
(with c = 2L, λ = 1) as a scaling limit of the planar induced symplectic Ginibre ensemble at
the origin having spectral singularity. Therefore Theorem 1.4 (c) again shows the universality
and also asserts that under the insertion of a point charge, it is the strength of the charge (i.e.,
4L in (1.3)) that determines the universality class. We also mention that if L = 0, one can see
from E2,1

(
z2
)
= cosh(z) that the kernel (1.21) agrees with the kernel (1.22). Furthermore, it

follows from the relation

2E2,1+c

(
z2
)
= E1,1+c(z) + E1,1+c(−z) = ezz−cP (c, z) + e−z(−z)−cP (c,−z), (1.23)
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where

P (c, z) :=
1

Γ(c)

∫ z

0
tc−1e−t dt, c > 0, (1.24)

is the (regularised) incomplete gamma function, that we have an alternative representation

κ(o)(z, w) =

∫ 1

0

(
ze(1−s2)z2 − we(1−s2)w2)

×
(
e2szwP (2L, 2szw) + (−1)−2Le−2szwP (2L,−2szw)

)
ds.

In Theorem 1.4, we have focused on the scaling limits along the real axis, i.e., p ∈ R. In
general, it can be expected that away from the real axis (i.e., p ∈ C \ R), the scaling limits of
the ensemble (1.2) become determinantal with the correlation kernel of its complex counterpart;
see [7] for a heuristic discussion for this. (Such a statement was shown in [18] for the planar
induced symplectic ensemble.) For the spherical induced symplectic Ginibre ensemble, the
scaling limits away from the real axis was studied in [56, Section 6], where the authors derived
the universal 1-point functions.

Further points for investigation are also suggested. One is the study of the so called hole
probability, i.e., the probability that a prescribed region is free of eigenvalues. In the case of the
complex Ginibre ensemble, this was first investigated long ago in [42], and in a generalised form
has been the subject of a number of recent works [17, 24, 25, 28, 50, 51]. Another is the study of
fluctuation formulas associated with linear statistics; see the recent review [35, Section 3.5] and
references therein, and Appendix B for results relating to (1.2) in the case of radial symmetry.

The rest of this paper is organised as follows. Section 2 begins with the finite N result of
Proposition 1.1 and then identifies a rescaling of the correlation functions valid to leading order
in N . Next, in Proposition 2.2, the large N form of the differential equation of Proposition 1.1
in the various regimes of interest for Theorem 1.4 is given. The proof of this result is deferred
until Section 3. The final new result of Section 2, Lemma 2.3, is to present the solutions of the
limiting differential equations. Section 2 concludes by showing how these various results can be
assembled to prove Theorem 1.4. The main content of Section 3 is the proofs of Propositions 1.1
and 2.2, stated but not proved in earlier sections.

2 Proof of Theorem 1.4

This section culminates in the proof of Theorem 1.4. For reader’s convenience, we first present
a summary of the strategy.

(i) In Lemma 2.1, we first obtain the structure of the correlation function which contains
the rescaled skew-kernel κ̃N in (2.1) and Gaussian terms. This follows from the explicit
formula given in Proposition 1.1 (a).

(ii) In Proposition 2.2, we derive the asymptotic behaviour of ∂zκ̃N (z, w). For this, we
use (1.11) in Proposition 1.1 (b) and compute the asymptotic expansions of its inhomoge-
neous terms.

(iii) In Lemma 2.3, we solve the differential equation appearing in Proposition 2.2, which gives
rise to the explicit formulas of the limiting correlation kernels in Theorem 1.4.

As already mentioned in the final paragraph of the above section, the proofs of Proposi-
tions 1.1 and 2.2 are given separately in Section 3. We begin with deriving the basic structure
of the correlation functions using Proposition 1.1 (a).
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Lemma 2.1 (structure of the correlation functions). For a fixed p ≥ 0, let

κ̃N (z, w) :=
1(

1 + p2
)3

(Nδ)3/2
κ̃κκN

(
p+

z√
Nδ

, p+
w√
N

)
, (2.1)

where κ̃κκN is given by (1.9) and δ > 0 is given by (1.17). Recall that RN,k is given by (1.18).
Then under the same assumptions on Theorem 1.4 and in each case (a), (b), (c), we have

RN,k(z1, . . . , zk) = Pf

[
e−|zj |2−|zl|2

(
ez

2
j+z2l κ̃N (zj , zl) ez

2
j+z̄2l κ̃N (zj , z̄l)

ez̄
2
j+z2l κ̃N (z̄j , zl) ez̄

2
j+z̄2l κ̃N (z̄j , z̄l)

)]k
j,l=1

×
k∏

j=1

(z̄j − zj) +O

(
1√
N

)
,

uniformly for z1, . . . , zk in compact subsets of C, as N → ∞.

Proof. Recall that the weight function ω is given by (1.8). Then it follows from direct compu-
tations that in each case (a), (b), (c) of Theorem 1.4,

ω

(
p+

z√
Nδ

)
=
(
1 + p2

)− 3
2 e−|z|2+ 1

2
(z2+z̄2) +O

(
1√
N

)
, as N → ∞. (2.2)

More precisely, by (1.8), we have

ω

(
p+

z√
Nδ

)
=
(
1 + p2

)− 3
2

∣∣∣∣1 + 2p

1 + p2
z√
Nδ

+
1

1 + p2
z2

Nδ

∣∣∣∣n+L− 1
2

×
(
1 +

p

1 + p2
z + z̄√
Nδ

+
1

1 + p2
|z|2

Nδ

)−n−L−1

.

Furthermore, in each case (a), (b), (c), we have

log

∣∣∣∣1 + 2p

1 + p2
z√
Nδ

+
1

1 + p2
z2

Nδ

∣∣∣∣ = p

1 + p2
z + z̄√
Nδ

+

(
1− p2

)(
z2 + z̄2

)
2
(
1 + p2

)2 1

Nδ
+O

(
N−3/2

)
=

p(z + z̄)√
n+ L

+

(
1− p2

)(
z2 + z̄2

)
2

1

n+ L
+O

(
N−3/2

)
and

log

(
1 +

p

1 + p2
z + z̄√
Nδ

+
1

1 + p2
|z|2

Nδ

)
=

p

1 + p2
z + z̄√
Nδ

+
2|z|2− p2

(
z2 + z̄2

)
2
(
1 + p2

)2 1

Nδ
+O

(
N−3/2

)
=

p(z + z̄)√
n+ L

+
2|z|2− p2

(
z2 + z̄2

)
2

1

n+ L
+O

(
N−3/2

)
,

as N → ∞, where we have used (1.17). Combining the above, we obtain (2.2).
For given p ≥ 0, we write

ζj = p+
zj√
Nδ

, (2.3)

where δ is given by (1.17). Then by combining Proposition 1.1 with (1.18), (2.2) and (2.3), we
obtain

RN,k(z1, . . . , zk) =
1

(Nδ)k
RN,k(ζ1, . . . , ζk)
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= Pf

[
e−|zj |2−|zl|2(

1 + p2
)3
(Nδ)3/2

(
ez

2
j+z2l κ̃κκN (ζj , ζl) ez

2
j+z̄2l κ̃κκN (ζj , ζ̄l)

ez̄
2
j+z2l κ̃κκN (ζ̄j , ζl) ez̄

2
j+z̄2l κ̃κκN (ζ̄j , ζ̄l)

)]k
j,l=1

×
k∏

j=1

(z̄j − zj) +O

(
1√
N

)
.

Here, we have used the fact that the Pfaffian of a correlation kernel is invariant under the
multiplication by cocycles, see, e.g., [4, p. 19]. Lemma 2.1 follows from (2.1). ■

The next step is to derive the asymptotic behaviour of the derivative of κ̃N in (2.1). This
step crucially relies on Proposition 1.1 (b).

Proposition 2.2 (large-N expansions of the differential equations). As N → ∞, the following
hold.

(a) Under the setup of Theorem 1.4 (a),

∂zκ̃N (z, w) = F(s)(z, w) + o(1), (2.4)

uniformly for z, w in compact subsets of C, where

F(s)(z, w) :=


2 e−(z−w)2 if r1 < p < r2,

e−(z−w)2 erfc(z + w)− e−2z2

√
2

erfc
(√

2w
)

if p = r1, r2.
(2.5)

(b) Under the setup of Theorem 1.4 (b),

∂zκ̃N (z, w) = F(w)(z, w) + o(1), (2.6)

uniformly for z, w in compact subsets of C, where

F(w)(z, w) := e−(z−w)2
(
erfc

(
z + w − ρ√

2

)
− erfc

(
z + w + ρ√

2

))
− 1√

2

(
e−(

√
2z− ρ

2
)2 + e−(

√
2z+ ρ

2
)2
)(

erfc
(√

2w − ρ
2

)
− erfc

(√
2w + ρ

2

))
. (2.7)

(c) Under the setup of Theorem 1.4 (c),

∂zκ̃N (z, w) = F(o)(z, w) + o(1), (2.8)

uniformly for z, w in compact subsets of C, where

F(o)(z, w) := 2e−(z−w)2P (2L, 2zw)− 2
√
π

Γ(L)
z2L−1e−z2P

(
L+ 1

2 , w
2
)
. (2.9)

Here P is the regularised incomplete gamma function (1.24).

Let us mention that the case L = 0 in (2.9) can be interpreted by using the fact 1/Γ(k+1) = 0
for a negative integer k. The proof of this proposition will be given in the next section. Finally,
we solve the differential equations appearing in Proposition 2.2. The following lemma is an
immediate consequence of several results established in [4, 18].
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Lemma 2.3. Let

K(s)(z, w) := e−z2−w2
κ(s)(z, w), (2.10)

K(w)(z, w) := e−z2−w2
κ(w)(z, w), (2.11)

K(o)(z, w) := e−z2−w2
κ(o)(z, w), (2.12)

where κ(s), κ(w) and κ(o) are given by (1.19), (1.20) and (1.21). Then the following hold.

(a) For a given w ∈ C, the function z 7→ K(s)(z, w) is a unique solution to

∂zK(s)(z, w) = F(s)(z, w), K(s)(z, w)|z=w = 0,

where F(s) is given by (2.5).

(b) For a given w ∈ C, the function z 7→ K(w)(z, w) is a unique solution to

∂zK(w)(z, w) = F(w)(z, w), K(w)(z, w)|z=w = 0,

where F(w) is given by (2.7).

(c) For a given w ∈ C, the function z 7→ K(o)(z, w) is a unique solution to

∂zK(o)(z, w) = F(o)(z, w), K(o)(z, w)|z=w = 0,

where F(o) is given by (2.9).

Proof. By (1.22), the first assertion (a) for the bulk case when E = (−∞,∞) is trivial. For
the edge case when E = (−∞, 0), this was shown in [4, p. 21].

The second assertion (b) was shown in [18, Section 3.2].

Finally, the third assertion (c) follows from [4, Section 4]. More precisely, the equation in
the statement (c) is a special case of [4, equation (4.4)] with λ = 1, c = 2L up to a trivial
transformation. Here, we also use the relation (1.23). Then this differential equation was solved
in [4, Section 4.2]. ■

Let us now combine the results introduced above and finish the proof of Theorem 1.4.

Proof of Theorem 1.4. For a given w, we view (2.4), (2.6), (2.8) as first-order ordinary dif-
ferential equations in z with initial conditions κ̃N (z, w)|z=w = 0. Combining Proposition 2.2,
Lemma 2.3 and [19, Lemma 3.10], we obtain that

κ̃N (z, w) = e−z2−w2


κs(z, w) + o(1) for the case (a),

κw(z, w) + o(1) for the case (b),

κo(z, w) + o(1) for the case (c).

(2.13)

Here we also have used (2.10), (2.11) and (2.12). Furthermore, note that both κ̃N and the o(1)-
terms in (2.13) are anti-symmetric in z and w. In particular, the entire proof remains valid if
the roles of z and w are interchanged. The theorem now follows from Lemma 2.1 and (2.13). ■

3 Proof of Propositions 1.1 and 2.2

In this section we present the proofs of Propositions 1.1 and 2.2. Both these results have been
used in the proof of Theorem 1.4.
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3.1 Skew-orthogonal polynomial kernels

Using the general theory on planar symplectic ensembles and skew-orthogonal polynomials, we
first show the following lemma.

Recall that the potential Q and the correlation function RN,k are given by (1.3) and (1.6).

Lemma 3.1. We have

RN,k(ζ1, . . . , ζk) = Pf

[
e−N(Q(ζj)+Q(ζl))

(
κκκN (ζj , ζl) κκκN (ζj , ζ̄l)
κκκN (ζ̄j , ζl) κκκN (ζ̄j , ζ̄l)

)]k
j,l=1

k∏
j=1

(
ζ̄j − ζj

)
, (3.1)

where

κκκN (ζ, η) := GN (ζ, η)−GN (η, ζ), (3.2)

and

GN (ζ, η) := π
Γ(2n+ 2L+ 2)

22L+2n+1

×
N−1∑
k=0

k∑
l=0

ζ2k+1η2l

Γ
(
k + L+ 3

2

)
Γ(n− k)Γ

(
n− l + 1

2

)
Γ(l + L+ 1)

.

We stress that Lemma 3.1 is an immediate consequence of [33, Proposition 4]. Nevertheless,
as this lemma is crucially used in the present work, we briefly recall the proof.

Proof of Lemma 3.1. First, let us consider the ensemble (1.2) with a general potential Q.
Define the skew-symmetric form

⟨f, g⟩s :=
∫
C

(
f(ζ)g

(
ζ̄
)
− g(ζ)f

(
ζ̄
))(

ζ − ζ̄
)
e−2NQ(ζ) dA(ζ).

Then the skew-orthogonal polynomial qm of degree m is defined by the condition: for all k, l ∈ N

⟨q2k, q2l⟩s = ⟨q2k+1, q2l+1⟩s = 0, ⟨q2k, q2l+1⟩s = −⟨q2l+1, q2k⟩s = rk δk,l.

Here, δk,l is the Kronecker delta. Then it is well known [45] that the correlation function (1.6)
is of the form (3.1) with the canonical skew-kernel

κκκN (ζ, η) :=
N−1∑
k=0

q2k+1(ζ)q2k(η)− q2k(ζ)q2k+1(η)

rk
,

GN (ζ, η) :=

N−1∑
k=0

q2k+1(ζ)q2k(η)

rk
. (3.3)

Thus it suffices to compute the skew-orthogonal polynomials.
Let us now consider a general radially symmetric potential Q(ζ) = Q(|ζ|). We write

hk :=

∫
C
|ζ|2ke−2NQ(ζ) dA(ζ)

for the (squared) orthogonal norm. Then it follows from [6, Corollary 3.2] that

q2k+1(ζ) = ζ2k+1, q2k(ζ) = ζ2k +
k−1∑
l=0

ζ2l
k−l−1∏
j=0

h2l+2j+2

h2l+2j+1
, rk = 2h2k+1. (3.4)
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We now turn to the potential (1.3). For this

hk = 2

∫ ∞

0

r2k+4L+1

(1 + r2)2(n+L+1)
dr =

Γ(k + 2L+ 1)Γ(2n− k + 1)

Γ(2n+ 2L+ 2)
,

and so by using (3.4), we obtain

q2k(ζ) =
Γ(k + L+ 1)

Γ
(
k − n+ 1

2

) k∑
l=0

(−1)k−lΓ
(
l − n+ 1

2

)
Γ(l + L+ 1)

ζ2l,

rk =
2Γ(2k + 2L+ 2)Γ(2n− 2k)

Γ(2n+ 2L+ 2)
. (3.5)

(Note that these formulas were also derived [33, Proposition 4].) Combining (3.3), (3.5) and the
basic functional relations

Γ(z)Γ(1− z) =
π

sin(πz)
, Γ(2z) =

22z−1

√
π

Γ(z)Γ
(
z + 1

2

)
of the gamma function, we obtain

GN (ζ, η) =

N−1∑
k=0

Γ(2n+ 2L+ 2)

2Γ(2k + 2L+ 2)Γ(2n− 2k)

Γ(k + L+ 1)

Γ
(
k − n+ 1

2

)
×

k∑
l=0

(−1)k−lΓ
(
l − n+ 1

2

)
Γ(l + L+ 1)

ζ2k+1η2l

=

N−1∑
k=0

Γ(2n+ 2L+ 2)Γ
(
n− k + 1

2

)
2Γ(2k + 2L+ 2)Γ(2n− 2k)

Γ(k + L+ 1)

π(−1)k−n

×
k∑

l=0

(−1)k−lΓ
(
l − n+ 1

2

)
Γ(l + L+ 1)

ζ2k+1η2l

= Γ(2n+ 2L+ 2)
N−1∑
k=0

1

22L+2n+1Γ
(
k + L+ 3

2

)
Γ(n− k)

×
k∑

l=0

(−1)n−lΓ
(
l − n+ 1

2

)
Γ(l + L+ 1)

ζ2k+1η2l.

This completes the proof. ■

3.2 Proof of Propositions 1.1

Let

κ̂κκN (ζ, η) := ĜN (ζ, η)− ĜN (η, ζ) =
((
1 + ζ2

)(
1 + η2

))n+L− 1
2 κ̃κκN (ζ, η), (3.6)

where ĜN and κ̃κκN are given by (1.10) and (1.9).

The key step to prove Proposition 1.1 (b) is the following lemma.

Lemma 3.2. We have(
1 + ζ2

)
∂ζκ̂κκN (ζ, η) = 2ζ

(
n+ L− 1

2

)
κ̂κκN (ζ, η)
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+
Γ(2n+ 2L+ 2)

2

2N−1∑
k=0

ζk+2Lηk+2L

Γ(k + 2L+ 1)Γ(2n− k)

− π Γ(2n+ 2L+ 2) ζ2N+2L

22L+2nΓ
(
N + L+ 1

2

)
Γ(n−N)

N−1∑
k=0

η2k+2L

Γ
(
n− k + 1

2

)
Γ(k + L+ 1)

− π Γ(2n+ 2L+ 2)

22L+2nΓ
(
n+ 1

2

)
Γ(L)

ζ2L−1
N−1∑
k=0

η2k+2L+1

Γ(n− k)Γ
(
k + L+ 3

2

) .
Proof. Let us first compute ∂ζĜN (ζ, η). Note that

∂ζ

N−1∑
k=0

k∑
l=0

ζ2k+2L+1η2l+2L

Γ
(
k + L+ 3

2

)
Γ(n− k)Γ

(
n− l + 1

2

)
Γ(l + L+ 1)

= 2ζ
N−1∑
k=0

k∑
l=0

ζ2k+2L−1η2l+2L

Γ
(
k + L+ 1

2

)
Γ(n− k)Γ

(
n− l + 1

2

)
Γ(l + L+ 1)

= 2
ζ2Lη2L

Γ
(
L+ 1

2

)
Γ(n)Γ

(
n+ 1

2

)
Γ(L+ 1)

+ 2ζ
N−2∑
k=0

k+1∑
l=0

ζ2k+2L+1η2l+2L

Γ
(
k + L+ 3

2

)
Γ(n− k − 1)Γ

(
n− l + 1

2

)
Γ(l + L+ 1)

.

Here, we have

2ζ
N−2∑
k=0

k+1∑
l=0

ζ2k+2L+1η2l+2L

Γ
(
k + L+ 3

2

)
Γ(n− k − 1)Γ

(
n− l + 1

2

)
Γ(l + L+ 1)

= 2ζ

N−1∑
k=0

k∑
l=0

ζ2k+2L+1η2l+2L

Γ
(
k + L+ 3

2

)
Γ(n− k − 1)Γ

(
n− l + 1

2

)
Γ(l + L+ 1)

− 2ζ
N−1∑
l=0

ζ2N+2L−1η2l+2L

Γ
(
N + L+ 1

2

)
Γ(n−N)Γ

(
n− l + 1

2

)
Γ(l + L+ 1)

+ 2

N−1∑
k=1

ζ2k+2Lη2k+2L

Γ
(
k + L+ 1

2

)
Γ(n− k)Γ

(
n− k + 1

2

)
Γ(k + L+ 1)

.

Therefore we obtain

∂ζ

N−1∑
k=0

k∑
l=0

ζ2k+2L+1η2l+2L

Γ
(
k + L+ 3

2

)
Γ(n− k)Γ

(
n− l + 1

2

)
Γ(l + L+ 1)

= 2ζ

N−1∑
k=0

k∑
l=0

ζ2k+2L+1η2l+2L

Γ
(
k + L+ 3

2

)
Γ(n− k − 1)Γ

(
n− l + 1

2

)
Γ(l + L+ 1)

− 2

N−1∑
l=0

ζ2N+2Lη2l+2L

Γ
(
N + L+ 1

2

)
Γ(n−N)Γ

(
n− l + 1

2

)
Γ(l + L+ 1)

+ 2
N−1∑
k=0

ζ2k+2Lη2k+2L

Γ
(
k + L+ 1

2

)
Γ(n− k)Γ

(
n− k + 1

2

)
Γ(k + L+ 1)

.

Note here that by (1.10), we have

π
Γ(2n+ 2L+ 2)

22L+2n+1

N−1∑
k=0

k∑
l=0

ζ2k+2L+1η2l+2L

Γ
(
k + L+ 3

2

)
Γ(n− k − 1)Γ

(
n− l + 1

2

)
Γ(l + L+ 1)
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= π
Γ(2n+ 2L+ 2)

22L+2n+1

N−1∑
k=0

k∑
l=0

(n− k − 1)ζ2k+2L+1η2l+2L

Γ
(
k + L+ 3

2

)
Γ(n− k)Γ

(
n− l + 1

2

)
Γ(l + L+ 1)

= π
Γ(2n+ 2L+ 2)

22L+2n+1

N−1∑
k=0

k∑
l=0

((
n+ L− 1

2

)
−
(
k + L+ 1

2

))
ζ2k+2L+1η2l+2L

Γ
(
k + L+ 3

2

)
Γ(n− k)Γ

(
n− l + 1

2

)
Γ(l + L+ 1)

=

(
n+ L− 1

2

)
ĜN (ζ, η)− 1

2
ζ∂ζĜN (ζ, η).

Combining all of the above equations, we conclude

∂ζĜN (ζ, η) = 2ζ

(
n+ L− 1

2

)
ĜN (ζ, η)− ζ2∂ζĜN (ζ, η) (3.7)

− π
Γ(2n+ 2L+ 2)

22L+2n

N−1∑
l=0

ζ2N+2Lη2l+2L

Γ
(
N + L+ 1

2

)
Γ(n−N)Γ

(
n− l + 1

2

)
Γ(l + L+ 1)

+ π
Γ(2n+ 2L+ 2)

22L+2n

N−1∑
k=0

ζ2k+2Lη2k+2L

Γ
(
k + L+ 1

2

)
Γ(n− k)Γ

(
n− k + 1

2

)
Γ(k + L+ 1)

.

Next, we compute ∂ζĜN (η, ζ). By similar computations as above, we have

∂ζ

N−1∑
k=0

k∑
l=0

η2k+2L+1ζ2l+2L

Γ
(
k + L+ 3

2

)
Γ(n− k)Γ

(
n− l + 1

2

)
Γ(l + L+ 1)

= 2

N−1∑
k=0

η2k+2L+1ζ2L−1

Γ
(
k + L+ 3

2

)
Γ(n− k)Γ

(
n+ 1

2

)
Γ(L)

+ 2ζ
N−1∑
k=0

k−1∑
l=0

η2k+2L+1ζ2l+2L

Γ
(
k + L+ 3

2

)
Γ(n− k)Γ

(
n− l − 1

2

)
Γ(l + L+ 1)

.

Here, the last term is rearranged as

N−1∑
k=0

k−1∑
l=0

η2k+2L+1ζ2l+2L

Γ
(
k + L+ 3

2

)
Γ(n− k)Γ

(
n− l − 1

2

)
Γ(l + L+ 1)

=

N−1∑
k=0

k∑
l=0

η2k+2L+1ζ2l+2L

Γ
(
k + L+ 3

2

)
Γ(n− k)Γ

(
n− l − 1

2

)
Γ(l + L+ 1)

−
N−1∑
k=0

η2k+2L+1ζ2k+2L

Γ
(
k + L+ 3

2

)
Γ(n− k)Γ

(
n− k − 1

2

)
Γ(k + L+ 1)

.

This gives rise to

∂ζ

N−1∑
k=0

k∑
l=0

η2k+2L+1ζ2l+2L

Γ
(
k + L+ 3

2

)
Γ(n− k)Γ

(
n− l + 1

2

)
Γ(l + L+ 1)

= 2ζ
N−1∑
k=0

k∑
l=0

η2k+2L+1ζ2l+2L

Γ
(
k + L+ 3

2

)
Γ(n− k)Γ

(
n− l − 1

2

)
Γ(l + L+ 1)

+ 2

N−1∑
k=0

η2k+2L+1ζ2L−1

Γ
(
k + L+ 3

2

)
Γ(n− k)Γ

(
n+ 1

2

)
Γ(L)
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− 2ζ

N−1∑
k=0

η2k+2L+1ζ2k+2L

Γ
(
k + L+ 3

2

)
Γ(n− k)Γ

(
n− k − 1

2

)
Γ(k + L+ 1)

.

By using (1.10), we also have

π
Γ(2n+ 2L+ 2)

22L+2n+1

N−1∑
k=0

k∑
l=0

η2k+2L+1ζ2l+2L

Γ
(
k + L+ 3

2

)
Γ(n− k)Γ

(
n− l − 1

2

)
Γ(l + L+ 1)

= π
Γ(2n+ 2L+ 2)

22L+2n+1

N−1∑
k=0

k∑
l=0

(
n− l − 1

2

)
η2k+2L+1ζ2l+2L

Γ
(
k + L+ 3

2

)
Γ(n− k)Γ

(
n− l + 1

2

)
Γ(l + L+ 1)

= π
Γ(2n+ 2L+ 2)

22L+2n+1

N−1∑
k=0

k∑
l=0

((
n+ L− 1

2

)
− (l + L)

)
η2k+2L+1ζ2l+2L

Γ
(
k + L+ 3

2

)
Γ(n− k)Γ

(
n− l + 1

2

)
Γ(l + L+ 1)

=

(
n+ L− 1

2

)
ĜN (η, ζ)− 1

2
ζ∂ζĜN (η, ζ).

Therefore we have shown that

∂ζĜN (η, ζ) = 2ζ

(
n+ L− 1

2

)
ĜN (η, ζ)− ζ2∂ζĜN (η, ζ) (3.8)

+ π
Γ(2n+ 2L+ 2)

22L+2n

N−1∑
k=0

η2k+2L+1ζ2L−1

Γ
(
k + L+ 3

2

)
Γ(n− k)Γ

(
n+ 1

2

)
Γ(L)

− π
Γ(2n+ 2L+ 2)

22L+2n

N−1∑
k=0

η2k+2L+1ζ2k+2L+1

Γ
(
k + L+ 3

2

)
Γ(n− k)Γ

(
n− k − 1

2

)
Γ(k + L+ 1)

.

The lemma follows from (3.7), (3.8) and (3.6). ■

We now finish the proof of Proposition 1.1.

Proof of Proposition 1.1. We first show the first part. By combining Lemma 3.1 with (1.3),
(1.9) and (3.2), we obtain

RN,k(ζ1, . . . , ζk) =
k∏

j=1

(ζ̄j − ζj) Pf

[
1((

1 + |ζj |2
)(
1 + |ζl|2

))n+L+1

×

(((
1 + ζ2j

)(
1 + ζ2l

))n+L− 1
2 κ̃κκN (ζj , ζl)

((
1 + ζ2j

)(
1 + ζ̄2l

))n+L− 1
2 κ̃κκN (ζj , ζ̄l)((

1 + ζ̄2j
)(
1 + ζ2l

))n+L− 1
2 κ̃κκN (ζ̄j , ζl)

((
1 + ζ̄2j

)(
1 + ζ̄2l

))n+L− 1
2 κ̃κκN (ζ̄j , ζ̄l)

)]k
j,l=1

.

Then (1.7) follows from the basic properties of Pfaffians. For instance, we have

RN,1(ζ) =

∣∣1 + ζ2
∣∣2n+2L−1(

1 + |ζ|2
)2n+2L+2

κ̃κκN

(
ζ, ζ̄
)(
ζ̄ − ζ

)
and

RN,2(ζ, η) =

∣∣1 + ζ2
∣∣2n+2L−1∣∣1 + η2

∣∣2n+2L−1(
1 + |ζ|2

)2n+2L+2(
1 + |η|2

)2n+2L+2

×
(
κ̃κκN

(
ζ, ζ̄
)
κ̃κκN (η, η̄)− |κ̃κκN (ζ, η)|2 + |κ̃κκN (ζ, η̄)|2

)(
ζ̄ − ζ

)
(η̄ − η).

This establishes Proposition 1.1 (a).
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For the second assertion, recall that p and q are given in (1.12) and that(
r

k

)
=

Γ(r + 1)

Γ(k + 1)Γ(r − k + 1)
. (3.9)

Then after some straightforward computations using Lemma 3.2, (3.9) and the transform (3.6),
the desired formula (1.11) follows. ■

3.3 Proof of Proposition 2.2

It remains to show Proposition 2.2 to validate the proof of Theorem 1.4. We begin with the
following lemma which is the rescaled version of Proposition 1.1 (b).

Lemma 3.3. We have

∂zκ̃N (z, w) = I
(1)
N (z, w)I

(2)
N (z, w)− II

(1)
N (z, w)II

(2)
N (z, w)− III

(1)
N (z, w)III

(2)
N (z, w), (3.10)

where

I
(1)
N (z, w) :=

1(
1 + p2

)3
(Nδ)2

1

1 + ζ2

(
1 + ζη

)2n+2L−1((
1 + ζ2

)(
1 + η2

))n+L− 1
2

Γ(2n+ 2L+ 2)

2Γ(2n+ 2L)
, (3.11)

II
(1)
N (z, w) :=

1(
1 + p2

)3
(Nδ)2

ζ2N+2L(
1 + ζ2

)n+L+ 1
2

π Γ(2n+ 2L+ 2)/22L+2n

Γ
(
N + L+ 1

2

)
Γ(n−N)Γ

(
n+ L+ 1

2

) , (3.12)

III
(1)
N (z, w) :=

1(
1 + p2

)3 1

(Nδ)2
ζ2L−1(

1 + ζ2
)n+L+ 1

2

π Γ(2n+ 2L+ 2)/22L+2n

Γ
(
n+ 1

2

)
Γ(L)Γ

(
n+ L+ 1

2

) , (3.13)

and

I
(2)
N (z, w) :=

2N−1∑
k=0

(
2n+ 2L− 1

k + 2L

)(
ζη

1 + ζη

)k+2L( 1

1 + ζη

)2n−k−1

, (3.14)

II
(2)
N (z, w) :=

N−1∑
k=0

(
n+ L− 1

2

k + L

)(
η2

1 + η2

)k+L(
1

1 + η2

)n−k− 1
2

, (3.15)

III
(2)
N (z, w) :=

N−1∑
k=0

(
n+ L− 1

2

k + L+ 1
2

)(
η2

1 + η2

)k+L+ 1
2
(

1

1 + η2

)n−k−1

. (3.16)

Here,

ζ = p+
z√
Nδ

, η = p+
w√
Nδ

. (3.17)

Proof. This is an immediate consequence of (2.1) and (1.11). ■

We need to analyse the right-hand side of (3.10). For this, we need the following lemma.

Lemma 3.4. Recall that I
(1)
N , II

(1)
N , III

(1)
N are given by (3.11), (3.12), (3.13) and ζ, η are given

by (3.17). Let ϵ > 0 be a small constant. As N → ∞, the following hold.

(a) Under the setup of Theorem 1.4 (a), we have

I
(1)
N (z, w) = 2e−(z−w)2 +O

(
1√
N

)
,
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II
(1)
N (z, w) =

{√
2 e−2z2 if p = r2,

O
(
e−Nϵ

)
otherwise,

III
(1)
N (z, w) =

{√
2 e−2z2 if p = r1,

O
(
e−Nϵ

)
otherwise,

uniformly for z, w in compact subsets of C.

(b) Under the setup of Theorem 1.4 (b), we have

I
(1)
N (z, w) = 2 e−(z−w)2 +O

(
1

N

)
,

II
(1)
N (z, w) =

√
2 e−(

√
2z− ρ

2
)2 +O

(
1

N

)
,

III
(1)
N (z, w) =

√
2 e−(

√
2z+ ρ

2
)2 +O

(
1

N

)
,

uniformly for z, w in compact subsets of C.

(c) Under the setup of Theorem 1.4 (c), we have

I
(1)
N (z, w) = 2 e−(z−w)2 +O

(
1

N

)
,

II
(1)
N (z, w) = O

(
e−Nϵ

)
,

III
(1)
N (z, w) =

2
√
π

Γ(L)
z2L−1e−z2 +O

(
1

N

)
,

uniformly for z, w in compact subsets of C.

Proof. This follows from long but straightforward computations repeatably using Stirling’s

formula. The most non-trivial part is the computations for II
(1)
N and III

(1)
N under the setup of

Theorem 1.4 (a). In this case, we have

II
(1)
N (z, w) =

(
(1 + a+ b)1+a+b

(1 + a)1+abb
p2+2a(

1 + p2
)1+a+b

)N

exp

(
2
(
1 + a− bp2

)
p
√
1 + a+ b

z
√
N

)

×

[
exp

(
−1 + a+ (3 + 3a+ b)p2 − bp4

(1 + a+ b)p2
z2
) (

1 + p2
)1/2

(1 + a+ b)1/2

√
2b+O

(
1√
N

)]

and

III
(1)
N (z, w) =

(
(1 + a+ b)a+b+1

aa(1 + b)1+b

p2a(
1 + p2

)1+a+b

)N

exp

(
2
(
a− (1 + b)p2

)
p
√
1 + a+ b

z
√
N

)

×

[
exp

(
−a+ (1 + 3a+ b)p2 − (1 + b)p4

(1 + a+ b)p2
z2
) (

1 + p2
)1/2

(1 + a+ b)1/2

√
2a

p
+O

(
1√
N

)]

as N → ∞. Then the desired asymptotic expansion follows from the asymptotic formulas for r1
and r2 given in (1.13). ■

Lemma 3.5. Recall that I
(2)
N , II

(2)
N , III

(2)
N are given by (3.14), (3.15), (3.16) and ζ, η are given

by (3.17). As N → ∞, the following holds.
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(a) Under the setup of Theorem 1.4 (a), we have

I
(2)
N (z, w) =

{
1 + o(1) if r1 < p < r2
1
2 erfc(z + w) + o(1) if p = r1, r2,

(3.18)

II
(2)
N (z, w) =

{
1 + o(1) if r1 < p < r2,
1
2 erfc

(√
2w
)
+ o(1) if p = r1, r2,

(3.19)

III
(2)
N (z, w) =

{
1 + o(1) if r1 < p < r2,
1
2 erfc

(√
2w
)
+ o(1) if p = r1, r2,

(3.20)

uniformly for z, w in compact subsets of C.

(b) Under the setup of Theorem 1.4 (b), we have

I
(2)
N (z, w) =

1

2

(
erfc

(
z + w − ρ√

2

)
− erfc

(
z + w + ρ√

2

))
+ o(1), (3.21)

II
(2)
N (z, w) =

1

2

(
erfc

(√
2w − ρ

2

)
− erfc

(√
2w + ρ

2

))
+ o(1), (3.22)

III
(2)
N (z, w) =

1

2

(
erfc

(√
2w − ρ

2

)
− erfc

(√
2w + ρ

2

))
+ o(1), (3.23)

uniformly for z, w in compact subsets of C.

(c) Under the setup of Theorem 1.4 (c), we have

I
(2)
N (z, w) = P (2L, 2zw) + o(1), (3.24)

II
(2)
N (z, w) = P

(
L,w2

)
+ o(1), (3.25)

III
(2)
N (z, w) = P

(
L+ 1

2 , w
2
)
+ o(1), (3.26)

uniformly for z, w in compact subsets of C. Here P is the regularised incomplete gamma
function.

Proof. Recall that p and q are given by (1.12). We first present a probabilistic proof of the
lemma, which requires in particular that z, w ∈ R. This is instructive as it clearly shows
the appearance of the erfc and the incomplete gamma functions in the context of the normal
and Poisson approximations of the binomial distributions. We then extend the validity to
complex z, w by Vitali’s theorem. The setting of the latter is a sequence of uniformly bounded
analytic functions of a single complex variable in a region Ω. Vitali’s theorem gives that the
convergence of the sequence proved on a dense subset of Ω can be extended to convergence on
all compact subsets of Ω. Such a strategy has been applied in related settings in, e.g., [16, proof
of Theorem 3.3].

Let X ∼ B(2n+ 2L− 1, p) be the binomial distribution assuming that 2n+ 2L− 1, 2L are

integers and z, w ∈ R. Then I
(2)
N can be rewritten as

I
(2)
N (z, w) = P(2L ≤ X ≤ 2N + 2L− 1)

= P

(
2L− (2n+ 2L− 1)p√
(2n+ 2L− 1)p(1− p)

≤ X − (2n+ 2L− 1)p√
(2n+ 2L− 1)p(1− p)

≤ 2N + 2L− 1− (2n+ 2L− 1)p√
(2n+ 2L− 1)p(1− p)

)
.
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Let us consider the setup of Theorem 1.4 (a). Then as N → ∞,

2N + 2L− 1− (2n+ 2L− 1)p√
(2n+ 2L− 1)p(1− p)

=

√
2
(
1 + a− bp2

)
p
√
1 + a+ b

√
N

−
(
1 + p2

)(
1 + a+ bp2

)
√
2(1 + a+ b)p2

(z + w) +O

(
1√
N

)
,

2L− (2n+ 2L− 1)p√
(2n+ 2L− 1)p(1− p)

=

√
2
(
a− (1 + b)p2

)
p
√
1 + a+ b

√
N

−
(
1 + p2

)(
a+ (1 + b)p2

)
√
2(1 + a+ b)p2

(z + w) +O

(
1√
N

)
,

uniformly for z, w in compact subsets of C. Recall that r1 ∼
√

a
b+1 and r2 ∼

√
a+1
b . Then by

the Gaussian approximation of the binomial distribution, as N → ∞, we obtain

P(2L ≤ X ≤ 2N + 2L− 1) ∼

{
P(−∞ ≤ Z ≤ ∞) if r1 < p < r2,

P(−∞ ≤ Z ≤ −
√
2(z + w)) if p = r1, r2,

where Z is the standard normal distribution. This gives rise to the desired asymptotic be-
haviour (3.18). All other asymptotic formulas (3.19), (3.20), (3.21), (3.22), (3.23) involving the
erfc function follow along the same lines.

Under the setup of Theorem 1.4 (c), we have

p =
zw

1 + b

1

N
+O

(
1

N2

)
, as N → ∞.

Thus the binomial distribution X is approximated by the Poisson distribution with intensity
λ = (2n+ 2L− 1)p ∼ 2zw. Since the regularised incomplete gamma function is the cumulative
distribution function of the Poisson distribution, we have

P(2L ≤ X ≤ 2N + 2L− 1) ∼ P (2L, 2zw), as N → ∞,

which leads to (3.24). The other asymptotics (3.25), (3.26) follow in a similar way.

We now turn to the case with general parameters. In general, the functions I
(2)
N , II

(2)
N , III

(2)
N

can be written in terms of the (regularised) incomplete beta function

Ix(a, b) :=
Γ(a+ b)

Γ(a)Γ(b)

∫ x

0
ta−1(1− t)b−1 dt (3.27)

as

I
(2)
N (z, w) = Ip(2L, 2n)− Ip(2N + 2L, 2n− 2N), (3.28)

II
(2)
N (z, w) = Iq

(
L, n+ 1

2

)
− Iq

(
N + L, n−N + 1

2

)
, (3.29)

III
(2)
N (z, w) = Iq

(
L+ 1

2 , n
)
− Iq

(
N + L+ 1

2 , n−N
)
. (3.30)

For integer valued cases, the expressions (3.28), (3.29), (3.30) easily follow from

Ix(m,n−m+ 1) =

n∑
j=m

(
n

j

)
xj(1− x)n−j ,



22 S.-S. Byun and P.J. Forrester

see, e.g., [58, equation (8.17.5)]. In general, these follow from the definition of the hypergeometric
function in series form

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∞∑
s=0

Γ(a+ s)Γ(b+ s)

Γ(c+ s)s!
zs,

and the relation

Ix(a, b) =
Γ(a+ b)

Γ(a)Γ(b)

xa(1− x)b−1

a
2F1

(
1, 1− b; a+ 1;

x

x− 1

)
.

The significance of (3.28)–(3.30) is that Ix(a, b) as defined by (3.27) is an analytic function
of x in the cut complex-x plane C\(−∞, 0) provided |x| < 1. Appealing to Vitali’s theorem on
uniform convergence inside of a domain C for sequences of analytic functions on C (see [63]) then
allows the result proved for z, w real to be extended to compact sets of the complex plane. The
required uniform bound is a consequence of the scaling of these variables by

√
N as required

by (3.17), ensuring that for z, w in compact subsets of C, the limiting sequence remains in the
domain of analyticity. ■

Remark 3.6. For z, w real, the uniform asymptotic expansions of the incomplete beta func-
tion (3.27) can be found in [58, Section 8.18] and [62, Section 11.3.3]. A method to extend these
to the complex plane using a direct argument can be found in [61, Section 5].

We now finish the proof of Proposition 2.2.

Proof of Proposition 2.2. This immediately follows by substituting the asymptotic expan-
sions in Lemmas 3.4 and 3.5 into the identity (3.10). ■

A Appendix

Consider an eigenvalue probability density function for 2N eigenvalues in the complex plane,
coordinates {ζj}Nj=1, specified by

1

Z2N

∏
1≤j<k≤2N

|ζk − ζj |2
2N∏
l=1

e−NQ(|ζl|). (A.1)

Here the radial potential Q(|ζl|) is to be taken as general, subject only to the normalisation Z2N

being well defined. Suppose next that in this functional form only {ζj}Nj=1 are independent,

with ζj+N = ζ̄j (j = 1, . . . , N). Then (A.1) reduces to a probability density function for N
eigenvalues specified by

1

Z̃N

∏
1≤j<k≤N

|ζk − ζj |2
N∏
l=1

e−2NQ(|ζl|). (A.2)

We see that (1.1) relates through this prescription to (A.1) with Q(|ζl|) given by (1.3). In
this appendix, following [30], we revise the interpretation of (A.1) in terms of the Boltzmann
factor for a certain one-component two-dimensional Coulomb system, features of which are then
inherited by (A.2).

The first point to note is the mapping of (A.1) from the complex plane to the unit diameter
Riemann sphere specified by

z = eiϕ tan(θ/2), 0 ≤ ϕ ≤ 2π, 0 ≤ θ ≤ π, (A.3)
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which geometrically corresponds to a stereographic projection from the south pole. Introducing
the Cayley–Klein parameters

u = cos(θ/2)eiϕ/2, v = −i sin(θ/2)e−iϕ/2,

and with dS denoting an element of the surface area of the sphere, a straightforward calculation
shows

m∏
l=1

(
|zl|2

1 + |zl|2

)q1m 1(
1 + |zl|2

)q2m+m+1

∏
1≤j<k≤m

|zk − zj |2 dz1 · · · dzm

=

m∏
l=1

|vl|2q1m|ul|2q2m
∏

1≤j<k≤m

|ukvj − ujvk|2 dS1 · · · dSm, (A.4)

where m := 2N . The relevance of (A.4) is that with Q(|ζl|) given by (1.3), the left-hand side
of (A.4) results with

q1 =
2L

m
, q2 =

(2n−m)

m
. (A.5)

The parameters q1, q2 have an electrostatic interpretation on the right-hand side of (A.4).
This comes about by first recalling the fact that two points (θ, ϕ) and (θ′, ϕ′) on a sphere of
unit diameter, the solution of the charge neutral Poisson equation at (θ, ϕ) due to a unit charge
at (θ′, ϕ′), is (see, e.g., [32, equation (15.108)]) given in terms of the corresponding Cayley–Klein
parameters by

Φ((θ, ϕ), (θ′, ϕ′)) = − log |u′v − uv′|. (A.6)

Let there be m unit charges with coordinates (θ, ϕ) interacting pairwise on the sphere via the
potential (A.6). This gives an energy

U0 = −
∑

1≤j<k≤m

log |ujvk − ukvj |.

Suppose that at the north pole there is a fixed charge mq1, and at the south pole there is a fixed
charge mq2. The interaction with the mobile unit charges gives an energy

U1 = −mq1

m∑
j=1

log |vj | −mq2

m∑
j=1

log |uj |.

We see that forming the Boltzmann factor e−β(U0+U1) gives, for β = 2, precisely the right-hand
side of (A.4).

A spherical cap about the north pole with azimuthal angle θ has surface area π sin2(θ/2).
With a charge mq1 at the north pole, the value of θ, θq1 say, which corresponds to a uniform
neutralising background charge −mq1 in the spherical cap is such that

sin2(θq1/2) =
q1

q1 + q2 + 1
.

Here the left-hand side is the proportion of the total surface area of the sphere which is in the
spherical cap. On the right-hand side the ratio is obtained by dividing the charge at the north
pole by the total charge. Mapped to the complex plane using (A.3), this gives a radius rq1 such
that r2q1 = q1/(1 + q2) — note that this corresponds to r1 in (1.4). An analogous calculation
for the spherical cap about the charge mq2 at the south pole corresponding to a charge neutral
region leads to r2q2 = (1 + q1)/q2, which corresponds to r2 in (1.4).
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B Appendix

Here consideration is given to fluctuation formulas for linear statistics relating to (1.2). A linear
statistic is the random function B :=

∑N
j=1 b(ζj). The mean µN,B can be expressed in terms of

the eigenvalue density (1-point correlation) RN,1(ζ) according to

µN,B =

∫
C
b(ζ)RN,1(ζ) dA(ζ).

The variance can be expressed in terms of the one and two point correlations according to

σ2
N,B =

∫
C
dA(ζ1) b(ζ1)

∫
C
dA(ζ2) b(ζ2)

×
(
RN,2(ζ1, ζ2)−RN,1(ζ1)RN,1(ζ2) +RN,1(ζ1)δ(ζ1 − ζ2)

)
. (B.1)

The most appropriate scaling regime to analyse a linear statistic is the macroscopic limit.
The density then has the large N form given by (1.5), supported on the region S specified
by (1.4), and so in this setting

µN,B ∼ (n+ L)

∫
S

b(ζ)(
1 + |ζ|2

)2 dA(ζ). (B.2)

In particular, this shows the mean is extensive, being proportional to N . In contrast, in the
macroscopic limit the variance is expected to be independent of N , under the assumption that b
is smooth. The full distribution is expected to be a Gaussian. Heuristic reasoning from the
Coulomb gas viewpoint underlying these predictions can be found, e.g., in [32, Section 14.4].

The limit formulas for the correlations functions of Theorem 1.4 relate to local rather than
global scaling. Upon global scaling the functional form relating to the correlations in (B.1) is not
expected to be well defined as a function, but rather to take the form of a distribution; see [32,
Section 15.4]. In fact in the particular case that b is smooth and a function of the distance
from the origin only, it is possible to compute the limiting form of the variance indirectly, by
considering the large N form of the characteristic function.

Proposition B.1. Consider the radially symmetric linear statistic B =
∑N

j=1 b(|ζj |) in relation

to the induced symplectic induced spherical ensemble as specified by (1.2) and (1.3). Let P̂N,B(k)
denote the corresponding characteristic function. We have that for large N

P̂N,B(k) = eikµ̃N,B−k2σ̃2
B/2+o(1), (B.3)

where µ̃N,B denotes the right-hand side of (B.2) and with S defined as in (B.2)

σ̃2
B =

1

8

∫
S
||∇b(|ζ|)||2 dA(ζ). (B.4)

Sketch of proof. For the most part we follow the method given in [31] for the analogous setting
in the case of the complex Ginibre ensemble, although (B.6) is a crucial ingredient made possible
by a recent finding in the literature.

By definition

P̂N,B(k) =

〈
N∏
l=1

eikb(|ζj |)

〉
,

where the average is with respect to (1.2). Define

ul :=

∫ ∞

0
r4l+3e−2NQ(r) dr, ul(b) :=

∫ ∞

0
r4l+3e−2NQ(r)eikb(r) dr. (B.5)
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According to the theory of radially symmetric skew orthogonal polynomials in the complex
plane [6, Corollary 3.3], we have

P̂N,B(k) =

N−1∏
l=0

ul(b)/ul. (B.6)

To the integrals in (B.4) we now apply Laplace’s method of asymptotic analysis. For
large n, L, l such that when divided by N a non-zero limiting value results, this method begins
by writing in each integrand

r4l+3e−2NQ(r) = e−2(n+L+1) log(1+r2)+(4(L+l)+3) log r =: ef(r)

then expands the integrand about the value of r which maximises the exponent, rl say. An
elementary calculation shows that to leading order

rl =

√
L+ l

n− l
, f ′′(rl) = −8(n− l)2

(n+ L)
.

Expanding the integrands in (B.5) about this point to second order in the exponent shows

P̂N,B(k) ∼
N∏
l=1

eikb(rl)e−k2(b′(rl))
2/(2|f ′′(rl)|) ∼ eikµ̃N,Be−k2σ̃2

B/2,

where µ̃N,B is given by the right-hand side of (B.2) and

σ̃2
B =

1

4

∫ r2

r1

r(b′(r))2 dr.

The right-hand side of this latter expression is equivalent to (B.4). ■

The large N functional form (B.3) for the characteristic function of B implies that the centred
linear statistic B − µ̃N,B is a mean zero Gaussian with variance given by (B.4). The structure
of the latter is familiar from the study of the fluctuations associated with a linear statistic for
the complex Ginibre ensemble; see the recent review [35, Section 3.5].
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