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Abstract. We prove an asymptotic formula for the recurrence coefficients of orthogonal

polynomials with orthogonality measure log(ﬁ)dx on (—1,1). The asymptotic formula

confirms a special case of a conjecture by Magnus and extends earlier results by Conway and
one of the authors. The proof relies on the Riemann—Hilbert method. The main difficulty in
applying the method to the problem at hand is the lack of an appropriate local parametrix
near the logarithmic singularity at x = +1.

Key words: orthogonal polynomials; Riemann—Hilbert problems; recurrence coefficients;
steepest descent method

2020 Mathematics Subject Classification: 42C05; 34M50; 45E05; 45M05

1 Introduction

1.1 Background

In this paper, we study orthogonal polynomials with orthogonality measure w(z)dz given by

w(z)dz = log (12:[;) dr, we[-1,1). (1.1)

Note that w(x) has a logarithmic singularity for x — +1 and a simple zero at x = —1, see
Figure 1. Denote by {p,}72, the corresponding orthonormal polynomials,

1
/ P ()P (z)w(x)dx = S, m,n € N.
1

The polynomials {p,}>°, satisfy the three terms recurrence relation given by

$pn($) = bnpn-l—l(x) + anpn(w) + bn—lpn—l(x)v n>1,

where a,, € R and b, > 0. Note that our notation for a,, b, is the same as in [4, 5] but
opposite to the one in [12, 15]. Listed below are the first few recurrence coefficients for the
weight function w. The large n asymptotics of the recurrence coefficients a,,, b, are the main
focus of the present work. To be precise we will prove the following result.

This paper is a contribution to the Special Issue on Evolution Equations, Exactly Solvable Mod-
els and Random Matrices in honor of Alexander Its’ 70th birthday. The full collection is available at
https://www.emis.de/journals/SIGMA /Its.html
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Figure 1. Plot of the weight function w(z).

n 0 1 2 3 4
1 1 263 1995511 436364251361 _
On | 3 14 9058 ~ 0-029 126347454 ~ 0-016 1388656767350~ 0-010
p2 | 7 | 2588 | 7uisozso .| 1329390823424 o | 39672481023009631594375 .-
n | 36 | 11025 | 293026300 ~ - 5405644687527 ~ O- 160381475127054568640484 ~ 0-

Table 1. First recurrence coefficients for the weight function w.

Theorem 1.1. The recurrence coefficients {a,}52, {bn}>2 of the orthogonal polynomials with
orthogonality measure w(z)dz, with w given in (1.1), satisfy

1 3 1
an=—5———"—+0( ——u— as mn — 00 1.2
" 4n? 16n2log’n <n2 log® n) (12)
and
1 1 3 1
b, == — - +0 as n — 0. 1.3
"2 16n?  32n2logn <n2 log® n) (13

Comparing (1.2) and (1.3) with Table 1, we see that, already for n = 4, a,, and b2 are close
to their limiting values, 0 and % respectively, up to the second digit.

Theorem 1.1 is a special case of a conjecture by Magnus, who analyzed in [15] a few examples
of continuous weight functions with logarithmic singularities at the edge and in the bulk of the
support, among others — log(t) with ¢ € (0, 1] which is equivalent to (1.1) after the affine change
of variables z = 1 — 2t (see the remark below). More generally, for the case of a logarithmic
singularity at the edge of the support, Magnus considered wys(z), now supported, without loss
of generality, on x € (—1, 1), satisfying the following two conditions:

e wy(z)/(1 + x)? has a positive finite limit for z — —1,

o wy(z)/[—(1 —2)*log(l — )] has a positive finite limit for z — +1,

where o, > —1. He conjectured based on numerical evidence that the recurrence coeffi-
cients apr,, and by, of the corresponding orthogonal polynomials satisfy for n — oo,

B% — o? 2B 2C
3 T3 + 2
4n n“logn  nZlog®n

+o((n logn)_2) (1.4)

ap.n =
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and

1 o?2+p2-1 B C
bim = = — 2 logn)~%). 1.
M, 2 8n?2 + n2logn + n2log®n +o((nlogn)™) (15)

Additionally, it was conjectured that for the special case wy = w from (1.1), B = 0 and
C= —% holds, which is confirmed by Theorem 1.1. Note that for w, we have a = 0 and 8 = 1.

Remark 1.2. For a general orthogonality measure du(z) supported on = € (—1, 1) with recur-
rence coefficients A,,, By, the orthogonality measure defined by dzu(t) := du(1—2t) with ¢t € (0,1)
leads to recurrence coefficients given by

A, =

B, =",

An 5 Bn
27 2

N

1.2 State of the art

Earlier work on Magnus’ conjecture was done by Conway and one of the authors in [4] using
Riemann-Hilbert (RH) techniques. The weight function considered therein had the form

2k
1—=x

wy(x) = log ( ) . wel[-1,1), k>1 (1.6)

The authors prove the conjecture for this special case corresponding to o = 8 = 0, and also

obtain B = 0 and C = —3—32, further suggesting that these constants do not depend on the

behaviour of the weight function away from the logarithmic singularity.

Theorem 1.3 ([4]). The recurrence coefficients {aﬁl’“)}fzo, {b%k)}zozo of the orthogonal polyno-
mials with orthogonality measure wy(x)dx, with wy given in (1.6), satisfy

3 1
a;’“>:—2+0(3> as n — oo
16n2log” n n2log”n

and

as mn — oQ.

w_L Lt 3 _
bn” = 2t 16n2  32n2log’n O <n2 log3n>

Note that for k& > 1, the weight function wy(x) has a positive finite value at z = —1, while
limy 14 wy(z) = w(x) for € [~1,1). Hence, we see different 1/n2-terms in Theorem 1.1
compared to Theorem 1.3, consistent with the conjectural (1.4) and (1.5). Also observe that
terms of order 1/ (n2 log? n) are identical in both theorems, in particular they do not depend on k.
These terms can be interpreted as contributions from the logarithmic singularity at x = +1,
which does not depend on k& > 1.

For k < 1, the weight function wy would have a simple zero in the interior of (—1,1) and
the uniqueness of the corresponding polynomials is no longer guaranteed. We will not deal with
this case in the present paper.

The main difficulty encountered in [4] was the lack of a known parametrix in the vicinity
of the logarithmic singularity, a key ingredient in the usual nonlinear steepest descent analysis.
Hence, the authors relied instead on a technically involved comparison to the Legendre problem
with weight function wreg(x) = 1, © € (—1,1). Surprisingly, their argument could not be
generalized in an obvious way to the weight function w = limg_,; wg, due to the appearance
of a simple zero of w at x = —1. While, an analogous comparison to the Jacobi problem with
weight function wj..(z) = 1 4+ = (or something similar) seems suggestive, significant challenges
remain due to the presence of the simple zero. In particular, the crucial Theorem 4.7 in [4]
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requires a different proof in this case: now one needs to control the behaviour of the Cauchy
operator acting on spaces with Muckenhoupt weights.

Orthogonal polynomials with logarithmic weight functions, have applications to both pure
mathematics and physics. In particular, apart from logarithmic singularities, these weight func-
tions also tend to have zeros (see [15, Section 8] and [20]). Such applications motivate us in
the present paper to extend the results in [4] to the weight function w in (1.1), having both
a logarithmic singularity and a simple zero.

Remark 1.4. One might think, a priori, that the vanishing of a weight w(z) at a point should
not give rise to serious technical difficulties. Naively, it would appear that only singularities in
the weight, and not zeros, should present obstacles. In this regard, we recall the hope and the
prophecy of Lenard’s 1972 paper [13]:

“It is the author’s hope that a rigorous analysis will someday carry the results to the
point where the true role of the zeros of the generating function will be understood.
When that day comes a capstone will have been put on a beautiful edifice to whose
construction many contributed and whose foundations lie in the studies of Gabor
Szegd half a century ago”.

1.3 Relation of the present work to [4]

Significant parts of the analysis performed in the present paper are based on the analysis in-
troduced in [4]. Hence, we will repeatedly refer to that paper for proofs of certain statements.
This is justified by the fact that the majority of estimates found in [4] do not depend on the
distinction k£ > 1 and k = 1 in (1.6). Thus, the proofs of many of the results will also hold for the
weight function (1.1) that we are interested in. There are however certain propositions which
have their analogs in [4], but still deserve a separate proof due to some minor differences. These
are Proposition 2.7 which is the analog of Proposition 2.5 in [4], and Proposition 7.5 which is the
analog of Propositions 5.3 and 5.4 in [4]. In the case of Proposition 2.7, it is necessary to prove
a slightly more general result than Proposition 2.5 in [4]. Meanwhile, Proposition 6.5 contains
an application of Proposition 2.7 in its more general form, and uses different RH solutions than
Propositions 5.3 and 5.4 in [4]. Both results are proven in Appendix A.

Finally, let us reiterate that the analog of Theorem 4.7 in [4] concerning the uniform bounded-
ness of the inverse of a certain singular integral operator requires a completely different approach
to the case kK = 1, due to the appearance of a simple zero in the weight function w at x = —1.
This necessitates the construction of an appropriate local parametrix in the vicinity of the zero,
which is then used to invert the RH problem locally. While the local parametrix is well-known
and can be expressed in terms of Bessel functions, see [12, Section 6], its appearance significantly
complicates the analysis that follows. Crucially, the method of proving Theorem 4.7 in [4] is
no longer sufficient in this new setting. In fact, the material found in Sections 4-6 is entirely
devoted to formulating and proving Theorems 6.1 and 6.2, which are the analogs of Theorem 4.7
in [4]. Here, a key role is played by Proposition 4.6, which in a sense localizes the effect that
the logarithmic singularity has on the uniform invertibility of the associated singular integral
operator. Interestingly, Theorem 4.7 in [4] itself plays a crucial role in the proofs of these results.
Sections 4-6 contain the main novelties of the present work.

1.4 Outline of the paper

In the following, we will briefly summarize the content of each section.

e In Section 2, we introduce two auxiliary weight functions, the model and the Legendre
weight function, together with related quantities, which will be relevant for the RH anal-
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ysis. We also list certain estimates and asymptotic results which will be used in later
sections.

e In Section 3, we introduce the Fokas—Its—Kitaev RH problem for orthogonal polynomials.
We proceed to perform the necessary conjugation and deformation steps to arrive at three
distinct RH problems amenable to asymptotics analysis: the logarithmic, model and Leg-
endre RH problems. We then state the relation between solutions of these RH problems
and the corresponding recurrence coefficients.

e In Section 4, we derive an explicit formula for the Legendre resolvent, that is, the inverse
of a singular integral operator associated to the Legendre RH problem. This formula is
not used in [4].

e In Section 5, we perform a detailed analysis of the known local parametrices for the RH
problem near the point —1, which can be constructed explicitly using Bessel functions,
as in [12, Section 6]. This leads, in particular, to uniform asymptotics on their growth
as n — oo.

e In Section 6, we introduce modified versions of the three previously mentioned RH problems
using the appropriate local parametrices from Section 3 around z = —1. These modified
RH problems are better suited when comparing their associated resolvents. Thus, by
showing the uniform invertibility of the modified Legendre resolvent, we obtain the uniform
invertibility of the modified logarithmic and model resolvents, thereby proving an analog
of Theorem 4.7 in [4].

e In Section 7, we derive an asymptotic formula expressing the difference between the recur-
rence coefficients for the logarithmic weight and the recurrence coefficients for the model
weight. The aforementioned uniform invertibility of the associated resolvents plays a cru-
cial part in this argument. As the asymptotics of the recurrence coefficients for the model
weight is known, Theorem 1.1 follows.

e In Appendix A, we provide some proofs of more technical nature that are omitted from
the main text.

It is also worth mentioning that a common step in the RH analysis — the construction of a local
parametrix — is not performed in the vicinity of the logarithmic singularity at +1. The reason is,
quite simply, as in [4], that we were unable to find the local parametrix in the presence of such
a singularity. Similar instances in which the local parametrix was not constructed explicitly can
be found in [6, Section 5] and [11], where non-constructive Fredholm methods were used instead.
For a discussion of RH problems without explicitly solvable local parametrices, see [19].

1.5 Notation

Throughout this paper, all contours that arise are finite unions of smooth and oriented arcs,
with a finite number of points of (self)intersection. More details can be found in the book [3]
which treats a more general class of so-called Carleson contours.

Let I' C C be such a contour and m an analytic function on C\ I'. For s € ', we will denote
by m4(s) the limit of m(z) as z — s+, provided this limit exists. The notation z — s+ denotes
a nontangential limit in C\ T to s € I', from the +, resp. —, side of the contour, see Figure 2.
Recall that as I' is taken to be oriented, this notion is well-defined away from the points of
intersection. Everything generalizes to matrix-valued functions m in a straightforward manner.

We will denote by C4 the upper, resp. lower open half plane of C and use the notation C for
the Riemann sphere C U {oo}. Unless specified otherwise, z1/2, z € C\ (—oc,0) will denote the
principal branch of the square root.
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Figure 2. A contour with a point of intersection.

For two sequences A,, and B,, in a normed space, we will use the notation A, < B, if there
exists a ¢ > 0 and N € Nsuch that ||A,| < ¢||By,| for alln > N. Equivalently, we will sometimes
use the notation A, = O(B;). A similar definition holds if n is substituted for a continuous
variable, e.g., f(z) < g(x) (equivalently f(z) = O(g(x))) for x — x¢ means || f(z)] < ¢llg(x)]|
for some ¢ > 0 and all z satisfying |z — z¢| < e.

Finally, for a d x d dimensional measurable matrix-valued function f(s), s € T', we write
f € LP(X), with p € [1,00), if and only if

d >
| fllery == </F Z |fz‘j(8)|p\d3> < 00,

3,7=1

where |ds| denotes the arc length measure of I', and f € L*(T") if and only if

7y = max {llfigllery} < o0,
In particular, || f[/z2) denotes the L2-norm on T of the Hilbert-Schmidt norm of f(s). Gener-
alizations to weighted LP-spaces are introduced in Section 4.

2 Auxiliary functions used in the RH analysis

2.1 The model and Legendre weight functions

To obtain the recurrence coefficients related to the weight function w, we will have to compare
with a different model weight function given by

B(x) = (L+0)e®,  we[-1,1]

where dy € R is determined via (2.7). As we will see, the choice of dy gives an error estimate
in (2.13) of order O(|1 + 2|3/2), rather that O(|1 + z[*/?), as in part 3 of Proposition 2.3 in [4].
This extra decay as z — —1 considerably simplifies the proof of the key Lemma 7.6.

Note that w can be analytically extended to an entire function. Moreover, w(x) has a simple
zero at © = —1 and a finite positive value at x = +1. As it lies in the class of weight func-
tions considered in [12], the corresponding RH analysis is well understood. Observe that our
requirements on w do not specify it uniquely, hence one could have performed the comparison
argument with other choices of model weight functions as well.

As we will heavily rely on the arguments found in [4], we will also introduce the Legendre
weight function

w(z) =1, z e [-1,1].

As shown in [4, Theorem 4.7] (see also Theorem 4.2), the weight w gives rise to a singular
integral operator defined in Section 4, with an inverse that is uniformly bounded as n — oco.



Recurrence Coefficients for Orthogonal Polynomials with a Logarithmic Weight Function 7

However, w does not approximate the logarithmic weight function w for x — —1, due to the
presence of a simple zero at that point. In contrast, the weight w approximates the logarithmic
weight function w for x — —1, however for @ the analogous singular integral operator is not
invertible in L? (see property (iv) in RH problem (see Section 3.4) showing that the solution will
not be square integrable). This is the essential technical difficulty that we face in this paper.

2.2 The Szeg6 functions

To perform the nonlinear steepest descent analysis, we need to define the Szegd function F'
associated to the logarithmic weight function w:

1/2
F(2) = exp <<22 —1) 7 [ logu(s) ds > 2eC\[-1,1]. (2.1)

2 _1V1—522—s

Here (22 - 1)1/ % is uniquely specified as an analytic function having a branch cut along (—1,1),

and (z — 1) 2 < 2 for 2 — oc. Analogously, we define F to be the Szegd function associated
to the model weight function w:

2 -~
~ o (2% - 1)1 logw(s) ds
F(z)-exp( 5 Vi oios) zeC\[-1,1].

Note that as logw = 0, the Szegd function for the Legendre weight w is trivial: F=1.
The Szeg6 functions F', F satisfy the following properties which are crucial for the RH
analysis.

Proposition 2.1. The functions F,F: C \ [=1,1] — C satisfy the following properties:
(7
(i

(vi1

(i

) F(2), F(2) are analytic for z € C\ [=1,1], with F(z) = F(z) and F(z) = F(z),
) iMoo F(2) = Fao € Ry, lim,_yo0 F(2) = Foo € Ry,

) Fi(@)F-(2) = w(x), Fi(2)F-(z) = @(x) for x € [-1,1),

0) [Fe(@)P = w(@), |Fe(@)]” = @) for z € [-1,1).

Note that at = —1, the limits of F(z), ﬁ(z) are equal to 0. In particular, they are
independent of the path z — —1, and we write Fi.(—1) = lim,,_; F((2) = limg_; Fi(x) =0
and F\i(—l) =lim,_,_1 ﬁ(z) = lim, |4 fi (x) = 0 in this case. We also introduce the function ¢
given by (see [4, Proposition 2.1])

d(z)=z+ (2 -1)"%  zecC\[-1,1].

With this choice, we see that ¢ defines a biholomorphism between C U {oo} \ [—1,1] and
CU{oo} \ {z: |z| < 1}, mapping oo to itself. In particular, the function ¢ satisfies

lp(2)] > 1, ze€C\[-1,1], (2.2)

and
1
¢(z):22+0<z> as z — o0.

Moreover, the inequality (2.2) holds uniformly away from the interval [—1,1], while on the
interval we have

lim |¢(2)| = zel-1,1]. (2.3)

Z—T
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Additionally, as ¢(Z) = ¢(z) for z € C\ [—1, 1], it follows from (2.3) that
¢+(x)¢_(a:) =1, T € (_1’ ]-)
Near the points z = £1, we have

p(2) =1+V20=-D"2+0(z-1)), 22— +1,

2.4
$(z) = —1£V2i(z+ D2+ 0(|]z + 1)), z— -1, ze€Cy. (24)

For the subsequent analysis, it is necessary to understand the behaviour of the functions

%2(2), %z(z) near the points z = +1, as these functions show up in the jump matrices of the

corresponding RH problems, see Section 3.

Proposition 2.2. The function %2: C\ [-1,00) — C satisfies

F? i w2 1
w =T o T i O <log3<z— 1)) (25)

uniformly for any path z — +1 in C\ [-1,00), where the — is taken for Im(z) > 0 and +
for Im(z) < 0, and also

F2

—(2) = ¢(x) " exp{~ (= = 1)"*(do + O(|z + 1))}, (2.6)

uniformly for any path z — —1 in C\ [—1, 00), where

do = (2.7)

1 /log(w(<>/<1+<>) d
omi ), (-2 (+1

and v is an oriented contour originating from the point ( = 1, going anticlockwise around the
interval [—1,1] and ending again at the point ( = 1 as depicted in Figure 3.

Y
% 2

-1 +1

Figure 3. The contour 7 encircling the point z.

Proof. For the proof of statement (2.5), see [4, Proposition A.1]. Statement (2.6) is a special
case of [12, Lemma 6.6], but with an additional restriction on the choice of the contour =y
stemming from the logarithmic singularity of w. Due to this technicality, we repeat the proof
found therein.

First, let us note that if F} is the Szegd function of a weight w; and Fy the Szegd function
of a weight ws, then the Szegd function Fjo of the product wiws is given by the product
of the individual Szegé functions: Fis = F}Fs. As the Szegd function of a Jacobi weight
we () = (1 — 2)*(1 + x)? with o, 8 > —1, is given by (see [12, Remark 5.1])

(z = 1)*%(z +1)P/?

Fa,ﬂ(z) = ¢( )M )
z) 2
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we can conclude that
(z+1)1/2
P(2)1/2

(2= 1) 11 log(w(s)/(1+s)) ds
X exp ( 2 /1 V1—s2 z—3s

F(z) =

), zeC\[-1,1]. (2.8)

Again, (z + 1)%/2 and ¢(2)'/? denote the principal branches (a simple calculation shows that
¢(z) & (—o0,—1] for z € C\ (—o0,1]). Moreover, for z < —1, (¢(x)1/2)+ = —(¢(m)1/2)_
as ¢(z) ~ 2z for z — co. Thus (z 4+ 1)/2/¢(2)/? is indeed analytic in C\ [-1,1].

To analyze the argument of the exponential in (2.8), we choose for a fixed z € C\ [-1,1]
a contour v as shown in Figure 3. Then a residue calculation shows that

1 / log(w(s)/(1+5)) ds

T J_q 1— 352 zZ—3S8
_log(w(z)/(1+2)) 1 [log(w(¢)/(1+¢)) d¢
= (22 B 1)1/2 27 /7 (CZ _ 1)1/2 C _ Z. (2.9)

Here we note the w(z)/(1+ z) is analytic and non-zero in the simply connected region C\ [1, c0),
and hence log(w(z)/(1+42)) exists and is analytic in this region. Moreover, the integrand in (2.9)
is integrable along ~ as long as z & 7.

Note also that as log(w(¢)/(1+¢)) has an iterated logarithmic singularity at ( = 1, we cannot
deform v away from this point. Plugging (2.8) and (2.9) into the definition of %2, we obtain

Fﬁ(z) = ¢(2) Lexp (_ (z2 _ 1)1/2 / log(w(¢)/(1+¢)) d¢ )
Y

w 2mi (CQ _ 1)1/2 (—z
We compute the Taylor expansion around ¢ = —1 to obtain
1 [1 1+ d >
27 J, (Cz _ 1) (—=z Pt

where dj, is given by

1 [log(w()/1+¢) d¢
v (@=DY2 0 (CH DR

d, = —
kT om

This finishes the proof. |

The analog of Proposition 2.2 for %2 is more elementary.

Proposition 2.3. The function %: C\ [-1,1] — C satisfies
2
—(2)=1+0(|z - 1|"?) (2.10)

W

uniformly for any path z — +1 in C\ [—1,1] and can be written as

ﬁQ

w

(2) = ¢(2) texp{— (2" - 1)1/2d0}. (2.11)
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Proof. Statement (2.10) follows directly from [12, Lemma 6.4], while statement (2.11) can be
obtained with the same line of reasoning as in Proposition 2.2, but now the integral simplifies:

L [log(@(¢)/(1+¢) d¢ _ do ¢«
L B L(

2mi (C2—1)1/2 C—2z 2mi C2_1)1/2C—z'
In particular, we can deform the contour 7 to infinity leading to fv W Cd_CZ = 27i and
finishing the proof. |

From now, on estimates of the type (2.10) are always understood to be uniform for any path

taken in the appropriate domain. The following two corollaries contain important estimates

E2 and £ near the critical points +£1.

related to the behaviour of the functions o -

Corollary 2.4 ([4, Proposition 2.4]). For x — 1 such that x > 1, we have

F? F? 3m? 1
(x)+(x)—2:—27r2+0<3>. (2.12)
Wi w_ log” = log®(z — 1)
Corollary 2.5. For z — —1, we have
F? F?
—(2) - —=(2)=0 11%/2). 2.13
(5) - = (2) = Ol + 117 (213
Proof. The statement follows from (2.6) and (2.11). [

Remark 2.6. As noted earlier, the estimate (2.13) is the motivation for considering the partic-
ular weight function @w(z) instead of the simpler Jacobi weight function 1 + z.

For later analysis, we will also need the following technical result.

Proposition 2.7. Fiz R > 0. Let r,,7, € (0,1), n € N be two sequences satisfying ry, 7, — 0,
such that n‘;—z — 1| < R. Then

F? F? F? F?
71 n _71 ~n 71 n _71 ~TL
w+( +7p) w+( +7 )+w7( +ry) w,( + )
1
= O(rylog|logry,|) + O <3 ) + O(n*Q),
nlog® r,

where the implied constants in the O-terms depend only on R.

Proof. For the proof see Proposition A.1. |

Remark 2.8. The original formulation found in [4, Proposition A.4] assumes that r,,7, =
O(n—lz), but does not take into account the fact that the error term will additionally depend on
the convergence rate of the sequences 7y, 7y, i.e., on the bound C; 7 > 0 such that r,, 7, < =3~
This fact however becomes crucial in the proof of Proposition 7.3 [4, Proposition C.4]. To
capture the dependence of the error term on the precise decay rate of r,, 7,,, we have chosen to
express the error in terms of r, and n, though one could have used C, 7 and n instead. Luckily,

the gap in the original formulation can be easily filled in as shown in Proposition A.1.

3 The Riemann—Hilbert problem for orthogonal polynomials

In the following section, we recall the celebrated Fokas—Its—Kitaev characterization of orthogonal
polynomials via RH problems [10]. We will state the problem explicitly in the case where the
weight function is w(z), x € [—1,1], but similar characterizations hold for the other weight
functions @ and w.
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3.1 Fokas—Its—Kitaev RH problem for the logarithmic weight

Find a 2 x 2 matrix-valued function ¥ = Y(: C\ [~1,1] — C?*2 satisfying the following
properties:

(i) Y(2) is analytic for z € C\ [-1, 1],
(ii) Y satisfies the jump condition

Yi(s) = Y (s) <é “’f)), sel-1.1],

(i) Y (2) (Zon Zon> —1+0(271), as 2 — oo,

(iv) Y is bounded away from the points £1, and has the following behaviours near the points +1:

_/0(1) O(log? |z — 1]
Y(Z)_<0(1) ogloiﬂz_uD’ z =+l

and
o) o1)
Y(2) = —1.
@=(om om) =~

The condition (iv) for z — +1 has been shown in [4, Section 3.1] for the case of the weight
function having a logarithmic singularity, while the behaviour for z — —1 is a special case of
the algebraic-type singularity of the weight function treated in [12, Section 2].

To understand the connection between the RH problem for Y and orthogonal polynomials

with respect to the orthogonality measure w(z)dx on [—1, 1], we need to introduce the Cauchy
operator C_; 1) on the interval [—1,1]:

Croryys L([-1,1]) = O(C\ [-1,1]),

1 S
F(s) o Coan () = = [ L8q,

2mi J_1 s —z

Here O(C \ [~1,1]) denotes the space of functions holomorphic in C \ [~1,1]. When C[_; yj is
applied to matrix-valued functions, it is understood to act componentwise. Cauchy operators
can also be defined on different contours, as in Section 4.

We can now state the seminal result by Fokas, Its and Kitaev which characterizes orthogonal
polynomials via a RH problem:

Theorem 3.1 ([10]). The RH problem forY is solved uniquely by

. mn(2) Cio1,1)(mpw)(2)
Y = <—2m;i_mn1<z> —2minp_1Clo1) <7rn1w><2>> ’

where m,(z) is the n-th monic orthogonal polynomial with respect to the weight function w(zx)
and 7y, > 0 is the leading coefficients of the orthonormal polynomial p,, meaning pn, = YnTn-

The fact that the Fokas—Its—Kitaev RH problem characterizes the corresponding orthogonal
polynomials has lead to numerous new results, in particular in the case where the associated
weight function satisfies local analyticity properties (see, e.g., [2, 5, 6, 7, 12]), but also in the case
of nonanalytic weights (see [1, 11, 16, 17, 21]). Instrumental in the derivation of those results
has been the nonlinear steepest descent method, first presented in [8] to study the long-time
asymptotics of the mKdV equation and later generalized to the Fokas—Its—Kitaev RH problem
in [2, 6, 7]. It turns out that the recurrence coefficients can also be simply expressed in term
of Y (see [5)):
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Proposition 3.2. Let Yl(n) € C?*2 be given through the expansion

v, 1
YW () =T+ 1 40 <2> as z — oo.
z z

Then the recurrence coefficients a, and b,_1 can be extracted from Yl(n) via the formulas

On = (Yl(n))n - (Yl(n+1))11 and by1 = (Yl(n))u (Yl(n))m'

The nonlinear steepest descent analysis for weight functions supported on a single finite
interval has been performed in [12], and in the following we shall repeat the conjugation and
deformation steps found therein. In the first step one normalizes the RH problem at infinity
through an appropriate conjugation, viz.,

T(z) = <Fi>mg Y (2) (;@)Q . zeC\[-11]. (3.1)

Then T turns out to be the unique solution of the following RH problem.

3.2 Normalized Fokas—Its—Kitaev RH problem for the logarithmic weight
Find a 2 x 2 matrix-valued function T = T(™: C \ [~1,1] — C?>*? satisfying the following
properties:
(i) T(z) is analytic for z € C\ [-1, 1],
(ii) T satisfies the jump condition
FE —2n
=+ 1
T.(s) = T_(s) ( o (8)e17"(s) P ) . se[-1,1], (3.2)
0 5 (8)9=7"(s)
(iii) T(z) =TI+ O(z71), as z — oo.
(iv) T is bounded away from the points +1, and has the following behaviours near the points +1:

B O(logl/Z\z—l\) O(log3/2|z—1|)
T<Z)<O(log1/2\z—1\) O(log3/2|z—1|) ’ zo Al

and

_(O(z+11"2) O(|]z+ 1|71/
T(z)_<OE!z+1W2§ og\z“\m%)’ 2= -l (3.3)

Note that we follow the convention found in [4] where the matrix T is conjugated by the Szegé
function F', as in (3.1). Hence, the matrix T found in [12, equation (3.1)] differs from ours in
that respect. In our case the inclusion of the Szeg6 function F' in the jump matrices (3.2) will
play a crucial role in regularizing the jump matrices of the RH problems and thus enabling us
to make the comparison argument in Section 6.1 effective.

However, as the weight function wy from (1.6) is nonvanishing at z = —1, the matrix T
in (3.1) also differs crucially in its behaviour as z — —1 from the one found in [4, equation (3.7)].
The reason is that our logarithmic weight function w has a simple zero at z = —1, implying

by item (iv) in Proposition 2.1 that |F(z)] = O(|z + 1|1/2) as z — —1. This induces the
O(|z + 1|7¥/2)-behaviour in T as z — —1. Crucially, the entries of Ty (and later Q1) will not
be square integrable, meaning that the L-theory used in [4] will not be applicable directly. We



Recurrence Coefficients for Orthogonal Polynomials with a Logarithmic Weight Function 13

will circumvent this difficulty by defining certain *RH problems in Section 5 through inverting
locally by appropriate local parametrix solutions near the endpoint z = —1.
In the second step, we will use the following factorization of the jump matrix (3.2):

0 D)) \TEee) 1) \-1 0\ )8 s) 1)

w

Next, we introduce the oriented lens jump contour ¥ = ¥; U ¥y U (—1,1 + 9), see Figure 4,
where 0 > 0 is fixed and n-independent.

Q
5, 0

Ut il 146

Q0
S, 2

Figure 4. Lens-shaped jump contour .

Note that the matrices

( 1 0) ( 1 0) € (—L1)
TEee) 1) T eess) 1) |

can be analytically continued to z € €21 and z € (s, respectively. Hence, we can define the
following matrix-valued function Q: C\ ¥ — C2*2:

T(Z)7 S QO7
1 0
Z 2 y Q )
Qz) = e (-Z(Z)qﬁZ"(Z) 1) = (3.4)

1 0
e (T(zwwz) 1) e

Then @ will be the solution to the following RH problem.

3.3 Logarithmic RH problem
Find a 2 x 2 matrix-valued function Q: C\ ¥ — C?*2 satisfying the following properties:
(i) Q(z) is analytic for z € C\ X,

(ii) @ satisfies the jump condition

Q+(s) = Q-(s)v(s),  seX,

where
1 0
1 0
OB+ Eeetne 1) e (3.5)
<_01 [1)>’ for s € (—1,1),
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(iii) Q(z) =I+0(z71), as z — oo,

(iv) @ is bounded away from the points +1, and has the following behaviours near the points +1:

O(log:”/2 |z —1]) O(log?’/2 |z —1|)

=) = <0(10g3/2 2= 1) O(log*?|z — 1))

>, z—+1

and

_(0(lz+117M2) O(|z+1]71/2)
Q(z) = <O(!z+ 17Y2) 0(jz + 1,1/2)> ,  z— -1l

Note that Q1+ ¢ L?(X) due to its behaviour as z — —1, which is caused by the simple zero of w
at that point.

For the asymptotic analysis in Section 7, we will need the analog of the logarithmic RH
problem stated for the model weight function w. The derivation from the Fokas-Its—Kitaev
formulation remains unchanged except for the use of the functions @ and F instead of w and F.
The behaviour near z — +1 can be read off from [12, Section 4], after taking into account the
behaviour of the Szeg6 function F.

3.4 Model RH problem

Find a 2 x 2 matrix-valued function @: C\ ¥ — C%*2 satisfying the following properties:
(i)
(i)

Q(z) is analytic for z € C\ %,
@ satisfies the jump condition

Q+(s) = Q-()0(s), se,

1 0
<ﬁ3<s>¢-2n<s> 1) e

o 1 0
o(s) = <2ﬁ;(s)qﬁ2n(s) 1) , forse(1,1+)9), (3.6)

0 1
( ) , for s € (—1,1),
-1 0

(iii) @(z) =I1+0(z71), as z = oo,
(iv) Q

is bounded away from the points £1, and has the following behaviours near the points +1:

O(z) = (O(log |z —1]) O(log|z —1])

O(log|z —1|) O(log |z — 1)> S

and

A (0( 12 0|z +171?)
Qz) = (O(!z+ 11712) O(|z + 1|_1/2)> , z— —1.
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Note that the jump matrix v simplifies compared to v, as the weight function @ is continuous
(in fact analytic) across (1,1 + 9). As for @, due to the simple zero of w at z = —1, @ will not
be square integrable near that point.

Note that the weight function @ falls into the class of modified Jacobi weight functions con-
sidered in [12].AAS such, an asymptotic series expansion in powers of n~! for the recurrence
coefficients @, b, can be explicitly computed. Note however that we use a different convention
here than in [12], i.e., the roles of @, by, are interchanged. We write down the expansion up to
the n™2-term:

Corollary 3.3 ([12, Theorem. 1.10]). The recurrence coefficients a, by, associated to the weight
function w satisfy

R 1 1 ~ 1 1 1
a”_mﬁ+0<ﬁ>’ %_2_i&ﬂ+0<ﬁ>'

To compute the asymptotics of the recurrence coefficients a,, b,, we will first compute the

asymptotics of a, — @y, b2 — b2 and then use Corollary 3.3. Hence, we will need an analog of

Proposition 3.2 above for the differences of recurrence coefficients, which we express in terms
of Q and Q.

Proposition 3.4 ([4, Proposition 3.6]). Let an) and @gn) be given through the expansion

(n)
Q("):]+Q1 +O<12> as z— 00,
z

z

and

z 22

R A(n)
Q(n):[+Q1 +O<1> as z — o0.

Then the differences a, — @, and b2 — b2 can be expressed via

an = an = (")) = (@), — (@)1 = (@), (3.7)
and
bgz—l _gzt—l = ((an))m o (Agn))m) ((an))m B ( (n+1))21)

+ (@gn))n[(( gn)>21 o ( gn+1))21) - ((Q\gn))m - (A§n+1))21)]' (3.8)

The usefulness of Proposition 3.4 comes from the fact that an) — an) has a simple integral
representation.

Proposition 3.5 ([4, Proposition 4.9]). The following formula holds:

Q" _ ot = 1 / Q™ (s) (1™ (s) — 5(5)) [0 ()] ~'ds. (3.9)
P

- omi

Proof. In the following, we drop the subscript (n) for better readability, i.e., write @1 for an)

and so on. Let us define the matrix-valued function X (z) = Q(z2) [@(z)} “forzeC \ 2. Note

that
X(z)—I—l—Cgl_l—i—O() as z — 00. (3.10)

z
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Moreover, X satisfies the jump condition
Xi(s) =X_(s)vx(s), 5 €,

where vy = Q_v5'Q~'. We claim that X+ € LY(2). To see this let us first introduce the
analog of T for the weight function w:

Here Y is the solution to the Fokas Its Kitaev problem for the weight function @w. Then
for z € Qqp (cf. Figure 4), we have

X(2) =T()[T(z)] ' =01), 2€9, z—-1,
where we have used (3.3) and its analog (see [12, Section 2])

N O(lz +1|1Y2) O(|z + 1|7V/2
SESHTE e

Note that the analog of (3.4) remains valid

-~

T(z), z € Qo,

—~ 1 0
~ TZ -2 9 z Q?
Qz) = ()<—%<z>¢—2n<z> 1) =

~ 1 0
T(z) <Iz}3(2)¢_2"(z) 1) , 2 €.

Thus for z € 1 U s, we have

z € Q1 Uy, z— —1,

where the +, resp. — sign refer to €; and 3. Apart from (3.3) and (3.11), we have used in
addition (2.13). As X can have only logarithmic singularities for z — 1 and otherwise the limits
to the contour are analytic, it follows that X4 € L}(3).

Next, we can use the Sokhotski—Plemelj theorem to conclude that X can be represented as

X(z)=1+ le/ZXJF(S;:f_(S)dS

1 Qe EE) ™ - D[Q-(s)]
Sy /E

ds

S —Zz

Y

5 2) -1
SRRy K RUTCRIICRCT
21 Js s—z
where we made use of the particular form of the jump matrices v and v. This representation
together with (3.10) implies (3.9). [

Finally, we recall the Legendre RH problem taken from [4, Section 3.4]. While this RH prob-
lem does not approximate the logarithmic RH problem globally, it does so near the logarithmic
singularity and additionally gives rise to a singular integral operator whose inverse is uniformly
bounded as n — oo (see Theorem 4.2). The existence of a RH problem with these properties
will be crucial for the proof of Theorem 6.2. Note that the Szegé function for the Legendre
weight is just given by F' = 1.
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3.5 Legendre RH problem

Find a 2 x 2 matrix-valued function Q: C \ ¥ — C?*2 satisfying the following properties (see [4,
Section 3.4]):

(i) Q(2) is analytic for z € C\ X,
(i) Q satisfies the jump condition

Q+(s) = Q-(s)i(s),  s€,

where

1 0
((;5_2”(5) 1) , forse XU,

~ 1 0
v(s) = <2¢_2n(5) 1) , forse(1,149),

0 1
( ) , for s € (—1,1),
-1 0

(iii) Q(z) =1+ O(z7') as z — oo,

(iv) Q(2) is bounded away from the points +1, and has the following behaviours near the
points +1:

50 _ (Olog|z—1]) O(log]z—1|)
Q(z)‘<o<1og|z—1|> 0(logz—1>>’ o

and

~y_ (Olog|z+1]) O(log|z+1]) -
3 = (Oigle 1) Ologsah) =

The weight function w(z) = 1, z € (—1,1) lies in the class of weight functions considered
in [12], and it follow from the calculations therein that the solution @ can be globally approx-
imated with arbitrary small errors. Moreover, unlike the logarithmic and model RH problems
found in Sections 3.3 and 3.4, the Legendre RH problem can be stated with a weaker L2-condition
instead of condition (iv) (cf. [4, Proposition 3.2]), as follows.

Proposition 3.6. The matriz-valued function C~2 is the unique solution of the Legendre RH
problem with the condition (iv) being replaced by the condition Q+ € L*([—1,1]).

Proof. Let L be another solution of the Legendre RH problem, but with L. € L?([-1,1])
instead of condition (iv). Then det L will be a holomorphic function in C\ [-1, 1] with det Ly =
det L_ on ¥ and det Ly € L'(X). By Morera’s theorem, it follows that det L is in fact an entire
function with lim,_,~ det L(z) = 1. Hence by Liouville’s theorem det L = 1 in C.

We conclude that L is invertible in C\ ¥ and we can define Q[L]~!. As with the determinant,
QIL]™* will have no jump across the contour X: (Cj[L]fl)Jr = (@[L]*l)_; Moreover, by the L2-
condition for Q and L, we have that (Q[L]™!) . € L'(%). It follows that Q[L]~" can be extended
to an entire function. By Liouville’s theorem, we have that Q[L]™! = lim, o Q(2)[L(2)] 7! = I,

hence CNQ = L. |
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4 An explicit formula for the Legendre resolvent

In this section, we will associate to the Legendre RH problem a singular integral operator. First,
let us define the Cauchy operator on X by

1 (s) ds,

21 Jns— 2

Co: L*(2) = O(C\%),  f(s) = Cs(f)(2) =

where O(C \ X) denotes the set of analytic functions on the open set C\ X. For f € L?(X), we
further define the two Cauchy boundary operators by
+ T
CE(£)(s) = Jim Cs(f)(2). (4.1)
In our setting, the curve ¥ is clearly a Carleson curve and hence the limit in (4.1) exists for

almost all s € ¥ and satisfies Cx (f) € L*(X), see [3] for more details. We define the two Cauchy
boundary operators via

CE: LA(D) = LA(%).

These are bounded operators on L?(X), cf. Theorem 4.1 below. Note that C’; satisfy the
important identity Cg -Cy =1.

More generally, the mapping in (4.1) induces a bounded operator on certain weighted LP-
spaces. To be precise let I' be an oriented composed locally rectifiable curve (see [3, Section 1])
and p € (1,00). Given a weight function r: I' — R, r > 0, define the Banach space LP(T',r) of
all measurable functions f on I', such that the norm

Hﬂmmm:<éf@m@m®0;

remains finite. Note that there is a p-th power of r in the integral. We say that r is a Muckenhoupt
weight if r € LY ('), 1/r € L (T') and

loc

1 1
1 » (1 q
sup sup </ r(s')p\ds'o ’ </ r(s’)_qu’\> ! < 00,
sel’ p>0 \ P JTND(s,p) P JTND(s,p)

where D(s, p) is the open disc around s of radius p and 1/p+ 1/¢g = 1. For any p € (1,00) we
denote the set of all Muckenhoupt weights by A,(I"). The following results holds.

Theorem 4.1. Letp € (1,00) and let ' be an oriented composed locally rectifiable curve. Assume
r:I' > R, r >0 is a given weight. Then the mappings

fes lim (5) 4 (4.2)

z—s+t rs—=z

define bounded operators from LP(T,r) — LP(T,r) if and only if r is a Muckenhoupt weight, i.e.,
re ApT).

The proof can be found in [3, Theorem 4.15], for more material on this topic with emphasis on
RH theory see [14]. We will abuse notation and denote the mapping (4.2) by CE—L irrespectively
of the choice of domain LP(T, 7).

Next, let us define the operator

Cr: L*(B) = L*(D),  f=C5(f(@-1)),
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and consider the following singular integral equation in L?(X)
(1-Cyp=1. (4.3)

Note that as the contour is bounded, I is indeed an element of L?(X). Equation (4.3) is, in
fact, equivalent to the Legendre RH problem. More explicitly, any solution p will give rise to
a solution L = I + Cx(ji(v — I)) of the Legendre RH problem with the condition Ly € L?(X)
instead of condition (iv), as can be verified by direct computation. By Proposition 3.6, the
solution to the Legendre RH problem (see Section 3.5) exists and is unique, hence we must have
@ = L implying

=1+ Cs(ii(s - 1). (4.4)
Moreover, from the Sokhotski—Plemelj formula
Q= I+C2(@+ - @—) = I+C2(@7(1~)— 1)),

it follows, after taking the minus limit to the contour %, that p := @_ is indeed a solution
to (4.3). Moreover, any solution g of (4.3) must be equal to ()— as can be seen from (4.4) and

Q- = I+C5(i(E— 1) = I +Cyfi =

Together these arguments imply that (4.3) has a unique solution and hence 1 — Cy must be
injective. In [4], it has been shown that 1 — C is in fact uniformly invertible for n — oo, as
described in the following result.

Theorem 4.2 ([4, Theorem 4.5]). The operator 1 — Cy is invertible for all sufficiently large n.
Moreover, the operator bound of (1 — Cy)™' as an operator L*(X) — L*(X) remains uniformly
bounded for n — oo.

Theorem 4.2 played a central role in [4]. The uniform invertibility of the operator 1 — Cy
will also be crucial in the approach presented here and is the motivation for introducing the
Legendre RH problem in addition to the logarithmic and model RH problems. However, in
order to use Theorem 4.2, we will need to derive an explicit representation of the operator
(1 —Cz)~t. To accomplish this, we recall the definition of an inhomogeneous RH problem of the
first kind, as introduced in [9, Section 2.6]. This notion has been instrumental in the proof of
Theorem 4.2 in [4]. In the following, h will denote a matrix-valued function on a contour T,
with Al € L°(T).

Inhomogeneous RH problem of the first kind

For a given g € L%(T), one seeks an f € L%(T), such that my = C%(f) + g satisfies the jump
relation:

m4(s) = m—(s)h(s), sel. (4.5)

A similar notion of an inhomogeneous RH problem of the second kind can be found in [9,
Section 2] but will not be needed here.

The importance of the above inhomogeneous RH problem comes from the following result
proven in [9, Proposition 2.6].

Theorem 4.3. The mapping 1 — Cp,: L*(T) — L*(T") is invertible if and only if the corre-

sponding inhomogeneous RH problem of the first kind is uniquely solvable for each g € L?*(T).
. . 71 . .

Moreover, th2e inverse satisfies ||(1 — Cp,) HLQ(F)_)LQ(F) < cif and only if ||m_||r2ry < cllgllr2(m)

for all g € L*(I") and the same constant ¢ > 0.
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Remark 4.4. Note that by (4.5), my = m_h on I, hence [[m_| 2y < c|lgllz2(r) implies
Imll2y < llgll2ry with ¢ = el|h| oo (ry.-

As a corollary we obtain.

Corollary 4.5. Given a sequence h,, of matriz-valued functions with hr' € L>(I), the operator
(1—Cp,,) "t is uniformly bounded if and only if the corresponding inhomogeneous RH problems are
uniquely solvable with [[m_| 2y < cllgllr2ry, and ¢ > 0 independent of n € N and g € L3(T).

Note that Theorem 4.2 is proven in [4, Section 4.2] via Corollary 4.5. We will use Theorems 4.2
and 4.3 to derive an explicit expression for the inverse (1 — Cz)~! in Proposition 4.6 below.
This allows us to identify locally the contribution of the logarithmic singularity to the uniform
boundedness of (1—Cz) ™!, which is central to our approach as it enables us to prove Theorem 6.2.

Proposition 4.6. The inverse of 1 — Cy has the explicit form
(1-Cp) ' L2(Z) —» LA(%), g g+0Cs(9@—-DNQTHQ-. (4.6)
Proof. From Theorem 4.3, we know that for g € L?(X), the (unique) solvability of the equation

(1-Conp=g, geL*(%), (4.7)

in L?(X) is equivalent to the (unique) solvability of the following inhomogeneous RH problem.

Inhomogeneous Legendre RH problem

For a given g € L*(X), one seeks an f € L?(X), such that my = C&(f) + g satisfies the jump
relation:

m4(s) = m_(s)v(s), s €.

Note that Theorem 4.2 together with Corollary 4.5 imply that there exists a constant ¢
independent of n € N and g € L?(2) such that the inhomogeneous Legendre RH problem has
a unique solution my with ||m_|[z2s) < ¢llgllz2(x). We shall briefly recall the exact relation
between (4.7) and the inhomogeneous Legendre RH problem (cf. [9, Section 2]), as it will be
needed later in the proof. First, note that if we have a solution m+ to the inhomogeneous
Legendre RH problem, we must have f = my —m_ = m_(v — I). If we now set ¢ := m_ =
Cs (f) +g € L2(D), it follows that

(1 =G =19 -Co((0 1)) =C5(f) +9 - Cg(m-_(v-1)) =g

On the other hand, having a solution ¢ to the integral equation (4.7), we can define my :=
Ci (¥(v — I)) + g and compute, using the Sokhotski-Plemelj (SP) formula,

my = CE@W@ 1) +9 = ¢ — 1)+ Co(v) + g =T =m_7, (4.8)

as m_ = Cz) + g = v. We can now derive an expression for the operator (1 — Cy)~!. Assume
g € L*(Y) is given and let ¢ € L?(X) be the unique solution of (1 — C3)¢) = g. Then my =
C%( f) + g with f = (v — I) solves the corresponding inhomogeneous RH problem, as we have
seen in equation (4.8). We want to find an expression for ¢ = m_ in terms of g. To derive (4.6),
we start with

my=m_0, Ci(f)+g=0Cs(N)+9v, (L) +9)Q7 = (Cs(f)+9Q",
CE(HQT —C5(NHR™ =g(Q7 - Q). (4.9)
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Observe that the left- and right-hand sides in the last line might not lie in L?(X). However,
using property (iv) of @ from the RH problem (see Section 3.5), we see that they lie in L?7¢(%)
for any € € (0,1). Hence, if we define H = Cx(f)Q !, we see that H is analytic in C \ %,
satisfies Hy € L?>7¢(X) and vanishes at co. By the Sokhotski-Plemelj formula, it follows that
H = Cxg(H, — H_). Thus, applying Cx, which is understood to act on the space L>~¢(X), in the
last line of (4.9), we obtain

Cs(f)Q ™t =Cs(9(QZ' - Q7Y)), Ce(f) = Cs(9(@ - NQTHQ,

—_——
9(5-NQT"

Co(f)+g=9+C5(9(@-DNQINQ-, »=g+C5(9(@-DQQ-.

Note here that Cy, (g(i?—[)@jrl)@_ is a priori a function in L2~¢(X), however as 1) = (1—Cz)"'g €
L%(%) by Theorem 4.2, we conclude that indeed Cy (g(i? — I)ijrl)@, = —gc LA(%).
We have thus proved that (1 — C3)~! must indeed have the formed stated in (4.6). [

5 Local parametrices around the point z = —1

In the following, we will use appropriate local parametrices P, P and P to invert the three RH
problems introduced in Section 3, locally near z = —1. We denote the modified RH problems
with *RH.

The explicit construction of the local parametrices is taken from [12, equation (6.50)] and can
be given in terms of Bessel functions and the Szeg6 functions corresponding to the three weights.
To define these parametrices, we first need a local n-dependent change of variables z — (.
Following [12, Section 6], we choose a sufficiently small neighbourhood U of the point z = —1
and define the mapping

¢ U —C, ZH&@:mﬂzW». (5.1)

Note that for s € U N [~1,1], log*(—¢4(s)) = logz(—gb:l(s)) = log?(—¢_(s)) implying that ¢ is
indeed well-defined and holomorphic.

z— &

Figure 5. The change of variables z — &.

Now using (2.4), we see that £'(—1) = —1/2, meaning that for U sufficiently small, £ will define
a biholomorphic mappin% etween U and its image £(U). Introduce now ¢ = ¢ (z) = n2€(z) for
z € U together with ZE; =n2¢(UNY). We can assume that 3 has been chosen such that Zf;)
can be extended to X¢ D E\ff consisting of three straight line segments ~;, ¢ = 1, 2, 3, originating
from ¢ = 0 at the angles :l:%T and 7, see Figure 6. Accordingly, we will regard { as a variable

in the whole complex plane.
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7

V2 0

73

Figure 6. Contour for the local parametrix problems in the (-plane.

Next, we shall define two piecewise holomorphic functions ¥, : C \ £y — C?*2 for v = 0,1
(see [12, equation (6.51)]):

LECR o) :
(—27ri§1/21,’,(2<1/2) —2C1 2K (2¢1/2) ) arg ¢| <
LHD (2(=0)'7?) —LHP 2(=0"2) \ 1riey
¢ DY (20-0)12) 7Y (2(-0)12) |
\I/V(C) = o
T <arg( <m,
LHP (2(=0)'1?) H (2(=¢)1?) ~Lrivos
mC(HPY (2 ol/?) bty -o))
—r<arg( < —4F

Here the functions I, K, with v € C are the familiar modified Bessel functions. Generally,
these are holomorphic functions in the domain z € C\ (—o0, 0] and have a branch cut along the
negative real axis. In the special case v € Z, I, is entire.

Analogously, the functions H,El), Hg) with v € C are holomorphic for z € C\ (—o0,0] and
have a branch cut on the negative real axis. They are the Bessel functions of the third kind, also
known as the Hankel functions. Properties of these function can be found in [18, Section 10].
In the following, we will be interested in the behaviour of ¥, as ( — 0, which can be deduced
from the following lemma:

Lemma 5.1 ([18, Section 10]). The following asymptotic formulas hold uniformly for any path
¢ —0:

Io(2¢172), Ko (2¢2), HSY (2(=¢) V), HS? (2(~¢)'/?) = O(log [¢)),

I (2617, K 22), (1) (20-017), (1) (-0) = 0 (153 52
and

1(267), K1 (26'7%), 2} (2(=0)Y?), HP (2(-)'%) = ( 2>

1 (262), 6 20'2) (1Y (2(-0 ), (1) (2-0)'%) = 0 (). 59
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The following asymptotic formulas hold uniformly for ( — oo in the prescribed sectors for
any 0 >0 and v =0, 1:

1/2 1/2 1
1,262 L (M R)em " = 0 <r<1/4>

1/2 1/2 1
( C1/2) 2¢ K’( <1/2) 27— 0 (]C]1/4> \argq <m—9,

HI (-0 ) 500" (1) (2= e 0" 0 () £0,

HIEQ) (2(_01/2)‘321(_4)1/2’ (Hf))’(2(—C)1/2)e21(_<)1/2 —0 <\g\11/4> , arg( #0.  (5.4)

In the formulas (5.2)~(5.4), (-)'/? denotes the principal branch.

In [12, Section 6], it is shown that W, satisfies the following jump conditions across the

contours y;:
1 0
(euﬂ'i 1) ’ C €M,

\Ijl/,+(<) = \IIV,—(C) (_Ol (1)> ’ C € 72,

1 0
(e_m 1) ;€.

In the following, we will use ¥,, v = 0,1 to write down three local parametrices P, ﬁ, P
around z = —1 for the three RH problems defined in Section 3 (see [12, equation (6.52)]):

P(z) = E(2)(2mn)/W (n*¢(2)) [ (2)] "7 <W(é))) |
F(z)

P(2) = E(2)(2mn)*/2 W, (n°¢(2)) [=(2)] " (

, zeU\2X,
<z>> <0

P(z) = E(2)(2mn)*/* W (n*¢(2)) [-¢(2)] .

Here W = y/—w, W = /=@ are chosen to have a branch cut on (—1,00) NU and to be positive

on (—oo,—1)NU. The matrix-valued functions E, E and E are in fact holomorphic for z in U.
More explicitly, we have (see [12, equation (6.53)])
W()\? 1 (/1 i .
E(z) =N — o3/4 :
=36 (5) (1) e 5.5

which is in fact holomorphic for z € U. Here N is the outer parametrix solution
a(z) +a(z)™? a(z) —a(z)™?

2) = 2 2i
N(z) a(z) —a(z)™? a(z) +a(z)~t |’ (5.6)
—2i 2
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with a branch cut on (—1,1) and a(co) = 1. Similar formulae can be obtained for E and E
by substituting in (5.5) F, W and F = 1, W = 1, respectively. Crucially however, the outer
parametrix N is the same for all three problems. One can check that the determinants of all
three parametrices are constant equal to 1 inside U, cf. [12, Section 7]. Furthermore, E, E
and F are analytic and bounded in U, the singularity of a(z) at z = —1 being compensated by
the factor &(z)73/4,

Lemma 5.2. The matriz-valued functions P, P and P defined in U \ X, satisfy the following
conditions:

(1) ForseUNZX,

(ii) For s € OU (see [12, equation (6.41)]),

P(s), P(s), P(s) = N(s) + O(n™%). (5.8)

(13i) For z € U, we have uniformly (see [12, equation (7.10)])

Q)[P()] ' =T+0(n™"), QRI[P>)] '=I+0(n"). (5.9)
(iv) Forze U,
P(z), P(z) = O(max {|2 + 1|74, n712|2 4-1|7V/2}), (5.10)
and
P(z) = O(|z + 1|74 (5.11)
uniformly as n — cc.

Proof. A detailed derivation of the local parametrices can be found in [12, Section 6] together
with a proof of properties (i), (ii), for property (iii) see [12, Section 7]. Note that while the
weight function w does not fall into the class of weight functions considered in [12] due to the
logarithmic singularity at z = +1, the local construction and estimation of the left parametrix
near z = —1 found therein remains unchanged.

Regarding point (iv), we start with the properties of P and P. Noting that E(z) and E (2)
are holomorphic, n-independent and have unit determinants, hence it is enough to consider
E~1(2)P(z) and E~'(2)P(z) instead of P(z) and P(z) in (5.10). Analogously, it follows
from (2.6) and (2.11) that (£7)”* and (%)(73 are n-independent and bounded in a neighbourhood
of z = —1, hence they also do not contribute in (5.10).

It remains to study

(2mn) 72, (%€ (2)) [~ o(2)] "

which is equal to both ]5’_1(2:)P(z)(%)_03 and E‘l(z)ﬁ(z)(i)_ag’. It follows from the def-
5 w

inition of & in (5.1) that [—¢(2)] ™78 = e~2V"*¢()93 where the square root has a branch cut

along z > —1. Writing ¢ = n?¢(z) and assuming |z + 1| 2 O(n™?), we see that [¢| 2 O(1) and

using the estimates in (5.4) we conclude that

(27n) 720 (n%¢(2) ) [~ (2)] "
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(Ol 0
= em (i) By

C(O(lz+ 117V O(lz + 1174 .
N <0(|Z+1I1/4) O(|z + 1|14 > z+1]20(n7%). (5.12)

For |z + 1| < O(n™?), we use the estimates (5.3) instead to conclude

(2mn) /20, (n2€(2)) [ ()]
_ (ormyesr2 (O(CI72)O(I¢17172)
= (2 ) < (’C‘ 1/2) O(’C‘ 1/2)>
_ O(n*1/2|z+1| 1/2) O( -1/2 2+ 1 ,1/2)
_ ( o )

O(n=3/2]z + 1]71/2) 3/2|z+1| 1/2) zelz+1S0(n?). (5.13)

Note that in this case [—¢(z)]7"?® = O(1), hence this term does not contribute. One checks
that indeed for |2 + 1| ~ n~2 the bounds in (5.12) and (5.13) are of the same order.

The proof of (5.11) works in a similar fashion. Again the holomorphic prefactor E can be
ignored. For |z + 1| 2 O(n™?), we get as before

(2mn) /2o (n*¢(2)) [~ 4(2)) "

C(O(lz+ 117V O(lz + 1174 .
_(0(<IZ+1I1/4) o(( |z+1|1/4)>’ 2412 0(n7%).

However, for |z 4+ 1] < O(nfz), we get different asymptotics after applying (5.2). We obtain

(2mn) 782 W (n*¢(2)) [~ o(2)] "

:< (1/2\(1)0(gn(1/g)+1>)\) (1/2‘(130(%(—1/2;“))‘))’ z+1S0(n2). (5.14)

Now observe that for [z 4+ 1| < O(n™?), we have trivially n?|z + 1| < O(1) and thus

|log (R*(z+1))| < |n®(z + 1)}_1/4.

This estimate, together with n=%/2 < |z+1|71/* (in fact n/2 < |z+1|~1/% holds), implies that the
matrix entries in (5.14) can be bounded by O(]z + 1|_1/4) uniformly as n — oo, showing (5.11)
and finishing the proof. |

The fact that all three parametrices display the same asymptotic behaviour for |z + 1| 2
O(n*Q) is consistent with the matching condition (5.8) which is the same in all three cases.

Note that for a fixed n, ]3(2) has only a logarithmic singularity near z = —1, but the order
in (5.11) is necessary to obtain a uniform bound for n — co.

Corollary 5.3. For z in a neighbourhood U1 of +1, the matriz-valued function @ satisfies the
asymptotics

Q) = 0(]z —1714) (5.15)

uniformly for n — oco. Moreover, @, and its boundary values @i on ¥, are bounded in C :=
CU{oo} away from small neighbourhoods of £1, uniformly for n — oo.
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Figure 7. The jump conditions for ﬁ+1.

Proof. Analogously to the local parametrix for the Legendre problem at z=—1, P_1(z):=P(z),
one can construct a local parametrix Py(z) for the Legendre problem near the point z = +1
with local jumps inside an open neighbourhood Uy of +1 as depicted in Figure 7.

In fact, we have Py (z) = o3P_1(—z)os, see [4, equation B.10]. Hence, it follows from
Lemma 5.2 (iv) that

Pii(2) = O(|z — 1|74 (5.16)

uniformly for n — oo. After deforming the local contour such that it matches locally with ¥ as
depicted in Figure 8, we can analytically continue P+1 as necessary to obtain a deformed local
parametrix Pji‘l’f, which would satisfy locally the same jump conditions as Q

Figure 8. The jump conditions for ]Bfﬁf.

Because the jump matrices v and their analytic continuations are uniformly bounded near
z =41, P%f would continue to satisfy the estimate (5.16)

P = 0|z — 1714 (5.17)

uniformly for n — co. As the contour deformations are local, we also know that the matching
condition (5.9) remains unchanged, at least on OU:

Q(s)[PE ()] T =1+0(n™"), sedUy. (5.18)
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However, as Qv[]?’f‘if]_l has no jumps inside Ui, we can extend (5.18) to all of Uy by the
maximum modulus principle for holomorphic functions. Together with (5.17), the estimate (5.15)
follows.

Regarding the second statement, it has been shown in [12, Section 7] that for a wide class of
weight functions including w, the outer parametrix solution NV is an approximation to the exact
RH solution, in our case @, uniformly in z as long we stay away from the points +1:

‘@(z) —N(z)|=0(n"), z staying away from =+ 1.

As can be seen from (5.6), N is n-independent and bounded away from the points £1. This
finishes the proof. |

6 Modified RH problems

We are now in a position to define modified versions of the three RH problems found in Section 3,
which will be referred to as the respective *-analogs. The three *RH problems are introduced
implicitly by defining their respective solutions. Here U is a small neighbourhood of —1, as
before.

O} z€C\(ZUD),
@) {Q(z)[P(z)]l, sev,
S CIONS 2€C\ (TUD),
v {Q(z)[P(z)]l, sev,
Ay J Q) z€C\ (ZUD),
(=) {Q(z)[P(z)]l, zeU.

Note that because of (5.7), the jumps on U N3 cancel out, which means that all three solutions
can be uniquely defined on all of U. We will denote the new contour, which is the same for
all three problems, by ¥* = (X \ U) U QU and assume that OU is oriented clockwise. The
corresponding jump matrices are denoted by v*, v* and v*, hence

Qi (s) = QL(s)v™(s),  s€X,

and so on. Note also that the normalization at infinity remains unchanged and the jump matrices
on QU are just the corresponding local parametrices:

~

v*(s) = P(s),  °(s)=P(s), 0*(s)=P(s), sedlU.
Now consider the singular integral operator
1 —Cye: LA(X*) — LA(ZY), f= f=Ca.(f(@* = 1)).
We claim that this operator is invertible and that the inverse is given by
(1=Cp)™': LT = LX), fe f+Ca (f@* - D@3 Q.

At the moment, it is not even clear whether the above operator is well-defined as a map
from L2(¥*) to itself, as Q% has a logarithmic singularity near +1.

To prove the claim, we proceed as follows: First, we partition the jump contour ¥* =
OU U ¥\ U as shown in Figure 9.
=~

»e o
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ET’

1496

.

Figure 9. The jump contour ¥* = ‘U X",

Next, we decompose the operator Ci*( - (vr=1) [@i]_l)@t Setting u* = v* — I, we obtain

Co (- @IQTNQE =G5 (- X [Q3] 7 Q% + G5 (- xwr @ Q)7 QT
=y (- X W [QE]T) QL +Co (- e W [Q]T) Qxsr
+Co (- X2 QE] ) Q% xxes
where Yy, is the characteristic function of ¥/ for j = ¢, r. By definition, we have ij:XZr =
Q+xxr. Note that the mapping

fe s [@1]7

is an operator uniformly bounded in n from L2($*) — L2(Z*, [z — 1|71/4), as [@ﬂ ! converges
uniformly on $¥ = U to the outer parametrix N, see (5.8) and (5.9). Here and in the following,
we refer to uniform boundedness in n of some operator T = T, to the operator norm ||7,|]
being bounded by an n-independent constant, cf. Theorem 4.2. As |z — 1|~/4 € Ay(Z*) (see
Theorem 4.1), we have that the mapping
_ Ak —1

fe Co (Pt [@1] )
defines a uniformly bounded operator from L?(X*) — L?(X*, [z — 1|_1/4). Finally, using Q* = Q
in C\ U and the estimate (5.15), we conclude that

f e Co (P Q)71 QE

defines a uniformly bounded operator from L?(¥*) — L2(X*).
The uniform boundedness of the mapping

f Con (Fxsr@*[Q5) 1) Q% s

as an operator from L?(X*) — L?(X*) follows directly from Proposition 4.6 together with The-
orem 4.2.
Finally, the mapping

T 1
frr fxsru [QF]
defines a uniformly bounded operator from L?(X*) to L*(X*, |z — 1|1/4). As |z — 1|14 € Ay (%),
the mapping
fr Con(Fxsru*[QF] )

is a uniformly bounded operator from L2(X*) — L%(X*,|z — 1|*/4) as well. Moreover, the

multiplication with @’ixze defines a uniformly bounded operator from L? (2*, |z — 1|V 4) —
L?(¥*), implying that

— ~ 1A% 11\ A%
= Cs. (fXErU* [Q+] )Q—XZZ
is a uniformly bounded operator from L?(¥*) — L?(X*). We obtain:
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Theorem 6.1. The inverse of the operator 1 — Cz on L?(X*) exists and is given by
- * * - ~% Ax 11\ A%
(1—Cp) ™' LA = L2(ZY), fre f+Co (f@—D]QY] Q.
Moreover, the operator norm is uniformly bounded as n — oo.

Proof. That the mapping is indeed uniformly bounded follows from the preceding argument.
The fact that it coincides with the inverse of 1 — Cy« follows from a computation analogous to
the one given in the proof of Proposition 4.6. |

6.1 Uniform invertibility of the *resolvents

The uniform boundedness stated in Theorem 6.1 can now be extended to the uniform invertibility
of the operators 1 — Cz+, 1 — Ci+. Note that the jump matrices satisfy

[0 — 0| oo sy, [0 = 0| oo (i) — O (6.1)

for n — oco. In fact, we have
0 0
<(F2 ), SE(Eluzg)ﬂzr,

e 0 0
vt = = ((F2 2 ), se(1,1+9), (6.2)

0, se(~1,1)nyr,
P(s) — P(s), s € Xt

and the corresponding claim in (6.1) for the difference v* — v* follows from (2.2), Corollary 2.4
and (5.8). An analog formula of the form (6.2) can be written down for v* — v*:

4 0 0 ,r
((ﬁf(S) —1)¢72(s) 0) , sE(E1UX) N,
om0 0
(2(%8) ~1)¢2"(s) o) , s€(L,1+9),
% se(-1,1)ny,
P(s) = P(s), s e Xt

Here (6.1) follows as before after using estimate (2.10) instead of (2.5).
Thus it follows that

1A =Co) = (1 = CG)ll2mymr2mey = 0, (1 =Co) = (1= Gl L2(my 125y = 0

as n — 0o. As the operator 1 — Cy is uniformly invertible, a standard argument (see, e.g., [4,
Theorem 4.7]) shows that the operators 1 — C,x, 1 — Cy« are also uniformly invertible for n large
enough. We summarize:

Theorem 6.2. The operators 1 — Cyx and 1 — Cy« are invertible for n large enough and the
operator norms of their inverses are uniformly bounded as n — co.

Note that Theorem 6.2 is the analog of Theorem 4.2 initially proved in [4, Theorem 4.5], but
for the logarithmic weight function and on a contour avoiding the problematic point z = —1.
Interestingly Theorem 4.2 played a crucial role in the proof of Theorem 6.2.
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7 Asymptotic Analysis

The following section will be largely based on [4, Section 5| and culminates in the proof of
Theorem 1.1.

7.1 Some norm estimates

Let us define py = Qt(n) and 1} = Q\t(n), where in the following we will make the n-dependence
explicit. In particular, we will denote the jump matrices with a subscript n and the Cauchy
operator with a superscript (n) for notational convenience, i.e., vy, Cs,” and so on. We will now
prove an analog of [4, Proposition 5.1] in the *-case.

Proposition 7.1. The following estimates hold for n — oco:

&) W =5 ey = O ().

(i7)
(idd) [l (v = 03) = B (Whga = Ty le2gme) = O (amggzyn)
() |y, — 17,) — (Nn+1 //I;LH)HB(E*) = O(m)-
Proof. The proof is for the most part taken from [4, Proposition B.2], with the only difference
being the contribution from ¢ = OU instead of ¥ N U.

For (i), let us write

|27, — ||L2 () = O(inm llogzn),

7 (on = )2y = 185 (05 = T T2y + N (05 = T 122 (- (7.1)
As fiplsexr = [f]sesrs Unlsexr = vflsexr and Uplsexr = Uf|sexr, one can conclude from [4,

equation 5.1] that

I~ Tl = O (o). (72)

nl/2log?n

Hence it remains to consider the term || (vy, — Up)l2(ne). Recall that for s € ¢ we have
vx(s) = PM(s) and 07 (s) = P™(s) and so it follows from Lemma 5.2 (ii) that

[, = Ol Loz = O(n™1). (7.3)

Moreover, from Lemma 5.2 (iii) it also follows that 7i%(s) = Q™ (s) []3(”)(3)]71 is uniformly
bounded for s € %2f. Hence we conclude

1725 (v = Tl 2 (zey = O(n 1)

which together with (7.2) proves (i).
Point (ii) follows from (i) by considering

== (1= €)= (=) = (1= ) el el (e
= (1= (el ~ )7 = (1= €l) 5. (nlur — 7).

As (1 — Cl(ff))fl, Cs,. are bounded operators (uniformly in n), it follows that

R R 1
H%—%ummswm%—%me‘O<mm@%>

showing (ii).
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For (iii), we will again decompose the norm as in (7.1). As before, following the arguments
found in [4, Proposition B.2], we conclude that

N N 1
1701 = 82) = Bhaa(vtis ~ Pr iz = O ()

For the remaining term, we will use the fact that the local parametrices P(™(s), P(")(s) have
an infinite series expansion in powers of n~! which is uniform on ¥, see [12, equation (8.2)]:

oi(s) = PO s (HZA’“) )

Th(s) = PO(s) ~ (I 5 Ak(s)) N(s),

where Ay and ﬁk are n independent and can be explicitly computed. In particular,

un(8) = viga(s) = O(n7?), Un(s) = Tria(s) =0(n7?) (7.4)
uniformly for s € . Hence, using the fact fi5(s) = I +O(n™') uniformly for s € X¢ (see (5.9)),
we can write

7 (v =) = i (Vg = On) ey S N = Fng) (v = 03) 2wy + O (7).
Additionally, it follows that 13 (s) — i 1 (s) = O(n™1), (even O(n™?) see [12, equation (8.7)])
uniformly for s € ¥¢. Together with (7.3), we can conclude that

(%, = ) (v = Tl L2 guey = O(n72),
which proves (iii).

In order to prove (iv), we first write
* ~k * ~k n)y—1 n)y—1
(= 7i3) = (it = Bing) = (=€) T = (1 =) ')
. ((1 . C(nJrl))—lI . (1 o éZLJrl))—lI)
n 1 ~
= (1-C) 7 G (v = 77)
1 — * o
— (1= ) T (A (v — )
n 1 n
= ((1-c) ™ = (1 =e) e @ - )
n+1 1 ~ * o~

(1= ) TR (i (v = ) = B (1 — Th)).

From the uniform boundedness of (1 — Cq(ffﬂ))_l, Cs.. and point (iii), it follows that

n —loa— % 'l m !
10— e T e s (v = 5) = Fiter (Vher — Tna) | g2y = O <n/lgn> '

For the remaining term, we have

(1= = (1 =™ Yes. (s (vr - T2)
= ((1-c) el — ey (1 - el T e (o — T8)). (7.5)

v

Now observe that

lef) — ety HL2 ooz < o = vaglleese). (7.6)



32 P. Deift and M. Piorkowski

It has been shown in [4, p. 54] that [[v}; — v}, llpe(sr) = O(n™!), hence with (7.4) it follows
that

vy, = v 1l (me) = O(n7),
which implies using the bound (7.6)
e — e

)HLQ(Z*)—>L2(E*) =0(n).

Plugging this estimate together with (i) into (7.5), we conclude that

)\ — n - — (K (K ~k 1
11— et — (1 ¢t 1)c2*<ﬂn<vn_vn>)um*)—o(),

n3/2log?n
which implies (iv) and finishes the proof. [
We immediately get from Proposition 7.1:
Corollary 7.2. The following estimates hold for n — oo:
(8) [l7n(vn = 0n)llz2(sry = O (srmisgzy)
(@) |lpn — Bnllr2sry = O(m%
(i0) [I7in(vn = Tn) = fins1(ng1 = Bns) [ r2(or) = O (g ) -
(1) [[(pn = in) — (nt1 = fnt1) | L2(mr) = O(m)-

Note that we restricted the path of integration to X". The contributions coming from XN U
turn out to be of smaller order as will be shown in Lemma 7.6.

To obtain an asymptotic formula for the recurrence coefficients, we need to obtain an asymp-
totic formula for (3.9) which in our current notation reads

n An 1 o~ o~
Qg ) - g )= “omi Eﬂn(vn - Un)ﬂnlds' (7.7)

The key in proving Theorem 1.1 lies in the following proposition.

Proposition 7.3. For n — oo the following estimates hold:

) _ 5o _ 3 -1 i o( 1 )
@ @ 16nlog2n< i 1>+ nlog®n

Q-0 - @ - ar ) = () )ro (k)

"~ 16n2log?n \ i n2log3n

and

We will make use of two important results stated in [4, Section 5.2], but restricted to the
contour X":

Proposition 7.4. The following estimates hold:

1
/ fin (Vn — U )i, Yds = / Tin (U, — )i, Yds 4+ O ( ) , (7.9)

nlogtn

and

[ st =00 s = [ s (e = B s
1

~ ~ Al ~ ~ y~e1
= /r Nn(vn - Un),un ds — /T Hn+1 (UnJrl - Un+1)ﬂn+1d8 +0 <7’L2 10g4 i

) . (7.10)
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Proof. For (7.9), observe that

'

/ tin (Vn — U )i, Yds = / Tin (U, — D)1, ds + / (ttn — Fin) (Vn — Ui, *ds. (7.11)

As detp = detp = 1 and v — ¥ has a nonzero entry only in the 21-entry, it follows through
explicit calculation that [[(v, — 00 )i, | 225y = [lfin(vn — n)ll12(sr). Now using estimates (i)
and (ii) from Corollary 7.2, it follows that the error term in (7.11) can be bounded by

e 1
(vn = Bu)Ain | p2sry = O <) '

\ [ o = A = i s i
r nlog™n

S llin — //ZnHLQ(ZT)
In a similar fashion for (7.10), we can write
[ o =5 = [ (s = )i ds
= [ Ao =8 s = [ G (s = D)o
[ = B[00 = 0" = (o = D)y s
+ /2 [(ttn = Fin) = (ttnt1 = Bt 1) ] (Vng1 — Bog1 )iy 11 ds. (7.12)

We can now estimate the two error terms in (7.12), using Corollary 7.2,

[ = B (0 = 007 = (o = D)

N N R R . 1
S H:un - /anHL2(ZT)HMn<Un - Un) - ,Ufn—l—l(vn—s—l - Un—&-l)HLQ(ET) =0 <> )

n2log*n
and
‘ / [(ttn = Fin) = (g1 = Fing1)| (Ung1 — Ong1 )iy 41 ds
< -~ A~ o~ o~ ].
S (n = in) = (pngr = fing 1) |22 (o) | Bna1 (Vng1 = Ongr) | 2(sr) = O i )
n*log™ n
proving (7.10). [

The next result, stated in [4, Section 5], contains the leading order term in the integrals found
in Proposition 7.4:

Proposition 7.5. The following estimates holds:

1 . PN 3 1 —i 1
— Uy, — O ds= ——«— ) + O
271 Jsor fin (O = O )i 16nlog?n <—1 —1> (nlog3 n)

and

1 N P 1 - - o
Gy - Fin (Un, — Un)ﬂnlds T om - Fn+1(Vnt1 — Un-&-l):un}rlds

3 AT AR
16n2log?n \ —i -1 n2log®n )’
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Proof. The proof is essentially given in [4, Propositions C.3 and C.4]. The main difference

is the occurrence of fi, instead of i, = QV(,”) We provide the full proof of both formulas in
Proposition A.2. |

Note that in the formula (7.7) the integral is over 3, while in the Propositions 7.4 and 7.5 the
integrals are over ¥7. It remains to show that the remaining integral over ¥V = ¥, N U, which
is localized around the point —1, is negligible. This is the content of the next lemma.

Lemma 7.6. For n — oo, we have

PN 1
n\Un — Un — = |- 1
[ ten = itas =0 (o (7.13)

Proof. First, we need to show that Q*(z) = Q(z)[P(z)]! for z € U is uniformly bounded
as n — oo. Note that this statement is more intricate than the corresponding statements for
Q(2) [ﬁ(z)]_l and Q(z) []3(,2)]_1, as the logarithmic weight function is not covered in [12] and
hence we do not have equation (5.9) for Q(2)[P(z)] ! at our disposal. Recall that for s € ¢ = 9U,
we have

1 (s) = Q(s) = Q(s)[P(s)] . (7.14)

From (7.14), we see that on 9U, p* is in fact the restriction of the analytic function Q*(z) =
Q(2)[P(2)]7Y, z € U. Moreover, |6l 2mvy = O(1) for n — oo, as p* = (1 — Cor)
and (1 — Cy+)~! is uniformly bounded on L?(¥*). Thus, using Cauchy’s integral formula, we get

for ze U
1/ w(s)ds <0 1
21 Joy s—z |~ dist(z,0U) )

We have some freedom to choose U, so if necessary we can shrink it and conclude

Q"(2)| =

Q*(z)|=0Q1), zeUl, (7.15)

uniformly as n — oo. Let us now rewrite (7.13), where we drop the n-dependence for better
readability:

/Z =D s = | Q(s)P-(9)(v(s) ~ (s) [P-(s)] TR ()] . (7.16)

We now list bounds for each of the factors in the integrand:

e (2.4) and (2.13) imply that for some ¢ > 0

o(s) —(s) = 4 (T =5 (6)67(s) 0
= O(|s + 1[32emenlst17%) s € 2V (—1,1),
0, sexX¥Un(-1,1),

e (5.9) and (7.15) implies that [Q*(2)]*L, [Q*(2)]E = 0(1),
e and (5.10) implies that [P,(z)]il, [ﬁ,(z)]il =0(|]z+ 1]71/2).

Taking the contributions of all factors in (7.16) into account we see that the integrand can be
estimated by O(!z + 1|1/2e_‘m|z+1|1/2), which precisely integrates to the error in (7.13). |

Propositions 7.4 and 7.5 together with Lemma 7.6 now readily imply Proposition 7.3.
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7.2 Asymptotics of the recurrence coefficients

Next, we will derive the asymptotics for the recurrence coefficients stated in Theorem 1.1. This
subsection follows the same line of reasoning as [4, Section 5.2].

Recall the result of Corollary 3.3, which states that the recurrence coefficients of the orthog-
onal polynomials with weight function @ satisfy

1 1 ~ 1 1 1
P 1 1 ). 1
0=+ 0(3) B=3-1a () (7.17)

With the help of Proposition 7.3, we can now expand (3.7):

an = = (@)}, = (@), = (@), = (@"))
3 -1 i 1
B (16nlog2n ( 1 1) +0 <nlog3n) )11

16n21og%n n2log®n )’

Now substituting the asymptotic formula (7.17) for @, implies (1.2).
The proof of the asymptotic formula (1.3) is more involved. First recall [12, Section 8], in
which it is shown that for z away from 41, we have

Rl(z)

QM (z2) = <1+ +Er(z,n)> N(z), (7.18)
where Rj(z), Er(z,n) are matrix-valued functions, holomorphic for z € Qg (cf. Figure 4),
satisfying

C1 C2
E
for some c1,co > 0. Importantly, R; is n-independent. As a consequence of (7.18) and (7.19),
we obtain

|R1(2)] < |Er(z,n)| < zZ — 00 (7.19)

|2In?’

OO () — O ()] < 2
‘Q (Z) Q (Z)‘ ~ \z|n2’ zZ —» 00,
from which
A(n A(n+1 1
Q- =0 (ng) (7.20)
follows. Additionally, direct computation leads to Nia(z) = —i + 0(2_2) implying
Aoy b 1
Now using (7.8), we conclude from (7.20) that
() _ o) _ Hn) _ Fntl) 1 _oft

Regarding formula (3.8), we now obtain using (7.21) and (7.22), together with Proposition 7.3:

bi _ZZL = ((anﬂ))m o (A§n+1))12) ((anﬂ))zl o (Q§n+2))21)
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%*(é§¥f)12[((62Y%*”)21‘* Q™)) = (@), = (Q"™),))]
~ (e () ) 0 ()
* <_;1 +0 (i)) (16n2?1;g2n +0 (n2 lig3n>>

3 1
= — +0 . 7.23
32n2log?n ( n2log3 n> (7.23)

Moreover, we have

= (by = bn) (1 + by — by + O(n72)) (7.24)

As En = %+O(n*2), see Corollary 3.3, and b, > 0, we have that (l—i—bn —/b\n+0(n*2)) > 1/2—¢,
which with (7.23) implies that

by — by = O <1) . (7.25)

n2log?®n

Substituting (7.25) once again into the term (1 + by, — by + O(n™?)), we conclude from (7.24)
that in fact

b2 — b2 = (b, — by) (1 4+ O(n72)),

which with (7.23) implies

N 3 1
by —bp=—— O ).
32n2log? n <n2 log? n)

That together with the asymptotic formula (7.17) implies (1.3) finishing the proof of Theo-
rem 1.1.

A Proofs of certain propositions

The following appendix contains proofs of Propositions 2.7 and 7.5. These differ in certain
details from the analogous proofs in [4], hence are included here.

Proposition A.1. Fiz R > 0. Let ry,, 7, € (0,1), n € N be two sequences satisfying ry, 7, — 0,
such that n‘;—z — 1| < R. Then

2 2 2 2

F F _ . F F _
w—+(1 + ) — w—+(1 + i)+ — (4 rn) = ——(1+7a)

1 1
= O(rplog|logr|) + O ——— ) +0 (= ),
(s ogal) <m%%%) <#>

where the implied constants in the O-terms depend only on R.

Proof. Let us assume without loss of generality r,, > 7,. It follows from definition (2.1) that

1/21/1 log w(s) ds

— 2 _
log (L4 ra) = ((1+7)" = 1) "5 1 (2 1) P s = ()
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| d
(\frl/Q—i—O( 3/2))2 / ogw(sl)/2 - (1S+ -
i) 4 (s2 — 1)+ s T
Moreover, by [4, equation A.11], we have
/1 log w(s) ds _0 log | log 1y, |
S (s2-1) P (L) ro/? ’
implying that, in fact,
lo F(1+T )_ \/§T1/21/1 logw(S) ds +O(’I“ lo |10 , |)
g n) — n 2i 1(32—1)i/28_(1+rn) n 108 gTnl).
In particular, we obtain
F(l1+m, IR
log 7( —H: ) = \@riﬂ./ ogw(s) ds
F(1+7,) 27 Jo (32_1)1/25—(14-1"”)
_ ez L 1 /1 log w(s) ds
" o (S271)1/2s—(1+fn)
1 /“ oguw(s) [ vor'? AR/ ]
2mi J oy (2 1)1 2 s = (T4rm) s —(1+7)
+
+ O(ry, log |logry|). (A.1)

The term in the bracket can be estimated as follow:

Vary? V2R

—(L+m) s—14+7)|

e

1/2 - 1/2
. ' (s — (1+7n)) = (s — (L4 1n))
V2 (s = (L+7n))(s = (L + 7)) ‘

14 7’1/2 1/2) (7”711/2 . 77711/2)
(s—=Q+mrp))(s—(1+7))

1/2:1/2) 1/2 1/2
1 n 'n» n
Vo i H<r> —1

(s = (T 4ra))(s = (L+7))| |\Tn

o) 2

:O</)
n

where we used that s € (—1,0). Thus (A.1) can be rewritten as

F(1+mr,) 19 1 /1 log w(s) ds
log ZAH ) _ 512 L
CFA+ ) vanlte 0 (s2— 1)/~ (L)

_ ez L 1 /1 log w(s) ds
" o (s2 1)1_/23— + )

1/2
+ O(rylog|logry,|) + O T:L ),
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Now, after the change of variables t = 1 — s and some algebraic manipulation, we get (cf. proof
of [4, Proposition A.4])

F(l+r,) il /1 logw(l—t) dt  #/” /1 logw(l—t) dt
0

1 = _
CF1 ) 2n Vi t+r  on Vi e+
1/2
1
+QWH(rn,rn)+O(rnlog|logrn\)+0( - ), (A.2)
where
1 Vit dt
H n7~n — 1/2—~1/2/1 1—t[ :|
() = (/2 = 7%) [romun1 =) | e

T N S S L P

Thus, we can estimate

1
Gl < [ =) [ oo vt )} dt

V2V2—t+(2—1t)] t
1 Vit |7, — | dt
+f71h/2/ logw(1l —¢ [ ] n n
0’ gl ) V22—t 4+ (2—t) ] [t +ra| - |t + 70
»/2 - ! Vi dt
<cf1/27“_1+~1/2w/ log w(l — ¢ [ de
< et |57 = 0| gw(l—1)] NN e aacEr i
7’1/2 7“1/2
e M| 4—c~1/2 “_1l=0|2].
n 1/2 o n
N——
<£ <

1/2
So, we see that H (ry,7) can be included in the error term O(™-).
For the remaining integrals in (A.2), we obtain after performing the change of variables
t — rpt and t — 75t in the first and second integral, respectively,

7,1/2/1 logw(l—1t) dt _fl/g/l logw(1—1t) dt

" Jo Vit t+rn " Jo Vit t+7n

_/1/”‘ logw(l —ryt) dt _/1/’*” logw(1 — 7yt) dt
0 0

= Vi t+1 Vi it
/1/’“n [log w(1 — rpt) — logw(l — Fypt)] dt _ /UF" logw(l — 7yt) dt (A.3)
—Jo Vi t+1 S, Vi t+1 '

Using the fact that |logw(1l — 7,t)| is uniformly bounded for ¢ € [%, %], the last integral
in (A.3) can be estimated via

UTn log w(1 — Fpt)
1/rn \/7E t+1

1/in
/ og w(1 — Fut)|dt
Lo (1)rp, 1)) J1/rn

1/2
7]’—1‘ _O<r">,
Tn n

/
and hence can be again included in the O(r’ll 2) -term in (A.2).

Hm

3/2| 1

1

= crl/?
Tn  Tn

<c7“
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Let us now consider the remaining integral in the last line of (A.3):

1/rn . dt
/0 [log w(1 — rypt) — logw(l — Fpt)] B2
ra w(l — rpt) dt
= 1 " A4
/0 ©8 <w(1 —at) ) 32 4 112 (A-4)
Now define a = a(ry,7p;n) = n(;—z — 1) € [-R,R]. Note that for ¢t € (0, %), we have
log2 < log %, hence
w(l —rpt) logZ  log % —log 22 log 2
w(l — Fut) » B log fit log Fit
log(1+ & 1
log 75 nlog = n

Thus, we can estimate the integrand of (A.4) by
w(l —rpt) a 1
1 = O|—=
°8 w(l —Fut)  nlog t * <n2> ’
where the O(#) term is uniform for ¢ € [0, - ] Substituting this into (A.4), we obtain
1/rn 1 dt
/ LQ tO0\3) ) o pn
0 . n $3/2 +t1/2
1ra! 1/rn a dt 1
— ). A.
(/ / / 1/2) nlog%t3/2+t1/2 +O<n2> ( 5)
Note that here we use the assumption r,, < 1. Two of the integrals in (A.5) can be estimated
by
< /“11/2 c1 dt 2011”1/4 _0 r}/4
~—|Jo nlogr,tl/? n| logr,| nlogr,

_ /1/7"n Cﬁi - 027,711/4 5 1/4 ‘
=Sz 32 n n

For the remaining integral, we have
1/rn a dt 1/rn a dt
/7“71/2 nlog 2 t3/2 + t1/2 /r}/2 nlog 2 —nlogt t3/2 + t1/2
1/2

_ /1/7" a ( 1 ) dt (A6)
= 2 I : :
r/2 nlog =\ 11— lo;gé t3/2 + ¢1/2

Note that because ¢t € [r,l/2,r;1/2] we have |logt| < %Iog % < %log % for n sufficiently large
depending on R, so the last integral in (A.6) can be estimated by

1l logt Lo log? ¢ dt
nlog = /12 log % log? % t3/2 + ¢1/2°

/r” a dt
0 nlog%t3/2+t1/2

and

/1/% a dt
1/rY/2 nlog % 3/2 4 t1/2
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Making the change of variables v = ¢1/2, this can be rewritten as
/I/T" 2 log vy L0 log? d~y
nlog pi/4 log % log? 7% ¥ +1
/
_ 2a /1/” d~y +/1/T’114210g’y d~y 40 1
a nlog T ra/t '72 +1 ra/4 log T '7 nlog Tn

2a > dy 2 log ~ dfy
- 2 2 + :
nlogﬁ o Y‘+1 0 log ’y +1 nlog T

Note that

[ =] =3
——— = arctan = —
0 724-1 fyO 2

while the substitution = y~! yields

/°° log(v)dvz/” log(n)dn
o V1 o 71

implying f > 710%1)? 1 =0.

Summarizing, we have shown that

1/rn B de¢
/0 [logw(1l —ryt) —logw(l — Fnt)] 32 4 4172

am 1 1
= 10 O ———— .
nlog (%) * (n ) * <n10g3 T‘n>

We can substitute this estimate in (A.3) and then (A.2) to obtain

F(1+4mr,) a
— 21 - e ), A.
8 F(1+7,) nlog % +6(ra;n) (A7)

where ©(r,,n) is short for O(ry, log|logry|) 4+ O( ) + O(5z). Exponentiating the expres-

nlog Tn
sion (A.7) leads to
F2(1+4ry)
o =1 O(rn,n
F2(1+7,) " nlogﬁ +Orm,n).
Moreover,
F2 2
—1+r,)——0+7,
() = (147
F2(1+r,) - F*)(1+7, 1 1
— (+T) (+T)+F2(1+T‘n)< )
wi(1+1ry) +(T+ry)  we(l+7)
 FR1+7) <F2(1+rn _1> F2(1+7,) <1_wi(1+rn)>
Cwe(1+7n) \F2(1+ 7, wi(1l+7ry) wi(1+7y)
F2(1 4 7,) a w (1 +175)
— +O(rp,n)+1— —— ") A8
wi(1+7m,) nlog% (rnsm) w1+ 7) (A-8)
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For the ratio of the weight functions, we have (here £ refers to the limit from Cy):

welyr,) logg dm | logy —logs
we(l+7n)  log 2 £ log 2 + i
log 7 a 1
=1+ —"—=1+——75——=+0(— |,
log%:twi n(log%:l:wi) <n2>
SO

a w4 (147 a a 1
nlog - wi(l+7p)  nlog i n(log i * i) n

Tia 1 1
=t+——— 4+ 0| —— o|—=]. A9
nlog?Z (nlog%) " <n2> (4.9)

Note that both error terms in (A.9) already appear in O(ry,n). Substituting (A.9) into (A.8)
and using (2.5) leads to

F—2(1+rn)—F—2(1+fn) _ P+ 1) (i i 5 +@(7"n,n)>

W4 W4 we (1 +7y) nlog? =
— <1 +0 <log1rn>> (inlczg% + @(rn,n)>
_ nlggigg + O(rp,n)
In particular,
i(l +rp) — i(l + ) + i(l +rp) — fj(l + )

1 1
= O(ry,n) = O(ry log |log ry|) + O <3> +0 <2> ’
nlog”r, n
finishing the proof. n

Proposition A.2. The following estimates hold:

1 R o 3 1 —i 1
— —r ds = ——— . + O A.10
27 Jsor fin(vn n)itn 161 log2 n <—1 —1) (nlog3 n) ( )

and
i - Fin (Un, — O )iy, ds — i - Fn+1(Vnt1 — Un+1),un+1d5
3 1 —i 1

= —— . +0(———]. A1l
16n2log®n <—1 —1> <n2 log3n> ( )

Proof. Following [4, Proposition C.3], one can show that the contributions to the integrals from
the contour X"\ (1,1 + 1/n) are exponentially small for n — co. Thus, we see that for n large
enough, up to an exponentially small error, the integral in (A.10) takes on the form

1 l+1/n

_2771_1 . Nn(vn - 671)/77;1(137 (A12)
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as X' N(1,1+1/n) = (1,1 + 1/n) is oriented right to left. Hence, we need to consider the
behaviour of fi,, near the point +1. In fact, as v,, — vy, is nonzero only in the 21-entry, see (3.5)
and (3.6), we just need to consider the second column of fi,,, which we will denote by i3 ,,:

~ _ /712,77,

H2,n <ﬁ22,n> .
It follows from [12, Section 6, 7] (cf. [4, equation B.12]), that for s € (1,14 1/n), i2,(s) takes
on the form

() = RIV(5)€ (5) (2n) K (0 (5)) 6" (5) (55, (5)) - (A13)
Here
_(K©ON _ [ #HKo(2¢'?)
€0 = (6)) = (ot Agacts))

where K is a special solution to the modified Bessel differential equation, see [18, Section 10.25],
characterized by the condition

. 3T
v for uw— o0 with |argu|<— —¢, >0,

K[)(U) ~ %e B

and f(z) = logi# locally around z = +1. The matrix-valued function R is holomorphic in
a fixed neighbourhood Uyq, of 41, where it satisfies uniformly

R(")(z):I—i—O(l), z€Uy1, n— oo
n

For £, we have

e =N (Z0) (4 ) e seun

where W = v/ is holomorphic in U, 1 as @ is nonvanishing close to 41 and N is taken from (5.6).
One sees easily that £ is holomorphic in Uy; and satisfies

1 1 =
-7 (400)
cf. [4, Proposition C.2] and (2.10). Using the explicit form of iz, in (A.13) and abbreviating
Kj=K; (an(s)), j = 1,2, the integral in (A.12) without the ﬁ-prefactor can be written as

1+1/n
- / (00 — Bty ' ds
1+1/n N o I3
e (1) o) (fv<s>)

G
0 N(F N7 e
( E2(5) = 2B (5))6>"(s) o) (w(3)> e

_K1> (2mn)~ 73/2g=1 (s) [R(”) (3)} “ds
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- /11“/" <J+o<i)>5(s)(2m)”3/2 (I ’,E;) <(1) 8) (Iff _*’Cl>

x (2)~o3/261(s) (1 +0 (i)) <Vf(s)>2 (FZ(S) N 2?@)) ds

F w4 w—

14+1/n 1 K _K2
— _ - 0'3/2 12 1
Jo (emro (@)t (e k)

x (2mn) =73/ (5—1(1) +0 <1>> (Vf(s)>2 (FQ(S) N 2?@)) ds

n F wy w_
~ o /1 o <5(1) +0 (i)) <é i) (’C;C’gc? _k,f/@ (A.14)
« (27}; g’) (51(1) +0 (;)) (Vg(s)f <5i(s) + i(s) —zif(s)> ds.

Here we used that the matrix i% has determinant equal to 1, cf. [12, Remark 7.1]. Note

that all O()-terms in (A.14) for s € (1,1+ 1) are bounded by £, where ¢ > 0 is fixed. Hence,

we obtain using (2.10) and (2.12) in the second last line

1+1/n
[ falon - B s
1
1+1/n 10\ (1K —K2 00
_ 1 —1
- 27m/1 ) <0 0)(“5 —’C1’C2> <0 1>g @)

« <Vf(s>>2 (Fz(s) AT 2%@)) ds

I W4 w— w

<IC1’C2 —IC% > . 37‘(’2 +O< 1 )
,C% —K1Ko log2 % log3(:v — 1)

:O(m)’ by arguments as in [4, Proposition C.1]

= [ e () K e (Zio) (i@) +Z - 25;2(3)) ds
0 ()

—2mng) (o o)) [ e (;Y(s))? (F2<s> + ) - 2ﬁf(s>> ds
0 ng)

ol ) a0 ) o ()

by [4, Proposition C.1]

+0

L(1,141/n)

_ 3 ( 1 )
8n2 log2 n +0 n2 log3 n

3mi —i 1
= 7'1'12 <1. 1)—1—0( 3 >, (A.15)
8nlog®n \—1 —1 nlog®n

which after dividing by 27i is equal to (A.10).
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To show (A.11) we proceed just a before, but use a more precise expansion of RM | see [12,
equation (8.7)]:

RO(z) =1+ Rln(z) +0 (1) ,

n2

where the O(%)—term is uniform in z. We use this expansion in (A.14) to obtain

1+1/n
- / (0 — )i ds
1

— _27m/11+1/n <I+ Rln(s) +0 <n12>) E(s) <(1) i)
(k) (5 Do (-5 o ()

2 2 2 2
X <V/\\}(s)> (F(s) + F—(s) - 2{(3)) ds. (A.16)

3 W4 w_ w

A similar expression holds for the second integral in (A.11) but with n + 1 instead of n. Next
define y; = n?f(s) and yo = (n+1)2f(s). Note that for s € (1,1+1/n), we have 0 < y1,y2 < cn
for some ¢ > 0. Let us denote by f; ! the local inverse of f around 1. Then we have with some
constant a

1, . Y1 2dy, ayi 1
ds:ﬁ(fll)/<ﬁ>dy1:7n2 <1+n2+0< >>,

3
e () = e (U e o ()

Now performing the substitution y; = n?f(s) in the expression (A.16), we get

ds =

1+1/n
[ Ao - B s
1

_ 4m n2f(141/n) <I—|— Rl(fl_l(%)) ) <n12 ) £ (ffl (ﬂ))

n Jo

(y1)Ka(y1) K3 (y1) P
o ) (™ —aietn) (T 1)
et (17(5)) <I— Rl(flnl(zé)) L0 (;)
(RO D) (5 6 () i (5 () -2 (5 (4)
x <1+CZ/21+0 <n12>> dy1. (A.17)

We get a similar expression for the second integral in (A.11) after the change of variables
-1 .
S = fl ((nffl)?)'

141/(n+1) 1
- / nt1(Vn41 — U”+1)/’L7_L+1d8
1
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(7 () (0 ) (B0 i)
(5 o) - o)
(7 (5 () (5 00 () i (5 ()
5 (1 () (1 im0 () o (419

Now for 0 < y < cn, we have uniformly

Ri(F7() Rl () (4).

n n+1

where we used [12, Lemma 6. é/ll in the last estimate. Note that all these error terms can be
uniformly bounded by O(Hg ). Additionally, we can choose r, = fi° (W) -1 =0(%),
=f1 ( CES)E 7)) — 1= O(%) in Proposition 2.7 to obtain

(! (nQ))+5*<f1 () o (7 (5t o)
~ (7 () =0 Gareslios (5)]) +0 ()

Note that indeed n’ ;—Z — 1} < R for an appropriate R > 0, and ry,, 7, € (0,1) for n large enough
due to 0 <y < cn.
From [18, equation (10.40)], we have that

Ko(u) ~ %e_“, K{(u) ~ — e ¥ (A.19)

for u — oo with |argu| < 3{ — ¢ and € > 0, implying that the K;(y) decay exponentially for
y — oco. Therefore, changing the limit of integration from (n+1)2f(1+1/(n+1)) to n?f(1+1/n)
in (A.18) will only introduce an exponentially small error which we will neglect. We are now in
a position to evaluate (A.11), by taking the difference of (A.17) and (A.18):

= —/ fin (v — Tn) i, " ds —I—/ Fin1(Vnt1 — Ong1) i1 ds
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e (0 () (10 (3)) (0 ()
(20 @)+ 2 (0 () -2 (0 () Jorr ()

il K1 (y) K2 (y) —K3(y) M
+ nO( < K3 (y —/C1(y1)IC2(y)> ( 2 )

[0 (%log ‘log (%)D +0 (nlolggn)]

y (’Cl(y)/Cz(y) ~K3(y) >

K5(y —K1(y)K2(y) (A.20)

LY(0,n2f(1+1/n)) ‘

Note that the y'/2 in the first L'-norm is absorbed by the exponential decay of IC;(y), which are
in L*(R4) because of (5.2) and (A.19), implying that this norm is finite and of order O(5;).
Now observe that for e™! <y < cn, we have

log |log (%) = log ( —logy + log n2) < log (1 + log n2) < O(loglogn),

by the monotonicity of the logarithm, while for 0 < y < e~! we have

log |log (%) =log (—logy + log nz) < log(—2logy) + log (2log n2)
n
< O(log|logy|) + O(loglog ),

again by the monotonicity of the logarithm.
Hence, for 0 < y < cn, we have

O (%log ’10g (%) D <O ( [log | log y[X (0,e-1) + loglognD

<0 (k)gl(;g”) (O(y) +1).

n

We see that the growth of O(y) can be again absorbed into the exponential decay of IC;(y),

implying that the second L'-norm in (A.20) can be bounded by O( We summarize:

log )

[ o~ G s+ / i1 (U1 — T )i ds

Sk (ro))el ()
(¥) Srn
Ko

X(é 9)( K -fcf <>)(2’*" ?)
2

2mn
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1
O(———— ).
+ <n2 log? n)
Inverting the change of variables y = n?f(s) and Taylor expanding &£, this becomes equal to
2mn  [IH1/n 1 1 0
arn ) (o)) 6 L)
Kike —K2 ﬁ 0 -1 1
X ( K2 k) o 1) (& WFO(S

« (Vf(s)>2 o+ B - 21;2(3) ds+ 0 <1> . (A.21)

F wy w— n2log®n

However, (A.21) is precisely n%rl—times the integral in the last line of (A.14), which was shown
to be equal to 3T, (I 71) + O(=13~) in equation (A.15). Thus, the expression in (A.21)

8nlogZn nlog®n

is equal to
1 3mi 1 —i 1 1
(e ()0 ) = ()
n+1\8nlog®n \ -1 -1 nlog®n n2log®n
3mi 1 —i 1
=—7— | . +0|—+-).
8n2log?n <—1 —1> <n2 log3n>

Taking into account the %ﬁ—prefactor, this is seen to be equal to the right hand side of (A.11),
finishing the proof. |
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