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Abstract. We consider soliton solutions of the U(1) gauged Skyrme model with the pion
mass term. The domain of existence of gauged Skyrmions is restricted from above by
the value of the pion mass. Concentrating on the solutions of topological degree one, we
find that coupling to the electromagnetic field breaks the symmetry of the configurations,
the Skyrmions carrying both an electric charge and a magnetic flux, with an induced dipole
magnetic moment. The Skyrmions also possess an angular momentum, which is quantized in
the units of the electric charge. The mass of the gauged Skyrmions monotonically decreases
with increase of the gauge coupling.
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The study of the classical soliton solutions in field theory can be traced back to the pioneering
paper by Skyrme [74, 75] (for a review, see [19, 50, 51, 71]). The Skyrme model was introduced
in 1961 as a simple version of the nonlinear sigma model in 3+1 dimensions, which can be used
as an effective theory of atomic nuclei. It has been shown by Witten [81, 82] that the Skyrme
model can be derived from the 1/Nc expansion of the QCD low-energy effective Lagrangian.
The Skyrmions are topological solitons, in this framework the topological charge corresponding
to the physical baryon number.

The simplest (and original) version of the Skyrme model can be constructed for the SU(2)
valued chiral field. Then the model contains only three free parameters which set the length
and energy scales and the mass of the pion field, respectively. An appropriate fitting of these
parameters together with the assumption that the slowly rotating Skyrmion can be considered
as rigid body, allows to evaluate various quantities like, e.g., mean square radii, g-factors of nu-
cleons, and their magnetic moments [7]. It turns out that the agreement with the corresponding
experimental data is surprisingly better than what one would expect, being within reasonable
accuracy for the usual choice of the values of the parameters (for a review see [19, 84]).

However, the standard version of the Skyrme model has limited success, as there are several
problems with description of the nuclear masses. First, in order to describe the properties
of the pion excitations, the model must be supplemented with a potential [6, 9, 46]. Various
modifications of the model’s potential were considered, which typically do not much affect the
binding energy of the solitons, but may produce a dramatic change of the shape of Skyrmions
[13, 14, 24, 33, 34, 35, 36, 49].

The soliton solutions of the original Skyrme model do not attain the topological bound, which
yields a linear relation between the static energy of the Skyrmions and their topological charges,
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the interaction energy of the Skyrmions being about 10% of the mass of a single Skyrmion.
On the contrary, the corresponding experimental data for nuclear binding energies are much
lower, typically of the order of 1% of the mass of the nucleon. Since all binding energies vanish
as the model approaches the topological bound, which is often referred to as the BPS bound,
several modifications of the Skyrme model were proposed recently to improve the situation. The
most radical version of the BPS Skyrme theory is constructed via truncation of the model, it
contains only a sixth-order derivative term, which is the topological current density squared,
and a potential [1, 2]. It has been also suggested to consider a modification of the Skyrme model
which supports self-duality equations [27, 28, 29]. Another direction is related with extensions
of the Skyrme model via inclusion of higher-order derivative terms [1, 2, 3, 30, 37, 52, 53], with
various modifications of the potential and couplings.

On the other hand, addition of various terms simulating the contributions of scalar and vector
mesons, also can lower the binding energies of Skyrmions [5, 31, 38, 42, 56, 57, 69, 83]. In was
pointed out by Sutcliffe [77, 78, 79] that the BPS Skyrme model coupled to an infinite tower
of vector mesons can be derived from the 4 + 1 dimensional Yang–Mills theory via the Atiyah–
Manton construction [8]. This approach, inspired by the holographic construction of the Skyrme
model by Sakai and Sugimoto [62], provide a good approximation to the truncated BPS Skyrme
theory.

Another extension of the Skyrme model can be obtained via U(1) gauging of the Skyrme field
[59, 60]. This modification was originally motivated by construction of a semiclassical model of
Rubakov–Callan effect [20, 61], a process of monopole-catalyzed proton decay [21, 45]. It was
pointed out that the coupling to the electromagnetic field gives the Skyrmions the electric charge,
the electrostatic repulsion decreases the total energy of the configuration although the binding
energy of gauged Skyrmions in a minimal version of the Skyrme–Maxwell model increases [59].
Notably, the Skyrme–Maxwell theory also can be derived in a holographic model via an expansion
of a Yang–Mills field of calorons [23].

Let us remark that, however, the properties of the U(1) gauged Skyrmions have been better
understood in lower dimensions. As a (2 + 1)-dimensional analog of Skyrmions, the so-called
“baby Skyrmions” were proposed in a non-lineal O(3) sigma model with a fourth-order derivative
term in 2 + 1 dimensions [15, 16, 48]. This simplified theory emulates the conventional Skyrme
model in many respects. In particular, it was used to study dynamics of the solitons [48, 58] and
the isorotations of multisoliton configurations without any restrictions of symmetry [10, 39]. The
planar Skyrme–Maxwell model was considered in [32, 63, 70]. An interesting observation is that
in the strong coupling regime the magnetic flux coupled to the Skyrmion, is quantized, although
there is no topological reason of that. Furthermore, electrically charged planar Skyrmions were
studied is an extended model with a Chern–Simons term [54, 55, 64]. The gauged BPS baby-
Skyrme model was considered recently in [4, 22]. Interesting examples of gauged topological
solitons were also constructed in the O(3) sigma model [68], and in the U(1) gauged Faddeev–
Skyrme–Maxwell theory [65, 73].

Returning to the (usual) Skyrme model in 3 + 1 dimensions, it was pointed out that a small
contribution of the energy of electromagnetic interaction in the Skyrme model may contribute
to a tiny difference between the masses of the neutron and the proton (mn = 939.566 MeV,
mp = 938.272 MeV, respectively) [25, 26]. Usually, the proton-neutron mass difference in the
Skyrme model can be explained via some mechanism of the spin-isospin symmetry breaking
associated with violation of the spherical symmetry of the soliton, with possible contribution
of the electromagnetic interaction [44]. Another approach is related with isospin symmetry
breaking induced via coupling of the Skyrme field to vector mesons [43, 66]. This effect can be
modeled by adding to the Lagrangian an explicit symmetry breaking term [76] or via additional
derivative terms [80]. We argue below that the coupling to the electrostatic field alone will break
the symmetry of the Skyrme field, even in the sector of topological degree one.
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In this paper we consider axially symmetric parametrization of the U(1) gauged Skyrmion of
topological degree one. The existence of such solutions relies on the presence of the pion mass
potential term, both the gauge coupling and electrostatic potential are restricted from above by
the value of the pion mass.

Our results show that the coupling to the electromagnetic field may deform the configurations.
We shall construct explicit examples of electrically charged axially symmetric Skyrmions coupled
to a circular magnetic flux and investigate their properties.

This paper is organised as follows. In Section 1, we introduce the model, define both the
topological and electric charges and consider linearized perturbations of the fields. In Section 2,
we present the axially-symmetric ansatz for the Skyrme field and for the electromagnetic field.
In Section 3, we define the boundary conditions to be used in finding the numerical solutions.
In Section 4, we discuss the numerical results. Finally, in Section 5, we present our conclusions
and further remarks.

1 The model

The basic and original version of the Skyrme model in (3 + 1)-Minkowski spacetime is defined
by the Lagrangian [74, 75]

LSk =
f2π
16

Tr
(
∂µU∂

µU †)+ 1

32a20
Tr
([
∂µUU

†, ∂νUU
†]2), (1.1)

where the Skyrme field U(x) takes values in S3, the group manifold of SU(2). In the context
of application of the Skyrme model as a candidate model of nuclear physics, the parameter fπ
may be interpreted as the pion decay constant and a0 is a dimensionless constant which can
be defined from experimental data. The simple model (1.1) enjoys the chiral SU(2)L × SU(2)R
global internal symmetry which acts of the Skyrme field through the action U → gLUg

−1
R ,

∀gL, gR ∈ SU(2). In addition, the flat metric corresponds to ηµν = diag(1,−1,−1,−1), with the
Cartesian coordinates (x, y, z), while (r, θ, φ) are the spherical ones.

The Lagrangian of the Skyrme model, in its minimal form (1.1), has just two terms, a usual
sigma model term quadratic in derivatives and a Skyrme term quartic in derivatives. A potential
term can be included in the Skyrme model, the most common choice being the pion mass term [6]

V =
m2

πf
2
π

8
Tr(U − 1l).

Here the parameter mπ defines the asymptotic decay of the Skyrme field, its value being cali-
brated to fit the physical pion mass. The standard values of the parameters of model are fixed
to make contact with the experimental data for protons and pions [6]: fπ = 108 MeV, a0 = 4.84
and mπ = 138 MeV. The inclusion of the potential term stabilizes the model with respect to
isoratations, beyond the rigid-body approximation [11, 12].

The requirement of finiteness of energy leads to restriction that the matrix-valued field U
approaches the vacuum at all points at spatial infinity, U −−−→

r⃗→∞
1l. This boundary condition

compactifies the domain space R3 → S3 and breaks the full chiral SU(2)L × SU(2)R symmetry
to the diagonal subgroup. The Skyrme field becomes a map U : S3 7→ S3 and the corresponding
topological degree B can be written as

B = − 1

24π2

∫
d3xεijk Tr(RiRjRk). (1.2)

where Ri = (∂iU)U † is the su(2)-valued current. The charge (1.2) is interpreted as the baryon
number.
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One can construct a gauged version of the Skyrme model by gauging of the U(1) subgroup
of the SU(2) global symmetry, associated with the generator of its Cartan subalgebra, see [21,
59, 60]. The covariant derivative of the Skyrme field is defined as

DµU = ∂µU − ieAµ[Q,U ],

where the charge matrix is Q ≡ 1
2

(
1
3I+ τ3

)
= diag

(
2
3 ,−1

3

)
. Then the full Lagrangian of the U(1)

gauged Skyrme model can be written as

L =
f2π
16

Tr
(
DµUD

µU †)+ 1

32a20
Tr
([
DµUU

†, DνUU
†]2)

+
m2

πf
2
π

8
Tr(U − 1l)− 1

4
FµνFµν , (1.3)

while the electric charge is Qe =
∫
d3x∂iF i0. It is convenient to scale away the parameters fπ, a0

by introducing the energy and length scales fπ/(4a0) and 2/(a0fπ), respectively. The rescaled
pion mass parameter is m = 2mπ/(a0fπ) and we absorb the parameter a0 into the redefined
gauge potential, Aµ ≡ a0Aµ, Fµν ≡ a0Fµν with the gauge coupling g ≡ e/a0.

In terms of these units the Skyrme–Maxwell Lagrangian (1.3) becomes

L =
1

2
Tr
(
DµUD

µU †)+ 1

16
Tr
([
DµUU

†, DνUU
†]2)+m2Tr(U − 1l)− 1

2
FµνF

µν . (1.4)

In the static gauge the electric charge is now reduced to

Qe = − 1

a0

∫
d3x∂2i A0 = − 1

a0

∮
dS⃗ · ∇⃗A0. (1.5)

1.1 Linearized perturbations

The Skyrme field can be decomposed into the scalar meson field ϕ0 and the pion isotriplet ϕk
via

U = ϕ01l + i

3∑
k=1

ϕkτk, (1.6)

where τk denotes the triplet of usual Pauli matrices, and the field ϕa = (ϕ0, ϕk) is restricted to
the unit sphere, ϕa · ϕa = 1. In these component notations the Lagrangian for the U(1) gauged
Skyrme model (1.4) can then be written as

L = −1

2
FµνF

µν +Dµϕ
aDµϕa − 1

2

(
Dµϕ

aDµϕa
)2

+
1

2

(
Dµϕ

aDνϕ
a
)(
DµϕbDνϕb

)
− 2m2(1− ϕ0), (1.7)

where

Dµϕ
α = ∂µϕ

α − gAµεαβϕ
β, Dµϕ

A = ∂µϕ
A, α, β = 1, 2, A = 0, 3.

In other words, the gauged Skyrme model (1.7) is invariant with respect to the local U(1) gauge
transformations

U → eig
α
2
τ3Ue−ig α

2
τ3 , or ϕ1 + iϕ2 → e−igα(ϕ1 + iϕ2), Aµ → Aµ + ∂µα, (1.8)

where α is any real function of coordinates.
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The vacuum of (1.7) corresponds to U = 1l, Dµϕ
a = 0 and Fµν = 0. In the static gauge one

can consider the vacuum boundary conditions

U(∞) = 1l, A0(∞) = V, Ai(∞) = 0, (1.9)

where V is a real constant. Note that the asymptotic value of the electric potential A0(∞)
can be adjusted via residual U(1) degrees of freedom, in particular, the transformations (1.8)
with α = −V t allows us to set A0(∞) = 0. In such a gauge the components of the charged
pions field transform as ϕα → eiωtϕα, with ω = gV . In other words, in the Skyrme–Maxwell
model (1.3) the isorotations of the Skyrmions are associated with the time-dependent gauge
transformations [60]. Hereafter we will fix the boundary conditions (1.9) setting ω = 0.

The asymptotic expansion of the fields around the vacuum (1.9) yields Uex ∼ (1−v0)1l+ivkτk
and Aµ = aµ + V δ0µ, where vk and aµ are perturbative excitations of the triplet of pions
fields and the electromagnetic potential, respectively, while v0 is the field excitation of the
scalar component ϕ0. Since about the vacuum ϕ0 ∼ (1 − v0), ϕk ∼ vk, the constraint on
the components of the scalar field yields v2k = 1 − (1 − v0)

2. Thus, v2k ≈ 2v0 + O
(
v20
)
and

∂iv0 ≈ vk∂ivk+O
(
v20, v0∂iv0

)
and the fluctuations of the v0-field correspond to the second order

of expansion of the fields around the vacuum.

Hence, the linearized perturbations of the fields around the vacuum are

Uex = 1l + ivkτk +O
(
v2k
)
, Aµ = aµ + V δ0µ.

Note that the perturbations of the pion mass term correspond to the second order of expansion
of the fields vk, since 2(1 − ϕ0) ∼ 2v0 ∼ v2k + O

(
v3k
)
, and the linearized perturbation of the

term Dµϕ
a yields a leading contribution to the dynamics of the scalar excitations. Then the

asymptotic expansion of the Lagrangian (1.7) in the static gauge gives

Lpert = −
[
f2 + (∂ivk)

2 +m2v2k − g2V 2
(
v21 + v22

)]
,

where f2 = (∂ia0)
2−∂iaj(∂iaj−∂jai) is the contribution of the Maxwell term. The corresponding

linearized equation for the fluctuations of the scalar fields va is

∂2i va −
[
m2va − g2V 2(v1δa1 + v2δa2)

]
= 0.

Therefore, the effective mass of charged pions, associated with the excitations v± = 1√
2
(v1±v2),

is m±
eff =

√
m2 − g2V 2, while the mass of the uncharged component, associated with excitation

of the ϕ3 field, is slightly higher,1 m
(v3)
eff = m.

Localized massive scalar modes with exponentially decaying tail may exist if m > 0 and

|gV | ≤ m.

In the critical case |gV | = m the asymptotic of charged modes posses a dipole as a leading con-
tribution, similar to the neutral mode v3 in the massless limit. Thus, the pattern of interaction
between gauged Skyrmions becomes rather involved, it may include both long-range and dipole
forces, as well as short-range Yukawa interactions.

1This is not in especially good agreement with the experimental values of physical masses of pions, mπ± =
139.570 MeV, mπ0 = 134.977 MeV. However, we can expect that the quantum corrections to the masses of
excitations, which will also take into account a quartic pion interaction and contributions from vector mesons,
may improve the situation.
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1.2 Topological density and the stress-energy tensor

The U(1) gauge covariant generalization of the usual topological charge (1.2) associated to the
transformation (1.8) can be constructed by replacing ∂i → Di in the expression (1.2), i.e.,

Bg = − 1

24π2

∫
d3xεijk Tr

(
DiUU

−1DjUU
−1DkUU

−1
)
.

and then subtracting the functional Bmag =
∫
d3x ig

32π2 (εijkFjk) Tr
(
τ3, ∂iUU

−1
)
. Due the fact

that Bg and Bmag are invariant by the transformations (1.8), the same follows for the topological
charge of the Skyrme–Maxwell model, which is so defined by

Q = Bg −Bmag = B +

∫
d3x∂iΛi,

where

Λi = − ig

16π2
εijkAj Tr

(
{τ3, ∂kU}U−1

)
.

Thus, the topological charge of the Skyrme–Maxwell model is an usual winding number (1.2),
plus a surface term which only depends on the boundary conditions of the fields [23, 59]. In
the abelian Skyrme–Maxwell model (1.3) with the boundary conditions (1.9) the flux of Λi is
vanishing2 [59].

Therefore, the topological charge of the U(1) gauged Skyrmions is still defined by the Skyrme
map (1.2), i.e.,

Q = B.

In terms of the decomposition (1.6), the topological charge is expressed as

B =

∫
d3xq(r⃗) = − 1

12π2

∫
d3xεabcdεijkϕ

a∂iϕ
b∂jϕ

c∂kϕ
d,

Λi = − g

4π2
εijkAjεABϕA∂kϕB, (1.10)

where q(r⃗) is the topological charge density and the indices A,B = 0, 3.

The stress-energy tensor of the model (1.3) can be obtained by variation of the action with
respect to Minkowski metric ηµν , it gives

Tµν = Tµν
(M) + Tµν

(S),

where the electromagnetic contribution of the Maxwell term is

Tµν
(M) = −2FµσF ν

σ +
ηµν

2
FαβF

αβ,

and the stress-energy tensor of the U(1)-gauged Skyrmions is

Tµν
(S) = 2

[
DµϕaD

νϕa −
(
D[µϕaDα]ϕb

)(
D[νϕaDα]ϕb

)]
− ηµν

(
(Dαϕa)

2 − 1

2
(D[αϕaDβ]ϕb)

2 − 2m2(1− ϕ0)

)
. (1.11)

2However, in the SU(2) gauged Skyrme model, it can unwind the Skyrmion [17, 18]. This yields a simple
classical model of monopole catalysis of nucleon decay (the Rubakov–Callan effect).
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In the static gauge the Hamiltonian of the Skyrme–Maxwell model can be written as

Hstatic = H1 +H2, (1.12)

where H1 and H2 are non-negative terms given by

H1 =
1

2
|Fij |2 + |Diϕa|2 +

1

2
|D[iϕaDj]ϕb|2 + 2m2(1− ϕ0),

H2 = |∂iA0|2 + g2A2
0M

2
ϕ, with M2

ϕ ≡
[(
1 + |∂iϕA|2

)
|ϕα|2 +

1

4

∣∣∂i(|ϕA|2)∣∣2] .
where |∂iA0|2 = ∂iA0∂iA0, and so on. Clearly, the last term in H2 yields the Gauss law.
The function g2M2

ϕ behaves like a spatially dependent square mass for the electric potential,
which appears in the interior of the Skyrmion and vanishes asymptotically. The remaining gauge
degrees of freedom can be fixed imposing the Coulomb gauge, ∂iAi = 0. Then the static Maxwell
equations for the electric and magnetic potentials can be written as

∂2jA0 = g2M2
ϕA0, ∂2jAi = −gεαβϕβ

[
(1 +DjϕaDjϕa)Diϕα − (DjϕaDjϕα)Diϕa

]
.

2 Axially symmetric ansatz and effective Lagrangian

An obvious correspondence between the gauge transformations (1.8) and isorotations of the
components of the Skyrme field suggests that, in general, gauged Skyrmion of topological degree
one is not spherically symmetric [59]. Hence we consider a general axially symmetric ansatz (see
[12, 41, 47, 60]):

ϕ1 + iϕ2 = ψ1(r, θ)e
inφ, ϕ3 = ψ2(r, θ), ϕ0 = ψ3(r, θ), (2.1)

where n an integer (so-called “vorticity”) and the sigma-model constraint ψ2
1 + ψ2

2 + ψ2
3 = 1

is imposed. The gauge field is parameterized by the two potentials (magnetic and electric,
respectively)

A ≡ Aµdx
µ = Aφ(r, θ)dφ+A0(r, θ)dt. (2.2)

All five functions which parameterize the ansatz (2.1), (2.2) depend on the radial variable r and
the polar angle θ.

Substituting the axial ansatz (2.1), (2.2) into the Hamiltonian of the Skyrme–Maxwell model
(1.12) and into the Lagrangian (1.7), we obtain

L = −2π

∫
dθdrr2 sin θ

[
F− + L−

2 + L−
4 + 2m2(1− ψ3)

]
, (2.3)

H = 2π

∫
dθdrr2 sin θ

[
F+ + L+

2 + L+
4 + 2m2(1− ψ3)

]
, (2.4)

where

F∓ ≡ 1

r2 sin2 θ

(
A2

φ,r +
A2

φ,θ

r2

)
∓
(
A2

0,r +
A2

0,θ

r2

)
,

L∓
2 ≡ ψ2

a,r +
ψ2
a,θ

r2
+ ψ2

1

(
(n+ gAφ)

2

r2 sin2 θ
∓ g2A2

0

)
,

L∓
4 ≡ 1

r2
[
(ψ3,θψ2,r − ψ2,θψ3,r)

2 + (ψ2,θψ1,r − ψ1,θψ2,r)
2 + (ψ3,θψ1,r − ψ1,θψ3,r)

2
]

+ ψ2
1

(
(n+ gAφ)

2

r2 sin2 θ
∓ g2A2

0

)(
ψ2
a,r +

ψ2
a,θ

r2

)
.
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Here a comma denotes partial differentiation, i.e., Aφ,r ≡ ∂Aφ

∂r , etc. The corresponding static
field equations can be obtained from the variation of the effective Lagrangian (2.3) with respect
to the functions parametrizing the ansatz (2.1), (2.2). In particular, one finds the reduced
Maxwell equations for the magnetic and electric potentials:

∂2rAφ +
∂2θAφ − ∂θAφ cot θ

r2
= g(n+ gAφ)K, (2.5)

∂2i A0 = g2A0K, with K ≡ ψ2
1

[
1 + ψ2

a,r +
ψ2
a,θ

r2

]
. (2.6)

Further, the linearized equations for the pion fields for large r become

∂2rψ1 +
2∂rψ1

r
−
(
m2 − g2V 2

)
ψ1 = 0, ∂2rψ2 +

2∂rψ2

r
−m2ψ2 = 0,

where V = A0(r → ∞). Thus, the fields asymptotically decay as ψ1 ∼ e−
√

m2−g2V 2r and
ψ2 ∼ e−mr and localized solutions exist if |m| ≥ |gV |. Finally, substituting the ansatz (2.1) into
the Skyrme topological charge (1.2) gives B = n [72]. Hereafter we restrict our consideration to
the gauged Skyrmions of degree one setting n = 1.

The total mass-energy of the configuration is defined as the volume integral over all space of
the T00 component of the energy-momentum tensor, E =

∫
d3xT 0

0 , which also includes a purely
electromagnetic contribution. The total angular momentum of the gauged Skyrmion is defined
as J =

∫
d3xTφ

0 . Using the field equations and the definition of the topological charge (1.2), one
can show that the angular momentum of the gauged Skyrmion is classically quantized in units
set by the electric charge [60]. Indeed, using the axially symmetric ansatz (2.1) and (2.2) the
component T0φ of the stress-energy tensor (1.11) can be written as

T0φ = 2
[
∂iA0∂iAφ + gA0(n+ gAφ)K

]
,

where K is defined by (2.6). However, using the Euler-Lagrange equation for the electric poten-
tial (2.6) we can write T0φ as a total derivative, i.e.,

T0φ = 2

[
∂iA0∂iAφ +

(
n

g
+Aφ

)
∂2i A0

]
= 2∂i

[(
n

g
+Aφ

)
∂iA0

]
.

Therefore, making use of the equation (1.5), the expression for the angular momentum of the
gauged Skyrmion can be written as

J =

∫
d3xTφ

0 = −2

∮
∞
dS⃗ · ∇⃗A0

(
n

g
+Aφ

)
= −2n

g

∮
∞
dS⃗ · ∇⃗A0 = 2na0

Qe

g
,

where we take into account that n
g +Aφ → n

g , as r → ∞. Since the dimensions of the energy and
the length are given by fπ/(4a0) and 2/(fπa0), respectively, the dimension of angular momentum
is 1/

(
2a20
)
. Using the definition g = e/a0, we can write the angular momentum in the original

units of the U(1) gauged Skyrme model (1.3) as J = nQe

e .
In addition to M , J and Qe, another quantity of interest is the magnetic dipole moment µm,

which is computed from the far field expression of the magnetic potential, Aφ → µm

r sin2 θ +
O
(
r−2
)
.

Also, as a measure of the deformation degree of the configurations, we consider the ratio

ϵ =

√
⟨x2⟩√
⟨z2⟩

, with ⟨x2⟩ =
∫
d3xx2q(r⃗)∫
d3xq(r⃗)

, ⟨z2⟩ =
∫
d3xz2q(r⃗)∫
d3xq(r⃗)

, (2.7)

where ⟨|ρ|⟩ and ⟨|z|⟩ are the mean dimensions of the axially symmetric gauged Skyrmion, defined
as averages over the topological charge density q(r⃗) (1.10).
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3 Numerical scheme and the boundary conditions

To find numerical solutions of field equations we used the software package CADSOL based on
the Newton–Raphson algorithm [67]. The calculations are performed on an equidistant grid in
spherical coordinates r and θ. Typical grids we used have sizes 70×60. In our numerical scheme
we map the infinite interval of the variable r onto the compact radial coordinate x = r

1+r ∈ [0 : 1].

Estimated numerical errors are of order of 10−5.

The system of the field equations of the Skyrme–Maxwell model represents a set of five coupled
elliptic partial differential equations with mixed derivatives, to be solved numerically subject to
the appropriate boundary conditions. As usual, they follow from the condition of regularity of
the fields on the symmetry axis and symmetry requirements, as well as the condition of finiteness
of the energy of the system. Explicitly, we impose

ψ1

∣∣
r=0

= 0, ψ2

∣∣
r=0

= 0, ψ3

∣∣
r=0

= −1, Aφ

∣∣
r=0

= 0, ∂rA0

∣∣
r=0

= 0,

ψ1

∣∣
r=∞ = 0, ψ2

∣∣
r=∞ = 0, ψ3

∣∣
r=∞ = 1, Aφ

∣∣
r=∞ = 0, A0

∣∣
r=∞ = V,

and

ψ1

∣∣
θ=0,π

= 0, ∂θψ2

∣∣
θ=0,π

= 0, ∂θψ3

∣∣
θ=0,π

= 0, Aφ

∣∣
θ=0,π

= 0, ∂θA0

∣∣
θ=0,π

= 0.

The solutions also possess a reflection symmetry with respect to the equatorial plane, i.e.,

∂θψ1

∣∣
θ=π/2

= 0, ψ2

∣∣
θ=π/2

= 0, ∂θψ3

∣∣
θ=π/2

= 0, ∂θAφ

∣∣
θ=π/2

= 0, ∂θA0

∣∣
θ=π/2

= 0.

4 Numerical results

For a fixed value of the pion mass m = 1 the solutions of the gauged Skyrme model depend on
two continuous parameters, the values the gauge coupling g and the electric potential at infinity
A0(∞) = V . Localized solutions of the model (1.7) exist as |gV | ≤ m = 1.

In our approach, we have first considered a computation of the ungauged B = 1 spherically
symmetric Skyrmion (with g = V = 0), which is used as an input for following numerical calcu-
lations. Then both g and V are increased in small steps. Setting V = 0 and increasing the gauge
coupling constant g yields a branch of gauged static Skyrmions coupled to a toroidal magnetic
flux and A0 ≡ 0. Notably, there is no purely electrically charged solutions, all configurations
being equipped with a toroidal magnetic flux which induces a dipole magnetic moment of the
gauged Skyrmion.

First, we confirm an observation [59] that for any non-zero value of the gauge coupling g the
spherical symmetry of the B = 1 ungauged Skyrmion is broken, the U(1) gauged Skyrmions
are axially symmetric. In Figure 1, we exhibited some typical examples of the isosurfaces of
the energy density and the angular momentum density at V = 0.1 and m = 1 and some set of
values of the gauge coupling. The deformation of the Skyrmion is maximal as V becomes very
small while the coupling constant g increases within allowed range, see Figure 1. In such a limit,
the electrostatic energy is at least two orders of magnitude smaller than the magnetic energy,
as shown in Figure 4 (right upper plot). The total energy of the gauged Skyrmion decreases
as g increases, since the toroidal magnetic flux squeezes the configuration towards the symmetry
axis.

For relatively small values of the parameter V , the energy of electrostatic repulsion remains
mach smaller that the magnetic energy of the gauged Skyrmion. The Figure 2 exhibits the pro-
files in the (xy)-plane of the ϕ0-component of the Skyrme field, the electrostatic potential A0 and
of the magnetic potential Aφ, for V = 0.1 and several values of the gauge coupling constant g.



10 L.R. Livramento, E. Radu and Y. Shnir

Solitons in the Gauged Skyrme–Maxwell Model 11

Figure 1. Isosurfaces of the total energy density distributions (top row) and the angular momentum

density (bottom row) of the gauged B = 1 Skyrmion for g = 0.1 (left figures), g = 2 (middle figures) and

g = 10 (right figures) at V = 0.1 and m = 1.
⟨eng-isosurfaces⟩

of the magnetic potential Aφ, for V = 0.1 and several values of the gauge coupling constant

g. Physically, the deformation of the Skyrmion is related with the occurrence of the circular

magnetic flux in the equatorial plane. Its position is associated with a minimum of the magnetic

potential Aφ. As the gauge coupling increases within its allowed range, the electrostatic potential

A0 in some central region decreases, approaching values close to zero for large enough g, see

Fig. 2, upper right plot.

At the same time, in the strong coupling regime, the magnetic potential develops a sharp

plateau in the equatorial plane, where gAφ + n ∼ 0 and A0 ∼ 0, see Fig. 2 (with n the winding

of the Skyrme field in the ansatz (2.1)). Clearly, within this domain, the electromagnetic fields

described by the Maxwell equations (2.5),(2.6) are massless. Moreover, the electric field is pushed

out of the core of the configurations, in this limit the electric charge density distribution is almost

spherically symmetric. The plateau further extends to some region as the gauge coupling grows

up to the maximal possible value. This pattern resembles the Meissner effect: at some critical

value of the gauge coupling gcr ≈ 3.3 the magnetic field is expelled from the core and the circular

magnetic flux becomes quantized in units of the topological winging n.

It is interesting to remark that this situation is similar to that found for the U(1) gauged

Hopfions in the Faddeev–Skyrme–Maxwell model [73] and for the gauged planar Skyrmions
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Figure 2. Gauged B = 1 Skyrmion: Profile functions of the component of the Skyrme field ϕ0, the

electric potential A0 and the magnetic potential Aφ of some illustrative solutions at the symmetry plane

θ = π/2 are plotted as functions of the radial coordinate for some set of values of g at V = 0.1.

Physically, the deformation of the Skyrmion is related with the occurrence of the circular mag-
netic flux in the equatorial plane. Its position is associated with a minimum of the magnetic
potential Aφ. As the gauge coupling increases within its allowed range, the electrostatic poten-
tial A0 in some central region decreases, approaching values close to zero for large enough g, see
Figure 2, upper right plot.
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the value of the electric potential A0 at the center of the Skyrmion (lower right) are plotted as functions

of the gauge coupling constant g for some set of values of the parameter V at m = 1.

At the same time, in the strong coupling regime, the magnetic potential develops a sharp
plateau in the equatorial plane, where gAφ+n ∼ 0 and A0 ∼ 0, see Figure 2 (with n the winding
of the Skyrme field in the ansatz (2.1)). Clearly, within this domain, the electromagnetic fields
described by the Maxwell equations (2.5), (2.6) are massless. Moreover, the electric field is
pushed out of the core of the configurations, in this limit the electric charge density distribution
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is almost spherically symmetric. The plateau further extends to some region as the gauge
coupling grows up to the maximal possible value. This pattern resembles the Meissner effect: at
some critical value of the gauge coupling gcr ≈ 3.3 the magnetic field is expelled from the core
and the circular magnetic flux becomes quantized in units of the topological winding n.

It is interesting to remark that this situation is similar to that found for the U(1) gauged
Hopfions in the Faddeev–Skyrme–Maxwell model [73] and for the gauged planar Skyrmions
[32, 63, 70] and gauged O(3) lumps [68]. In the limit V = 0 the electric field is vanishing and
the gauge coupling g may increase indefinitely. Effectively, this corresponds to the truncation
of the system to the case of the abelian Higgs model. Then the linear string of magnetic flux
generated by massless scalar excitations passes through the center of the soliton core, which is
strongly deformed by the “supercurrent” located in the equatorial plane.

The electrostatic energy dominates when we set g ≪ 1 and increase the parameter V up to
its maximal possible value. The angular momentum of the configuration rapidly increases, as
displayed in Figure 5, middle left plot. The electrostatic repulsion slightly increases the size of
the core of the Skyrmion, see Figure 3. However, this effect is not so strong, as it is in the case
of dominance of the magnetic energy.

In Figure 4, we show the ratio between the electromagnetic and total energy of gauged
Skyrmion as defined by the functional (2.4), as a function of the gauge coupling g (upper
left plot) for several values of V . For all considered range of parameters, the contribution of
electromagnetic energy to E is less than 10 %, this ratio being maximal for V ∼ 0.5 and g ∼ 2.

Also, as the parameter V remains smaller than 2, the electrostatic energy of the configuration
is smaller than the magnetic energy, see Figure 5, upper right plot. However, the energy stored
in the electric field becomes more significant as V increases and the gauge coupling g remains
relatively small. For any g, both the magnetic dipole moment and the deformation of the
solutions increase with V , see Figure 5 (bottom panels). Moreover, note that for fixed V , the
behaviour of µm as a function of g is non-monotonic.

Notably, both the energy and the angular momentum of gauged Skyrmion remain finite as
|gV | → m. This is similar to the situation which was observed for isospinning solitons in 3 + 1
dimensions [11, 12, 40]. On the contrary, in 2 + 1 dimensions both the energy and the angular
momentum of isospining Skyrmions diverge [10, 39].

Considering the dependency of the angular momentum and electric charge of the gauged
Skyrmion, we observe that, for a fixed value of the electrostatic parameter V , both quantities
become maximal at some value of the gauge coupling g. Further increase of the coupling leads
to decrease of the angular momentum J , see Figure 4, lower left plot.

We can now attempt to apply our results to the physical properties of baryons. A standard
approach is to make use of the Adkins–Nappi–Witten calibration setting the physical values of
the Skyrme parameters as fπ = 129 MeV and a0 = 5.45 [7]. The pion mass parameter is taken
as m = 0.526, other calibrations are also suggested, see, e.g., [50].

Considering possible interpretation of gauged Skyrmions as baryons, we have to take into
account that in natural units ℏ = c = 1 the physical charge of a proton is Q2

e = 4πα (see equa-
tion (1.5)), where α = 1/137 is the fine structure constant. This condition yields a continuous
set of values of parameters (g, V ), see unset plot it Figure 6.

We have shown above that the gauged Skyrmion can lower its classical mass by interacting
with the electromagnetic field. Since, naively, a neutron could be indentified with the ungauged
g = 0 Skyrmion, one can attempt to evaluate the corresponding mass splitting and compare
it with corresponding experimental data. However, real nuclei have non-zero magnetic dipole
moments, therefore it will be consistent to consider a neutron as an electrically neutral gauged
Skyrmion with V = 0 and a non-vanishing coupling g.

Our numerical evaluations of the ratio of energies of charged and uncharged Skyrmions, which
can be identified as a proton and a neutron, respectively, show that, for a given value of the
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Figure 5. Gauged B = 1 Skyrmion: The ratio of the electromagnetic and total energies (upper left),

the ratio of the electric and magnetic energies (upper right), the total angular momentum (middle left),

the value of the electric potential A0 at the center of the Skyrmion (middle right), the values of the

dipole magnetic moment (bottom left) and the deformation parameter ϵ (2.7) (bottom right) are plotted

as functions of the parameter V for some set of values of the gauge coupling constant g at m = 1.

gauge coupling g, the energy of a charged soliton is always higher, see Figure 6. Clearly, this is
not in a good agreement with the experimental data, the proton is a bit lighter than a neutron.
Subtraction of the contribution of electromagnetic energy does not change the situation, a proton
and a neutron cannot be described in the gauged Skyrme model with the same set of parameters.
Related evaluation of the ratio of magnetic moments of the Qe = 1 (in units of

√
4πα) and

Qe = 0 states with fixed value of g leads to an even worse disagreement, see Figure 6. We can
conclude that more accurate description of nuclei in the Skyrme model can be possible only
via appropriate adjustment of the parameters of the model, even for the states with baryon
charge B = 1.
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ratio of the corresponding dipole magnetic moments are plotted as functions of the gauge coupling g at

m = 0.526. The curve of dependency g(V ) for Qe = 1 is displayed in the inset plot.

5 Conclusions

In this paper, we revisited the U(1) gauged Skyrme–Maxwell model in 3 + 1 dimensions and
studied the solutions of topological degree one. We have shown that their domain of existence is
restricted by the value of the pion mass parameter m, such that by analogy with the isospinning
Skyrmions [12], the gauged Skyrmions do not exist in the model without a potential term. We
confirm the observation of paper [59] that the coupling to the electromagnetic field violates the
spherical symmetry of the configuration and induces a dipole magnetic moment of the Skyrmion,
which carries both an electric charge and a (local) magnetic flux (but not a net one).

We find that gauged Skyrmions exist for all range of values of parameters of the model
restricted by the condition |gV | ≤ m. The upper critical value m yields two limiting cases,
|g| ≫ |V | (magnetic limit) and |V | ≫ |g| (electrostatic limit), respectively. The gauged Skyrmion
is strongly deformed in the magnetic limit, it becomes extremely elongated and stretched out by
the circular magnetic flux. In the opposite limit the repulsive electrostatic interaction increases
the size of the interior region of the soliton, however the deformation of the Skyrmion if not so
strong as in the magnetic limit.

Our results show that, although the mass of a gauged Skyrmion can be decreased by interac-
tion with the electromagnetic field, the proton-neutron mass difference cannot be described in
the U(1) gauged Skyrme model with the same fixed set of parameters.

Certainly, this is a first step toward complete investigation of the gauged Skyrmions, this
study should be extended to the solutions of higher degrees and different geometry. One can
expect the electrostatic repulsion and generation of magnetic fluxes may significantly affect the
bounded configurations of gauged Skyrmions.
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