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Abstract. We discuss a class of bow varieties which can be viewed as Taub-NUT deforma-
tions of moduli spaces of instantons on noncommutative R4. Via the generalized Legendre
transform, we find the Kähler potential on each of these spaces.
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Bow varieties, introduced by the third author [6, 7], are a common generalisation of quiver
varieties and of moduli spaces of solutions to Nahm’s equations. A class of bow varieties de-
scribes, via an analog of the ADHM construction, moduli spaces of (framed) instantons on
ALF-spaces. In the present paper, we are interested in a very particular type of bow varieties,
which can be viewed as a moduli space of U(r) instantons on the noncommutative Taub-NUT
space (cf. Section 3). The case r = 1 of these has been studied by Takayama [21]. Our approach
is via spectral curves and line bundles. This allows us to give a formula for the Kähler potential
of the hyperkähler metric via the generalised Legendre transform of Lindström and Roček [16].
We also derive the asymptotic metric in the region where the U(r)-instantons of charge k can
be approximated by kr well-separated constituents (cf. [7, Section 9]), which we expect to be
Euclidean U(2)-monopoles (cf. [10]).

1 Spectral curves, line bundles, and matrix polynomials

The complex manifold T = TP1 is equipped with the standard atlas (ζ, η), (ζ̃, η̃), where ζ̃ = ζ−1,
η̃ = η ζ−2. We recall [1, Proposition 2.2] that H1(T,OT) is generated by monomials of the form
ηiζ−j , i > 0, j < 2i. Of particular interest is the line bundle L z, z ∈ C, with transition function
exp(zη/ζ).

A spectral curve (of degree k) is a compact 1-dimensional subscheme of TP1 defined by the
equation P (ζ, η) = 0, where P (ζ, η) = ηk +

∑k
i=1 pi(ζ)η

k−i, deg pi = 2i. It can be reducible or
nonreduced, and its arithmetic genus g is equal to (k − 1)2.

On a spectral curve S, we consider the Jacobian Jacg−1(S) of line bundles L (i.e., invertible
sheaves) of degree g−1 = k2−2k, i.e., satisfying χ(L) = 0. The line bundle OS(k−2) has degree
g− 1, and therefore we have an isomorphism Pic0(S) → Jacg−1(S), L 7→ L(k− 2). As shown in
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[1, Proposition 2.1], any line bundle on S of degree zero is a restriction of a line bundle on T, and
hence, the same holds for line bundles of degree g−1. The theta divisor ΘS ⊂ Jacg−1(S) consists
of line bundles with nontrivial cohomology. Beauville [2] has shown that any L ∈ Jacg−1(S)\ΘS ,
viewed as a sheaf on T, has a free resolution of the form

0 OT(−3)⊕k OT(−1)⊕k L 0,
η−A(ζ)

(1.1)

where A(ζ) = A0 +A1ζ +A2ζ
2, Ai ∈ Matk,k(C), is a quadratic matrix polynomial, the charac-

teristic polynomial of which is P (ζ, η). The essential idea is that, since π : S → P1, (ζ, η) 7→ ζ,
is a finite flat morphism, and L is locally free, the direct image π∗L is also locally free. Since
h0(L) = h1(L) = 0, the same holds for π∗L, and so π∗L ≃ O(−1)⊕k. Moreover, π∗L is a module
over π∗S, i.e., it corresponds to a homomorphism A : π∗L → π∗L(2) satisfying P (ζ,A(ζ)) = 0.
Since L is a line bundle, the matrix A(ζ) is regular for every ζ, and hence P (ζ, η) is the charac-
teristic polynomial of A(ζ).

Remark 1.1. The Beauville correspondence described above can be also rephrased as follows.
Consider the set Q of quadratic matrix polynomials A(ζ) such that A(ζ0) is a regular matrix
for every ζ0 ∈ P1. This is an open subset of C3k2 and since GLn(C) is reductive, there exists
a good quotient Jk = Q/GLk(C). This quotient, with its scheme structure, can be viewed
as the universal Jacobian of spectral curves, parametrising pairs (S,L), where S is a spectral
curve and L ∈ Jacg−1(S)\ΘS . It can also be viewed as an open subset of Simpson’s moduli
space of semistable 1-dimensional sheaves on the Hirzebruch surface F2 with Hilbert polynomial
h(m) = km [20].

1.1 Real structures

The manifold T is equipped with a real structure (i.e., an antiholomorphic involution) σ defined
by

σ(ζ, η) =
(
−1/ζ̄,−η̄/ζ̄2

)
.

If a spectral curve S is real (i.e., σ-invariant), then we obtain an induced antiholomorphic
involution σ on Pic(S). This involution corresponds to complex conjugation of the matrix
polynomial in (1.1) [4, Section 1.2]. Since we are interested in Hermitian conjugation, we need
to replace σ by the following antiholomorphic conjugation on Jacg−1(S):

L 7→ σ(L)∗ ⊗OS(2k − 4).

We denote the invariant subset of Jacg−1(S) by Jacg−1
R (S) and the corresponding subset of Jk

(cf. Remark 1.1) by J R
k . A line bundle L belongs to Jacg−1

R (S) if and only if it is of the form
L0(k − 2), where L0 is a degree 0 line bundle with transition function exp q(ζ, η) satisfying
q(ζ, η) = q(σ(ζ, η)).

It has been shown in [4, Proposition 1.7] that J R
k decomposes into disjoint subsets J p

k ,

p = 0, . . . , [k/2], corresponding to standard Hermitian forms q = −∑p
i=1 |zi|2 +

∑k
i=p+1 |zi|2

of signature (p, k − p) on Ck. Denoting by q also the diagonal matrix defining the quadratic
form, J p

k consists of SU(p, k−p)-conjugacy classes of quadratic matrix polynomials A(ζ) which
satisfy

qA0q
−1 = −A∗

2, qA1q
−1 = A∗

1, qA2q
−1 = −A∗

0.

Remark 1.2. Equivalently, the component J p
k to which a real (S,L) belongs is determined by

the signature of Hitchin’s metric on H0(S,L(1)) [11, Section 6].
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Remark 1.3. It is perhaps worth pointing out that, for any real spectral curve S and any p,
Jacg−1

R (S)\ΘS has a nonempty intersection with J p
k . Indeed, for small s ∈ R, the line bundle

L s(k− 2)|S belongs to J 0
k (cf. [11, paragraph after formula (6.11)]). Thus the map associating

to L ∈ J 0
k its support S is surjective. Each J p

k is, however isomorphic to J 0
k , e.g., via

A(ζ) 7→ D1A(ζ)D2 for an appropriately chosen pair of diagonal matrices.

We shall be interested only in the component J 0
k . The sheaves in this component are

represented by matrix polynomials of the form

T (ζ) = (T2 + iT3) + 2iT1ζ + (T2 − iT3)ζ
2, Ti ∈ u(k), (1.2)

modulo conjugation by U(k). As in [4], we shall call sheaves belonging to J 0
k definite.

1.2 Nahm’s equations

Jacg−1(S) is a torsor for Pic0(S). Therefore the tangent bundle of Jacg−1(S) is parallelisable
and canonically isomorphic to Jacg−1(S)×H1(S,OS). If we choose an element of H1(S,OS), we
obtain a linear flow on Jacg−1(S). Restricting this flow to the complement of the theta divisor,
and choosing an appropriate connection (cf. [11] and [1]) yields a flow of quadratic matrix
polynomials corresponding to elements of Jacg−1(S)\ΘS . In particular, for the flow given by
[η/ζ] ∈ H1(S,OS), i.e., L 7→ L⊗ L z, there is a connection such that the restriction of the flow
to z ∈ R and to the definite line bundles (i.e., to matrix polynomials of form (1.2)) is given by

∂T (ζ)

∂z
=

1

2

[
T (ζ),

∂T (ζ)

∂ζ

]
,

which is equivalent to Nahm’s equations

Ṫi +
1

2

∑
j,k

ϵijk[Tj .Tk] = 0, i = 1, 2, 3. (1.3)

2 Factorisation of matrix polynomials

We consider the flat hyperkähler manifold T ∗Matk,k(C), which we identify with Matk,k(C) ⊕
Matk,k(C). It has a natural tri-Hamiltonian U(k)× U(k)-action given by

(g, h).(A,B) =
(
gAh−1, hBg−1

)
,

and the corresponding hyperkähler moment maps are:

(µ2 + iµ3)(A,B) = AB, 2iµ1(A,B) = AA∗ −B∗B,

(ν2 + iν3)(A,B) = −BA, 2iν1(A,B) = BB∗ −A∗A.

We can view these moment maps as sections of O(2)⊗glk(C) over the P1 parametrising complex
structure, and write them as quadratic matrix polynomials:

µ(ζ) = (A−B∗ζ)(B +A∗ζ), (2.1)

ν(ζ) = −(B +A∗ζ)(A−B∗ζ). (2.2)

As explained in the previous section µ(ζ) and −ν(ζ) define 1-dimensional sheaves F , F ′ in J 0
k

(i.e., real, acyclic, and definite). Moreover, F and F ′ are supported on the same spectral curve S.
Our first goal is to relate F ′ to F . Since we do not need the reality conditions for this, let us
consider arbitrary linear matrix polynomials A(ζ), B(ζ), such that the roots of detA(ζ) are
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disjoint from the roots of detB(ζ). Let F ∈ Jk (resp. F ′ ∈ Jk) be the sheaf determined
by A(ζ)B(ζ) (resp. by B(ζ)A(ζ)). Let S be the common support of F and F ′, and let ∆A

(resp. ∆B) be the Cartier divisor on S given by η = 0 on the open subset detB(ζ) ̸= 0 (resp. on
the open subset detA(ζ) ̸= 0).

Proposition 2.1. F ′ ≃ F(1)[−∆A].

Proof. We have a commutative diagram

0 0 0

0 OT(−3)⊕k OT(−1)⊕k F 0

0 OT(−2)⊕k O⊕k
T F ′(1) 0

0 C C(2) O∆B
0,

0 0 0

η−A(ζ)B(ζ)

B(ζ) B(ζ)

η−B(ζ)A(ζ)

η

where C is the cokernel of B(ζ). Therefore, F ′(1) ≃ F [∆B]. Since [∆A + ∆B] ≃ OS(2), the
claim follows. ■

We now ask whether a given quadratic polynomial T (ζ), corresponding to a sheaf in J 0
k ,

can be factorised as in formula (2.1). Generically, the answer is yes.

Proposition 2.2. Let T (ζ) be of form (1.2) and suppose that

(i) the polynomial detT (ζ) has 2n distinct zeros ζ1, . . . , ζ2n,

(ii) the corresponding eigenvectors vi ∈ KerT (ζi), i = 1, . . . , 2n, are in general position, i.e.,
for any choice i1 < · · · < in ∈ {1, . . . , 2n}, vi1 , . . . , vin are linearly independent.

Then T (ζ) can be factorised as (A−B∗ζ)(B +A∗ζ).

Proof. After rotating P1, we can assume that ζ = ∞ is not a root of detT (ζ). Let ∆ ∪ σ(∆)
be a decomposition of the set of zeros of detT (ζ). Theorem 1 in [17] implies that there is
a decomposition T (ζ) = (C1+D1ζ)(C2+D2ζ) such that ∆ is the set of roots of det(C2+D2ζ).
Applying the real structure shows that (D∗

2 − C∗
2ζ)(−D∗

1 + C∗
1ζ) is also a factorisation of T (ζ).

We can rewrite these factorisations as

T (ζ) =
(
C1D

−1
1 + ζ

)
(D1C2 +D1D2ζ) =

(
−D∗

2(C
∗
2 )

−1 + ζ
)
(C∗

2D
∗
1 − C∗

2C
∗
1ζ).

Theorem 2 in [17] implies now that C1D
−1
1 = −D∗

2(C
∗
2 )

−1, i.e., D−1
1 C∗

2 = −C−1
1 D∗

2. In addition,
comparing the constant coefficients of the two factorisations, we have C1C2 = −D∗

2D
∗
1. Hence(

D−1
1 C∗

2

)∗
= C2(D

∗
1)

−1 = −C−1
1 D∗

2D
∗
1(D

∗
1)

−1 = −C−1
1 D∗

2 = D−1
1 C∗

2 .

Therefore, D−1
1 C∗

2 is hermitian (and invertible). We can write it as −gdg∗, where g is invertible
and d is diagonal with diagonal entries equal ±1. Then

T (ζ) = (C1 +D1ζ)gg
−1(C2 +D2ζ) = (C1g +D1gζ)d(−g∗D∗

1 + g∗C∗
1ζ). (2.3)

The uniqueness of monic factors of T (ζ) implies that the map ∆ 7→ d is injective. Since both
sets have the same cardinality (equal to 2k), this map is surjective, i.e., there is a choice of ∆
such that the corresponding d is the identity matrix, and formula (2.3) becomes the desired
factorisation. ■
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3 Deformed instanton moduli spaces

We consider a bow variety M corresponding to the bow representation diagram in Figure 1:
with r λ-points and the rank of all bundles equal to k. In other words, M is the moduli space

μ0 μr+1μ1 μ2
. . .

k . . .

μr

k k k

A

B

Figure 1. Bow representation diagram with r λ-points µ1, . . . , µr and constant rank k.

of u(k)-valued solutions to Nahm’s equations on [µ0, µr+1] which have rank 1 discontinuity in
(T2 + iT3) + 2iT1ζ + (T2 − iT3)ζ

2 at each µi, i = 1, . . . , r, and (T2 + iT3) + 2iT1ζ + (T2 − iT3)ζ
2

is equal to (B +A∗ζ)(A−B∗ζ) + cL(ζ)Id at µ0 and to (A−B∗ζ)(B +A∗ζ) + cR(ζ)Id at µr+1,
where A,B ∈ Matk,k(C) and cL, cR are quadratic polynomials satisfying the reality condition.

Let us consider two limiting cases.

First, is the case when we let the lengths of all intervals go to zero, then M is the quotient
by U(k) of the set of solutions to the following matrix equations:

[A−B∗ζ,B +A∗ζ] =
r∑

i=1

(vi − w̄iζ)(wi + v̄iζ)
T + (cL(ζ)− cR(ζ)),

where vi, wi ∈ Ck. In particular, if cL(ζ) − cR(ζ) = aζ, then M with the complex structure
corresponding to ζ = 0 is biholomorphic to the moduli space of framed torsion-free sheaves on P2

with rank r and c2 = k [18, Theorem 2.1]. For an arbitrary nonzero (cL(ζ) − cR(ζ)), M (with
µ0 = · · · = µr+1) has been interpreted by Nekrasov and Schwarz as a moduli space of instantons
on a noncommutative R4 [19]. We can, therefore, view M with arbitrary µi as a deformation of
the moduli space of instantons on noncommutative R4 with the noncommutativity parameter
cL(ζ) − cR(ζ). It changes the space geometry from a higher-dimensional ALE to ALF kind, as
we explain in the beginning of Section 4. For r = 1, these moduli spaces have been investigated
in detail by Takayama [21].

We remark that the hyperkähler metric on our M has a T r-symmetry, compared to a U(r)-
symmetry of the moduli space of instantons on the noncommutative R4.

Second, in the case with cL(ζ) = cR(ζ), M is isometric to the moduli space of instantons on
the Taub-NUT space [8]. Notably, while the deformation to nonzero cL(ζ)−cR(ζ) appears rather
benign from the moduli space point of view, it is nearly fatal to the ADHM-type transform from
the bow to the instanton, since the corresponding small bow representationmoduli space becomes
empty, instead of being the Taub-NUT space. This is completely analogous to the situation with
the original ADHM construction and its noncommutative deformation of Nekrasov and Schwarz.

3.1 Complex structures

We shall now show that the complex-symplectic structures of M do not depend on the µi

(this has been shown by Takayama for r = 1). First of all, M is isomorphic to a hyperkähler
quotient of M̃ × T ∗Matk,k(C) by U(k) × U(k), where M̃ is the moduli space of solutions to
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Nahm’s equations on r + 1 intervals as above, without the bifundamental representation, i.e.,
without the half-circles labelled by A and B. We discuss first the complex-symplectic structures
of M̃. Let us consider the complex structure I corresponding to 0 ∈ P1 (all complex structures
of M̃ are isomorphic). We can, following Donaldson [9], separate the data given by Nahm’s
equations and boundary conditions, into a complex and a real part. The complex part is given
by solutions of the Lax equation β̇ = [β, α] on each interval [µi, µi+1], where β(t) = T2(t)+iT3(t),
α(t) = iT1(t) with rank 1 discontinuity at µ1, . . . , µr. It follows from results of Donaldson [9]
and Hurtubise [13] that M̃ is biholomorphic to the quotient of this space by GL(k,C)-valued
gauge transformations which are identity at µ0 and µr+1 and match at the remaining µi. This
biholomorphism preserves also the complex-symplectic form. On each interval one can apply
a complex gauge transformation to make α identically zero and β constant. If we do this
beginning with the left-most interval and such a gauge transformation with g(µ0) = 1, we can
make β(t) equal to a constant βi on each [µi−1, µi], i = 1, . . . , r + 1, with βi+1 − βi = IiJi for
a vector Ii and a covector Ji. The map associating to (β(µ0), g(µr+1), I, J), where I = [I1, . . . , Ir]
and J = [J1, . . . , Jr]

T to a point of M̃ is a complex-symplectic isomorphism between M̃ and
T ∗GL(k,C)× T ∗Matk,r.

The complex-symplectic quotient of the product of T ∗GL(k,C)×T ∗Matk,r and T ∗Matk,k(C)
by GL(k,C)×GL(k,C) (which is the remaining gauge freedom at µ0 and µr+1) can be performed
in two stages: the quotient by the left copy of GL(k,C) (the one which acts trivially on I and J)
is T ∗Matk,r ×T ∗Matk,k(C). The remaining symplectic quotient is the same one as in the case
with µ0 = · · · = µr+1. This shows that, as long as cL(ζ) − cR(ζ) ̸= 0, M is isomorphic,
as a complex-symplectic manifold, to the corresponding space of noncommutative instantons.

3.2 Spectral curves

We shall now describe the moduli spaceM using the language of spectral curves and line bundles.
We denote by Si the spectral curve on the interval [µi, µi+1]. Due to the matching conditions,
Sr is equal to S0 shifted by η 7→ η + c(ζ), where c(ζ) = cL(ζ)− cR(ζ).

Hurtubise and Murray [14] analysed what happens to spectral curves and line bundles at
rank 1 discontinuity of solutions to Nahm’s equations. Namely, for i = 0, . . . , r − 1, we have
Si ∩ Si+1 = Di,i+1 ∪ Di+1,i with σ(Di,i+1) = Di+1,i and the line bundles at µi+1 equal to
OSi(2k)[−Di,i+1] ∈ Jacg−1(Si), OSi+1(2k)[−Di,i+1] ∈ Jacg−1(Si+1). It follows that S1, . . . , Sr−1

satisfy the following condition

L
µi+1−µi

Si
[Di,i+1 −Di−1,i] ≃ OSi . (3.1)

It remains to identify the condition satisfied by S0 and Sr. The line bundles at µ0 and at µr+1

are L µ0−µ1

S0
(2k)[−D0,1] and µr+1 is L

µr+1−µr

Sr
(2k)[−Dr−1,r], respectively. For any quadratic

polynomial c = c(ζ) denote by ϕc the automorphism of T = TP1 given by η 7→ η + c(ζ).
The induced map on H1(T,OT) is trivial. Let us denote by Sc the image of S0 under ϕcL

(equivalently, the image of Sr under ϕcR). It follows that B(ζ)A(ζ) represents the line bundle
L µ0−µ1

Sc
(2k)[−ϕcL(D0,1)] and A(ζ)B(ζ) represents the line bundle L

µr+1−µr

Sc
(2k)[−ϕcR(Dr−1,r).

Proposition 2.1 implies that

L µ0−µ1

Sc
(2k)

[
−ϕcL(D0,1)

]
≃ L

µr+1−µr

Sc
(2k)

[
−ϕcR(Dr−1,r)

]
⊗OSc(1)[−∆A],

that is,

L
µr+1−µr+µ1−µ0

Sc
(1)

[
ϕcL(D0,1)− ϕcR(Dr−1,r)−∆A

]
≃ OSc , (3.2)

where ∆A is be the divisor on Sc cut out by η = 0 on the open subset detB(ζ) ̸= 0 (thus
detA(ζ) = 0 on ∆A). In addition, the spectral curves Sc, S1, . . . , Sr−1 satisfy appropriate
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nondegeneracy conditions, which simply mean that the flow of line bundles on each Si does
not meet the theta divisor. Conversely, given generic curves Sc, S1, . . . , Sr−1 satisfying these
conditions together with trivialisations in the formulas (3.1) and (3.2), we obtain, using the
results of [14] and Proposition 2.2, a unique gauge equivalence class of solutions to Nahm’s
equations in M. Here “generic” means that Si ∩Si+1 for i = 0, . . . , r− 1 as well as Sc ∩{η = 0}
consist of distinct points.

3.3 Generalised Legendre transform

The complex symplectic quotient described in Section 3.1 can be performed for each complex
structure, i.e., on the fibres of the twistor space of M̃ × T ∗Matk,k(C). The spectral curves and
(real) trivialisations of line bundles (3.1) and (3.2) provide twistor lines corresponding to an open
dense subset of M. In particular, for each complex structure, the roots of polynomials defining
spectral curves and values of trivialising sections of line bundles (3.1)–(3.2) define Darboux
coordinates for the corresponding complex-symplectic form. This picture is a particular case of
the generalised Legendre transform construction of Lindström and Roček [12, 16], which we now
recall.

The generalised Legendre transform describes 4n-dimensional hyperkähler metrics, the twistor
space Z2n+1 of which admits a projection to the total space of a vector bundle E =

⊕n
i=1O(2ki)

over P1, ki ≥ 1, i = 1, . . . , n. The projection is required to commute with real structures and
its fibres for each ζ ∈ P1 are Lagrangian for the fibre-wise complex symplectic form on Z2n+1.
The hyperkähler structure is then defined on a subset M of real sections of E consisting of those
αi(ζ) =

∑2ki
a=0wiaζ

a, i = 1, . . . , n, which satisfy

Fwia :=
∂F

∂wia
= 0 for a = 2, . . . , 2ki − 2, (3.3)

for a function F defined as a contour integral

F (wia) =

∮
c
G
(
ζ, α1(ζ), . . . , αn(ζ)

)dζ
ζ2

. (3.4)

Complex coordinates on M with respect to the complex structure corresponding to ζ = 0 are
given by zi = wi0, i = 1, . . . , n, and by ui, where ui = Fwi1 if ki ≥ 2 and ui+ui = Fwi1 if ki = 1.
The other coefficients wia with a > 0 are understood to be functions of {zi, ui} determined by
equations (3.3). The Kähler potential is given by K = F − 2

∑n
i=1Reuiwi1.

In the case of our bow variety M, E =
⊕k

i=1O(2i)⊕r with the summands corresponding
to coefficients of powers of η in the polynomials defining the spectral curves Sc, S1, . . . , Sr−1.
It has been shown in [5] that conditions such as (3.1) and (3.2) on spectral curves correspond
to a particular choice of the function G and the contour c in formula (3.4). In fact, one can
replace the usually multi-valued function G with a single-valued function on a branched cover
of P1. This cover is precisely the union of spectral curves Sc ∪ S1 ∪ · · · ∪ Sr−1. Although it is
not necessary (as long as we allow integration over chains rather than contours), it is better to
enlarge this cover by the fixed projective line η = 0 (the integration contour will enter this line
from Sc at points of ∆B and leave it at points of ∆A).

In order to have trivialising sections satisfying assumptions of [5, Theorem 7.5] (cf. Exam-
ple 8.2 there), we need to replace a nonvanishing section si of the left-hand side in formula (3.1)
by si/σ∗si, which is a section of

L
2(µi+1−µi)
Si

[Di,i+1 +Di,i−1 −Di+1,i −Di−1,i].

Similarly, we obtain from formula (3.2) a section of

L
2(µr+1−µr+µ1−µ0)
Sc

[
ϕcL(D0,1) + ϕcR(Dr,r−1) + ∆B − ϕcL(D1,0)− ϕcR(Dr−1,r)−∆A

]
.
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The assumptions of [5, Theorem 7.5] are now satisfied, and we can conclude from it that the
hyperkähler metric on M is given by the generalised Legendre transform applied to the func-
tion F (wia) given by

∮
γ

η

2ζ2
dζ − 1

2πi

r−1∑
i=1

(µi+1 − µi)

∮
0̃i

η2

2ζ3
dζ − 1

2πi
(µr+1 − µr + µ1 − µ0)

∮
0̃c

η2

2ζ3
dζ,

where 0̃i (resp. 0̃c) is the sum of simple contours around points in Si (resp. in Sc) lying over
0 ∈ P1, while γ is a contour which enters (resp. leaves) each Si, i = 2, . . . , r, at points of
Di+1,i + Di−1,i (resp. Di,i+1 + Di,i−1), and it enters (resp. leaves) Sc at points of ϕcL(D0,1) +
ϕcR(Dr−1,r) + ∆A (resp. ϕcL(D1,0) + ϕcR(Dr,r−1) + ∆B).

4 Asymptotic metrics

In the case µ0 = · · · = µr+1, the hyperkähler metric on M has Euclidean volume growth
(i.e., proportional to R4kr) and it is asymptotic to a Riemannian cone on a singular 3-Sasakian
manifold. Allowing the length of m of the r intervals [µi, µi+1] to be positive, reduces the volume
growth power exponent by mk. In particular, if µi+1 − µi > 0 for every i = 0, . . . , r, then the
volume growth is proportional to R3kr. In this section, we shall show that, on an open dense
subset, the metric is asymptotic to the Lee–Weinberg–Yi metric [15].

The basic idea is the same as in [3]: the functions T̂i(t) = ϵTi(ϵt) satisfy the same Nahm
equations (1.3) as the original Ti(t). Thus, exploring infinity of M is equivalent to studying
finite T̂i on rescaled long intervals. Under such rescaling, the lengths of the intervals go to
infinity and we can consider a hyperkähler manifold “glued together” from r moduli spaces
of solutions to Nahm’s equations on R with a rank 1 discontinuity at t = 0, plus diagonal
matrices A, B. The resulting hyperkähler metric will be the asymptotic metric in the region
of M where spectral curves degenerate to unions of lines. Let us recall from [3] the precise
definition of these building blocks.

4.1 Building blocks

Let a−, a+ be positive real numbers. We shall denote1 by Nk(a−, a+) the moduli space of u(k)-
valued solutions (T0(t), T1(t), T2(t), T3(t)) to Nahm’s equations on R satisfying the following
conditions:

� The solutions are analytic on (−∞, 0] and on [0,∞). At t = 0, there is a rank one
discontinuity, i.e., there exist vectors I, J∗ ∈ Ck such that (T2+iT3)(0+)−(T2+iT3)(0−) =
IJ and T1(0+)− T1(0−) =

1
2(II

∗ − J∗J).

� The T̂i approach exponentially fast a diagonal limit as t → ±∞ with (T1(−∞), T2(−∞),
T3(−∞)) and (T1(+∞), T2(+∞), T3(+∞)) regular triples, i.e., the centraliser of the triple
consists of diagonal matrices.

� The gauge group has a Lie algebra consisting of functions ρ : R → u(k) such that:

(1) ρ(0) = 0 and ρ̇ has a diagonal limit at t → ±∞,

(2) (ρ̇− ρ̇(+∞)) and [ρ, τ ] decay exponentially fast for any regular diagonal matrix τ ∈
u(k), and similarly at t = −∞,

(3) a+ρ̇(+∞) + limt→+∞(ρ(t)− tρ̇(+∞)) = 0, and similarly at t = −∞.

1These were denoted by F̃k,k(a, a
′) in [3].
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Let us denote by x+
i (resp. x−

i ) the i-th diagonal entry of the triple (T1(+∞), T2(+∞), T3(+∞))
(resp. (T1(−∞), T2(−∞), T3(−∞))). The collection {x+

i }ki=1 of k triplets (as well as {x−
i }ki=1)

might be viewed as k points of R3. As shown in [3], Nk(a−, a+) is a hyperkähler
2 manifold, which

topologically is a torus bundle over C̃k

(
R3

)
× C̃k

(
R3

)
, where C̃k

(
R3

)
denotes the configuration

space of k distinct and distinguishable points in R3. The action of the torus T k × T k is tri-
Hamiltonian and the hyperkähler moment map is given by x−

i , x
+
i , i = 1, . . . , k. Let us write x−i

for x−
i , x

i for x+
i , and xν ∈ R2k, ν = 1, 2, 3, for the vector of ν-coordinates of the xi, |i| = 1, . . . , k.

The metric is given by the Gibbons–Hawking ansatz, i.e., it is of the form

3∑
ν=1

dxT
ν Φdxν + (dt+A)TΦ−1(dt+A), (4.1)

where dt is the diagonal matrix of 1-forms dual to Killing fields, A is a connection 1-form, and
the matrix Φ (which determines the metric up to gauge equivalence) is given explicitly by

Φij =


asgn(i) +

∑
k ̸=i

sik
∥xi − xk∥ if i = j,

− sij
∥xi − xj∥ if i ̸= j,

where sij = − sgn(i) sgn(j).

There is one more building block, corresponding to matrices A, B. In our asymptotic region,
these will become almost diagonal, so that this building block is Hk with its standard flat metric
and the diagonal torus action.

4.2 Asymptotic coordinates and metric

We now obtain the asymptotic metric, analogously to [3], by gluing together these building
blocks, i.e., performing the hyperkähler quotient with respect to the torus.

We start with the product
∏r

i=1Nk(a
i
−, a

i
+)×Hk with ai++ ai+1

− = µi+1−µi for i = 0, . . . , r,
where a0+ = ar+1

− = 0. This hyperkähler manifold has, as explained above, a tri-Hamiltonian
action of T k × T k on each of the first r factors and of T k on the last factor. Let us denote
the torus T k × T k acting on Nk(a

i
−, a

i
+) by T−

i × T+
i , where T−

i (resp. T+
i ) is given by gauge

transformations asymptotic to exp(ai±h − th) as t → −∞ (resp. t → +∞), with h ∈ u(k). Let
us also write T+

0 for the standard torus action (t, q) 7→ ϕ(t, q) on Hk, and T−
r+1 for the action

(t, q) 7→ ϕ
(
t−1, q

)
. We now perform the hyperkähler quotient with respect to

(
T k

)r+1
, the i-

th factor of which is embedded diagonally into T+
i × T−

i+1, i = 0, . . . , r. The level set of the

hyperkähler moment map is (cL, . . . , cL) for the first copy of T k, by (cR, . . . , cR) for the last
copy, and is equal to 0 for all others (where cL, cR are points in R3 determined by the quadratic
polynomials cL(ζ), cR(ζ) used to define the bow variety M).

The resulting metric is again of the form (4.1), where this time we have kr points xi ∈ R3:
k for each of the middle r− 1 intervals and k given by the moment map on each copy of H. Let
us denote by xij , j = 1, . . . , k the points corresponding to the interval [µi, µi+1], i = 1, . . . , r−1.
Each xij is equal to x+

j for Nk(a
i
−, a

i
+) and also to x−

j for Nk

(
ai+1
− , ai+1

+

)
. Let us also write

y1, . . . ,yk ∈ R3 for the coordinates on each H\{0} given by the hyperkähler moment map.
The metric on H can be also written in the form (4.1) with Φ = ∥y∥−1. Observe that x−

j for

Nk

(
a1−, a

1
+

)
(resp. x+

j for Nk(a
r
−, a

r
+)) satisfy x−

j = yj + cL (resp. x+
j = yj + cR).

The kr × kr matrix Φ defining the asymptotic metric is described as follows. Let Φi, i =
1, . . . , r− 1, be the 2k× 2k matrix describing the metric on Nk(a

i
−, a

i
+). We decompose each Φi

2Strictly speaking the metric is positive-definite only in an asymptotic region.
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y1 + cL
y2 + cL

...
yk + cL

y1 + cR
y2 + cR

...
yk + cR

Nr(a
r
−, a

r
+)

. . .N2(a
2
−, a

2
+)N1(a

1
−, a

1
+)

μ1 μ2
. . .

a1− ar+

μr

ar−

x(r−1)1

x(r−1)2

...
x(r−1)k

x21

x22

...
x2k

a2+a2−

x11

x12

...
x1k

a1+

A

B

Figure 2. Bow asymptotic as hyperkähler reduction of the approximation blocks. The bow interval is

cut at crosses into subintervals, each containing a single λ-point µi with length a−i to the left of µi and

length a+i to its right. The corresponding approximation space is Nk(a
i
−, a

i
+).

into k× k blocks (corresponding to the positive and negative superscripts labelling coordinates)
as (

Φi
11 Φi

12

Φi
21 Φi

22

)
.

Next, we form an rk × rk-matrix Ψi as follows: the matrix Ψi has k2 r × r blocks labelled
by Ψi

(m,n), where, for i ≤ r − 1,

Ψi
(m,n) =

{
Φi
st if m = i+ s− 2 and n = i+ t− 2,

0 otherwise.

For i = r, set Ψr
(r,r) = Φr

11, Ψ
r
(r,1) = Φr

12, Ψ
r
(1,r) = Φr

21, Ψ
r
(1,1) = Φr

22, and the remaining blocks

equal to 0. Finally, let Ψ0 have the (1, 1)-block equal to diag
(
∥y1∥−1, . . . , ∥yk∥−1

)
, and all other

blocks equal to 0. Then the matrix Φ for the asymptotic metric is the sum
∑r

j=0Ψ
j with x−

j

for Nk(a
1
−, a

1
+) and x+

j for Nk(a
r
−, a

r
+) replaced by, respectively, yj + cL and yj + cR.

To recapitulate: the asymptotic metric is given by formula (4.1) for the just defined rk × rk
matrix Φ in coordinates y1, . . . ,yk, xij , i = 1, . . . , r − 1, j = 1, . . . , k.

Remark 4.1. The asymptotic metric appears already, albeit in a different form, in [7, Section 9].
The setup we have just presented allows to prove easily that it is, indeed, the asymptotic metric
on M.

Let now

R = min
{
∥ym − yn∥, ∥xim − xin∥; i = 1, . . . , r − 1, m, n = 1, . . . , k, m ̸= n

}
.
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If R → ∞, then the spectral curves become close to unions of lines. The proof that this metric
is exponentially (in the parameter R) close to the metric on M proceeds as in [3, Theorem 9.1],
with minor modifications (the main one being that we can solve the real Nahm equation with
boundary conditions of M since R > 0 guarantees that the stability condition for the complex-
symplectic quotient of M̃ × T ∗Matk,k(C) (cf. Section 3) is satisfied).
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[16] Lindström U., Roček M., New hyper-Kähler metrics and new supermultiplets, Comm. Math. Phys. 115
(1988), 21–29.

[17] Malyshev A.N., Factorization of matrix polynomials, Sib. Math. J. 23 (1982), 399–408.

[18] Nakajima H., Lectures on Hilbert schemes of points on surfaces, Univ. Lecture Ser., Vol. 18, Amer. Math.
Soc., Providence, RI, 1999.

[19] Nekrasov N., Schwarz A., Instantons on noncommutative R4, and (2, 0) superconformal six-dimensional
theory, Comm. Math. Phys. 198 (1998), 689–703, arXiv:hep-th/9802068.

[20] Simpson C.T., Moduli of representations of the fundamental group of a smooth projective variety. I, Inst.
Hautes Études Sci. Publ. Math. 79 (1994), 47–129.

[21] Takayama Y., Bow varieties and ALF spaces, Math. Proc. Cambridge Philos. Soc. 158 (2015), 37–82.

http://dx.doi.org/10.1007/BF02098447
https://doi.org/10.1007/BF02392754
https://doi.org/10.1007/BF02392754
https://doi.org/10.1007/s002200050503
https://arxiv.org/abs/hep-th/9801092
https://doi.org/10.1112/jlms/jdm067
https://arxiv.org/abs/math.DG/0605309
https://doi.org/10.1016/j.geomphys.2008.11.010
https://arxiv.org/abs/0806.0510
http://dx.doi.org/10.4310/ATMP.2010.v14.n2.a7
https://arxiv.org/abs/0902.4724
https://doi.org/10.1007/s00220-011-1293-y
https://arxiv.org/abs/1007.0044
http://dx.doi.org/10.1007/BF01214583
https://arxiv.org/abs/2207.08705
http://dx.doi.org/10.1007/BF01211826
https://doi.org/10.1007/BF01214418
https://doi.org/10.1007/BF01214418
http://dx.doi.org/10.1007/BF01260389
http://dx.doi.org/10.1007/BF01221407
https://doi.org/10.1103/PhysRevD.54.1633
https://doi.org/10.1103/PhysRevD.54.1633
https://arxiv.org/abs/hep-th/9602167
https://doi.org/10.1007/BF01238851
https://doi.org/10.1007/BF00973497
https://doi.org/10.1090/ulect/018
https://doi.org/10.1090/ulect/018
https://doi.org/10.1007/s002200050490
https://arxiv.org/abs/hep-th/9802068
https://doi.org/10.1007/BF02698887
https://doi.org/10.1007/BF02698887
https://doi.org/10.1017/S0305004114000553

	1 Spectral curves, line bundles, and matrix polynomials
	1.1 Real structures
	1.2 Nahm's equations

	2 Factorisation of matrix polynomials
	3 Deformed instanton moduli spaces
	3.1 Complex structures
	3.2 Spectral curves
	3.3 Generalised Legendre transform

	4 Asymptotic metrics
	4.1 Building blocks
	4.2 Asymptotic coordinates and metric

	References

