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Abstract. Via Andersen—Borot—Orantin’s geometric recursion, a twist of the topological
recursion was proposed, and a recursion for the Masur—Veech polynomials was uncovered.
The purpose of this article is to explore generalizations of Mirzakhani’s recursion based
on physical two-dimensional gravity models related to the Jackiw—Teitelboim gravity and
to provide an introduction to various realizations of topological recursion. For generalized
Mirzakhani’s recursions involving a Masur—Veech type twist, we derive Virasoro constraints
and cut-and-join equations, and also show some computations of generalized volumes for
the physical two-dimensional gravity models.
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1 Introduction

A remarkable identity [66] concerning the lengths of simple closed geodesics on a once-punctured
torus with a complete finite-area hyperbolic structure was discovered by McShane in his Ph.D.
Thesis [65]. After his remarkable discovery, McShane’s identity was generalized to bordered
hyperbolic Riemann surfaces of higher genus in a series of Mirzakhani’s papers [69, 70]. The
generalized identity leads to a striking recursion relation for the Weil-Petersson volumes of
moduli spaces of bordered Riemann surfaces, referred to as Mirzakhani’s recursion.

Theorem 1.1 (Mirzakhani’s recursion [69, 70]). Let VgYYLP(L17 ..., Ly) be the Weil-Petersson
volume for the moduli space of bordered connected Riemann surfaces of genus g with n ordered
boundary components of lengths L1, ..., L,. The Weil-Petersson volumes for 2g — 2 +mn > 0
obey Mirzakhani’s recursion

1
LV F(Ly, ... Ly) = = / DWF (L1, 6,0\PYY (0,0, Lic)ee'dedr
R

2 Jp2
+

+ ) /R ) RYF(Ly, Lin, OV 1 (€, L gy )0d, (1.1)
m=2
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Bosonic model y-coordinate function
KdV (Kontsevich’s matrix model) yEV(2) = 2 + > a2 Uaz®
Weil-Petersson (JT gravity) yWFP(2) = 5k sin(27z)
Airy (topological gravity) yA(2) =2

e
FZZT ((2,p) minimal string) yM®)(2) = %Tp(%ﬂz)
Supersymmetric model y-coordinate function
BGW (BGW matrix model) yBOW(z) =1+ > a>1Va?®
Super Weil-Petersson (JT supergravity) ySWF(z) =1 cos(2n2)
Bessel (analogue of topological gravity) y®(z) = %

p—1

Brane ((2,2p — 2) minimal superstring)  ySM®) () = (_1)Z = Up,l(%ﬂz)

Table 1. y-coordinate functions of physical 2D gravity models. T}, (z) and U,(z) denote the Chebyshev
polynomials of the first and second kind, respectively.

where Ly = {LQ,...,Ln} and Ly = {Lilv"'7Li\J|} fOT’ J = {il,...,i|J|} C K = {2,...,n}.
Here Pg\f\flp 18
stable
PRP(00, L) = VT (G L)+ Y VIR (G L)V, (€ L), (1.2)

h+h/=g
JUJ' =K

where stable in the sum means that h, h', J, J' obey 2h — 1+ |J| > 0 and 20/ — 1+ |J'| > 0,
and DWVY and RV are

T
DWP(-’L‘,y,Z):/ HYP(y + z,2')da/,
0

1 x
RV (z,y,2) = 2/ (pr(z,x' +y)+ HVYY (2,2 — y)) da’,
0
where the recursion kernel HWVF (z,y) is
1 1
HY (2,y) = +

l+e2"  1+e2"
Especially for (g,n) = (0,3) and (1,1),!

1
Vos (Ly, Lo, L3) =1,  LiVF (L) = =

DWVP(Ly, 0, 0)¢de.
2 Jr,

In [37, 38], it was shown that a Laplace transform of Mirzakhani’s recursion for the Weil-
Petersson volumes obeys the Chekhov—Eynard-Orantin (CEO) topological recursion [37]. The
CEO topological recursion was originally found in the asymptotic analysis of correlation func-
tions of Hermitian matrix models [6, 36], and the basic data of the recursion relation is ex-
tracted from algebro-geometric data of a spectral curve. The spectral curve C consists of basic
data (X;x,y, B): a compact Riemann surface ¥, coordinate functions (x,y) on £®2, and a bid-
ifferential B on X®2. In this paper, we focus on the following class of spectral curves with the
basic data:

1 dz®d
¥ =P, x(z):§z2, B(z,w) = 2o u;,

GouP (1.3)

"'We employ a different normalization for VIY‘{P (L1) compared to the one used in [69, 70] by a factor of 2.
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where the remaining y-coordinate function is specified depending on the models. In particular,
the y-coordinate function for the Laplace dual of Mirzakhani’s recursion is yWF (z) in Table 1.
This spectral curve resides in the class of the KdV spectral curve in Table 1 which involves time
variables u, and leads to the asymptotic expansion of the tau-function of the KdV hierarchy
given by Kontsevich’s matrix integral [59] via the CEO topological recursion [37].

In recent years, several fascinating developments and extensions of the CEO topological re-
cursion for the Weil-Petersson volumes have been reported in theoretical physics and geometry.
In theoretical physics, the non-perturbative studies of the Jackiw—"Teitelboim (JT) gravity moti-
vated by gauge/gravity correspondence uncovered a novel aspect of the Weil-Petersson volumes
and their recursions. In Saad-Shenker—Stanford’s work [88], the Weil-Petersson volume of the
moduli space of hyperbolic bordered Riemann surfaces arises in the computation of the path
integral of the partition function in the JT gravity, and the physical interpretation of the JT
gravity partition function as a matrix integral was pointed out.

In terms of the JT gravity interpretation, the coordinate function of the spectral curve for
the Weil-Petersson volumes can be found from the disk partition function of the (2,p) mini-
mal string theory in the background of Fateev-Zamolodchikov—Zamolodchikov—Teschner (FZZT)
brane [39, 92] in the p — oo limit [88].2 The (2, p) minimal string theory for p = 1 is, in particu-
lar, equivalent to the topological gravity, which is also known as Kontsevich—Witten’s intersection
theory on the moduli space of stable curves. The coordinate function of the spectral curve for
the topological gravity is the KdV spectral curve with all time variables set to zero, referred to
as the Airy spectral curve.

Saad—Shenker—Stanford’s analysis was further extended to the JT supergravity by Stanford—
Witten’s work [91]. The path integral for the partition function of the JT supergravity is
performed over the moduli space of super Riemann surfaces which are constructed as Riemann
surfaces equipped with a spin structure [19, 40, 52, 53, 61, 85, 87, 97]. In [91], a supersymmetric
extension of Mirzakhani’s recursion for hyperbolic (Neveu-Schwarz) bordered super Riemann
surfaces was derived, and the spectral curve of the CEO topological recursion for the supersym-
metric extension of the Weil-Petersson volumes was unveiled.

Theorem 1.2 (Stanford-Witten’s recursion [79, 91]). Let Vf;{v P(Ly,...,Ly,) be the supersym-
metric analogue of the Weil-Petersson volume, referred to as the super Weil-Petersson vol-
ume, for the moduli space of bordered connected super Riemann surfaces of genus g with n
ordered NS boundary components of lengths Ly, ..., L,.> The super Weil-Petersson volumes
for 2g —2+mn >0 obey the same recursion relation as Mirzakhani’s recursion (1.1) with re-
placements:

WP SWP WP SWP WP SWP
|4 -V , D — D , R — R ,

where DSWP and RSWP qre

DWP(z,y,2) = HWVP (y + z, ),
1
B (2,y,2) = 3 (HYF (2o 4 y) + HVP (22— ).
and the kernel function HSWF (xz,y) is

1 1 1
HSWP z, _ _ .
(z,4) 4w \ cosh %  cosh ‘TTW

>The spectral curve for the (2, p) minimal string was also considered in [13].

3There are several choices of the orientation- and time-reversal symmetries to define the JT supergravity.
Depending on the choice of these symmetries, the sign and power of 2 factors must be implemented to find the
partition function and the supersymmetric volume Vg%xVP. In this article, we adopt the normalization of ‘@%XVP to
agree with V.2, defined in [79] (see equation (2.25)).
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The spectral curve [79, 91] for the super Weil-Petersson volumes was found as a specialization
of the BGW spectral curve for the tau-function of the Brézin-Gross-Witten (BGW) model
[15, 50]. The BGW spectral curve involves time variables v,, and we find the well-known
spectral curve referred to as the Bessel spectral curve [30] by setting all the time variables v,
to zero. By comparison with the above bosonic models in the KdV hierarchy, one can naturally
consider a one-parameter family of spectral curves, which interpolates Stanford—Witten’s curve
for the super Weil-Petersson volumes and the Bessel spectral curve, a supersymmetric analogue
of the spectral curve for the (2,p) minimal string.* From some physical observations, the basic
data of the spectral curve for this supersymmetric analogue are expected to be found from some
brane partition functions of type 0A (2,2p — 2) minimal superstring.’®

In geometry, the framework of Mirzakhani’s recursion was generalized on the basis of the
Teichmiiller theory by Andersen—Borot—Orantin’s work [10], which is named as the geometric
recursion. The basic data of the geometric recursion consists of measurable functions on the
Teichmiiller space of a bordered Riemann surface, and McShane-Mirzakhani’s identity is rep-
resented in the framework of the geometric recursion. In this article, we call the generalized
Mirzakhani’s recursion as Andersen—Borot-Orantin (ABO) topological recursion, which arises
from the geometric recursion. And for the above physical 2D gravity models, the ABO topolog-
ical recursion is obtained as a Laplace dual of the CEO topological recursion.

In another work of Mirzakhani’s [71], the enumerative problem of simple closed geodesics in
hyperbolic bordered Riemann surfaces was extended and an elegant combinatorial approach to
the computation of the Masur—Veech volume of the moduli space of quadratic differentials on
Riemann surfaces with marked points was formulated explicitly. In this approach, the combi-
natorial data of the distribution of simple closed geodesics is described by stable graphs, and
the Masur—Veech volumes are computed by combinations of Weil-Petersson volumes. In recent
years, Mirzakhani’s combinatorial approach to compute the Masur—Veech volumes was estab-
lished further in a series of works by Delecroix, Goujard, Zograf, and Zorich [22, 23, 24, 25, 26].
(See also [17, 46] for related works.)

The Masur—Veech volume VolQ, ,, for the moduli space of quadratic differentials ¢ € Qg4
is labeled by the order of zeros and poles of ¢q. In particular for the principal stratum of the
moduli space Qg , of quadratic differentials, a novel connection between Delecroix—Goujard—
Zograf-Zorich’s result [25] and the ABO topological recursion was proposed in [8, 10]. The
ABO topological recursion to compute the Masur—Veech volumes is the Laplace dual of the
CEO topological recursion for the Airy spectral curve accompanied with an action of twist. The
twist action shifts the basic data of the ABO topological recursion (i.e., functions D and R
in Mirzakhani’s recursion), which implements the combinatorial data of stable graphs. It was
shown in [8] that the constant term in the polynomial obtained from the twisted ABO topological
recursion for the Airy spectral curve provides the Masur—Veech volume VolQ, .

In this article, we discuss the following points on the basis of the above developments for the
physical 2D gravity models listed in Table 1:

(1) derivation of a Mirzakhani type ABO topological recursion as the Laplace dual of the CEO
topological recursion (Sections 2.2, 2.3, and Appendix B);

(2) generalizations of the Masur—Veech volume (Sections 2.5 and 3), and a direct proof of the
twisted CEO topological recursion in Theorem 1.3 (Theorem 4.15 of Section 4.4);

(3) derivation of Virasoro constraints with or without Masur—Veech type twist and their so-
lutions via cut-and-join equations (Section 5);

boson super

4The y-coordinate functions for the bosonic model y and the supersymmetric model y are related by

super — ayb;un, where x(z) = 2%/2 for the physical 2D gravity models in Table 1.

®p is an odd positive integer in the (2, p) minimal string and the (2,2p — 2) minimal superstring.
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Bosonic model Recursion kernel H(z,y)

Weil Petersson (JT gravity) HWVP(2,y) = —Lm + —1=;
1+e 2 1+e 2

Airy (topological gravity) HA(z,y) =0y — ) + 0(—x — y)

FZZT ((2,p) minimal string) uj = £ sin (jm/p)

HMO) (2,y) = 2@?W<1wamgﬁ(awwWWm+y»+wawwu—yn

j=

+ Y2 (=1) cos (£5) (e H0G(—a — y) + e @ h(y - x))

Supersymmetric model Recursion kernel H(z,y)

1 . SWP 11
Super Weil-Petersson (JT supergravity) H>"" (x,y) = ( cosh =Z  cosh x%)
Bessel (topological gravity) HB(z,y) = 5(:U —y) — (5(:1: + )
Brane ((2,2p — 2) minimal superstring) — u := o-sin ((j — 1/2)7/p)

(
HSM®) (2, y) = z@””<n%w(pu—axe““@wx+w
TG —y) + I (—r —y) — 0y — )
+ 5p,1 (0(x —y) —o0(x +y))

Table 2. Recursion kernels of physical 2D gravity models (6 denotes the Heaviside step function).

(4) physical derivations of the basic data of the spectral curves and the Masur—Veech twist
action of the ABO topological recursion (see Appendix A).

On the first point, we will derive kernel functions of the generalized Mirzakhani’s recursions
for the 2D gravity models in Table 1. The recursion kernel for each model is listed in Table 2

On the second point, we will discuss twisted volume polynomials V, [fMV] with Masur—
Veech type twist fMV for the 2D gravity models listed in Table 2. For these physical models,
the twisted Mirzakhani type ABO topological recursion is

LV V] (L1,. .., Ly) = % / ] DfMV)(Ly,0,0) Py, [fMV] (¢, ¢, L )e¢'dedl’
]R

+ Z/ fMV LlaLmae)van 1[fMV}(£’LK\{m})€d€7

where P, , [fMV] is given by equation (1.2) for the twisted volume polynomials, and D[

fMV]
and R [f MV] are

D[f"V](Ly, Ly, L) = D(Ly, Ly, L3) + R(L1, La, L3)f"" (Ly)
+ R(L1, Ly, L)Y (Ls) + Lif™Y (L)Y (Ls),
R[f"V](L1, Ly, L3) = R(L1, La, Ls) + L™V (Lg).

Here the Masur—Veech type twist function fMV is fMV(¢) = e’fl—l' In fact, the Masur—Veech
volume VolQ, ,, for the moduli space of quadratic differentials on a Riemann surface of genus g
with n marked points is the constant term of the twisted volume Vg/}n [fMV] for the symplectic
volume Vgén of the moduli space Mg, of stable curves of genus g with n marked points in
Kontsevich—Witten’s theory. In this article, we refer to the twist action of the topological
recursion by the function fMV as the Masur—Veech type twist. We will compute an analogue
of the Masur—Veech volume for each 2D gravity model by a combinatorial method developed
in [25, 71].

The main claim of this part is a derivation of the CEO topological recursion for twisted
multidifferentials wg [fMV] as a Laplace dual of the twisted volume polynomials Vj ,, [fMV}.
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Theorem 1.3 (twisted CEO topological recursion [8]). Let Vg, [fMV] be the twisted volume
polynomials for the physical 2D gravity models in Table 2, which are expanded as

VVg,n [fMV] (Lla s 7Ln) = Z F(g) [fMV] at,...,an

n 2a;
Li
at,...,an >0 1=

N (2@2' + 1)!'

Then, for 2g — 2 +n > 0, the multidifferentials wq p [fMV] obtained from V, [fMV],

Wy [va] (21,1 20) = Z F(9) [fMV}al,...,an R 1 Cu(2a; + 25 2;)dz;,

at,...,an>0

where

1 1 1
Cn(2d; 2) 22d + 2 Z (2 +m)2d

mez*

is the Hurwitz zeta function,® obey the CEO topological recursion twisted by ™MV such that

Wy.n [fMV] (21,0 y2n) = RSSK[fMV] (21, w)Rwgn [fMV] (w, zK),
where z = {22,...,2n},
~1)dz 1 1 1
K fMV _ ( 4 L
e = ey aw ( R P DN e w2> ’
ng,” [fMV] (w7 ZK) = Wg—1,n+1 [fMV] (’U}, —w, ZK)
no(0,1)
+ > wna Y] (w, 20w g (Y] (—w, 20),
h+h/=g
JUJ'=K
and
dz1 ®dze 1 dz1 ® dzo
IV — B[V =y
woa [ ] (21, 22) = BIF] (21, 22) =) 2 > G-t m)?

mez*
= Cu(2; 21 — 22)d2z; ® dzo.

On the third point, we will focus on an algebraic aspect, which is formulated as the quantum
Airy structure [9, 60], of the ABO topological recursion and the CEO topological recursion. For
the physical 2D gravity models, we see that the quantum Airy structures are equivalent to the
Virasoro constraints, where the quantum Airy structures admit the Masur—Veech type twist
by a group action in [9] and then the Virasoro constraints are twisted as well. We explicitly
obtain solutions of the Virasoro constraints with or without Masur—Veech type twist by using
the cut-and-join equations in [2, 3], which are derived from the Virasoro constraints, and the
group action mentioned above.

On the fourth point, we will discuss a physical interpretation of the Masur—Veech type twist
of the ABO topological recursion in terms of the JT gravity. Via the path integral computa-
tions, the bidifferential B in the basic data (1.3) of the spectral curve C for the Weil-Petersson
volumes is found from the JT gravity partition function on a hyperbolic double trumpet [88].
As mentioned above, the basic data (]P’l; x,y, B [fMV]) of the spectral curve for the twisted CEO
topological recursion differs from C only by a shift of the bidifferential. In this article, we find

57* implies Z \ {0}.
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that such a shift of the bidifferential is obtained from the partition function of a massless scalar
field coupled to the JT gravity fields [54]. We also discuss a derivation of the basic data of
spectral curves for the other physical 2D gravity models in the parallel way as the JT gravity.

Here we highlight the consequences of this article.” From our observation in Appendix A, the
Masur—Veech type twist function fMV is found in the partition function of the massless scalar
field coupled to the metric field of the JT gravity [54]. This physical interpretation is quite novel
and matches with Mirzakhani’s enumeration of simple closed geodesics in hyperbolic bordered
Riemann surfaces [71]. To apply our physical interpretation of the Masur—Veech type twist
further, we perform a reverse construction of the ABO topological recursion data A, B, C, D for
the (2,p) minimal string endowed with the FZZT boundary condition and its supersymmetric
analogue, and the generalizations of the combinatorial formula of the Masur—Veech volume
in [25, 71]. The geometry of moduli spaces of (2, p) minimal strings is still veiled in secrecy, and
the symplectic volume of such moduli spaces is not studied well even in the physical context. We
hope that our computational results of the generalized symplectic volume and its Masur—Veech
type twist may be helpful for further studies on the Liouville gravity.

This paper is organized as follows. In Section 2, we summarize the formulation of the ABO
topological recursion and discuss physical 2D gravity examples. In Section 3, we show the
combinatorial computation of the Masur—Veech volume VolQ, , and its generalizations to the
physical 2D gravity models. In Section 4, we discuss the CEO topological recursion for the 2D
gravity models, and derive the twisted CEO topological recursion for generalized Masur—Veech
polynomials as a Laplace transform of the twisted ABO topological recursion. In Section 5, we
derive the manifest form of Virasoro generators from the (twisted) ABO topological recursion
on the basis of the quantum Airy structure, and compute free energies by solving cut-and-join
equations iteratively for the 2D gravity models. In Appendix A, we give a physical interpretation
of the Masur—Veech type twist of the topological recursions by an extra scalar field coupled to
the JT gravity fields, and discuss a derivation of the basic data of spectral curves for the 2D
gravity models. In Appendix B, we derive the functions D and R in the Mirzakhani type ABO
topological recursions for the FZZT brane in the (2,p) minimal string and its supersymmetric
analogue from the CEO topological recursion in the similar way as the paper [38] by Eynard and
Orantin. In Appendix C, we give the (twisted) volume polynomials for the 2D gravity models.

2 ABO topological recursion

In this section, after recalling the ABO topological recursion [10] which generalizes Mirzakhani’s
recursion [69, 70], we apply it to the physical 2D gravity models in Table 2. In particular, we
provide the kernel functions (2.19) and (2.31) for the (2,p) minimal string and the (2,2p — 2)
minimal superstring. In Sections 2.4 and 2.5, we also recall the ABO topological recursion with
a twist proposed in [8, 10], which generalizes the combinatorial formula of the Masur—Veech
volume in [25, 71] (see Section 3), and apply it to the physical 2D gravity models.

2.1 Formulation

The ABO topological recursion is a framework of recursions for volume polynomials defined on
the moduli space of connected bordered Riemann surfaces, which is a generalization of Mirza-
khani’s recursion.®

"To make this article a valuable resource for readers in the physical and mathematical community, some intro-
ductory aspects of the Masur—Veech volumes, topological recursions and two-dimensional gravities are provided
with explicit computations.

8The physical meaning of the volume polynomials for the 2D gravity models will be discussed in Appendix A.
At present, the volume polynomials for such models are not defined on the moduli space of connected bordered
Riemann surfaces. In this article, we define these volume polynomials as solutions of the ABO topological
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Definition 2.1 (ABO topological recursion [10]). Let V (L1, ..., L,) be a volume polynomial
labeled by g > 0, n > 1 satisfying 29 — 2 + n > 0, on the moduli space Mg, (L1,...,Ly)
of connected bordered Riemann surfaces of genus g with n ordered boundary components of
lengths L1, ..., L,, which obeys the ABO topological recursion such that”

Vg,n(L17-~-7 Z/ L17Lm7£ ‘/;7” l(g LK\{m})Edg
R4
1
+2/ C(Ly, 0, 0")Py (0,0, Lic)0t'dedr’, (2.1)
72
where Ry = [0,00), K = {2,...,n}. The topological recursion requires our initial data

B(L17L27£)7 C(Ll,&g/)a and
Vo,3(L1, Lo, L3) = A(L1, Lo, L3), Via(L1) =VD(L1) = / ( )D(U)dMWP(U),
Mai1(La

where pwp(o) denotes the Weil-Petersson measure on the moduli space M;j 1(L1) endowed
with a hyperbolic metric o on a torus with one boundary, and D(o) is a measurable function
on M 1(L1). The initial data satisfies some decaying constraints and symmetry properties
called admissibility conditions [10]. Here

stable
Pyn(,0, L) = Vyrmir (G0, L)+ > Vi (b Lo)Vis g€, L), (2.2)
h+h'=g
JUJ'=K
where stable in the sum means that h, b/, J, J' obey 2h — 1+ |J| > 0 and 21" — 1+ |J'| > 0,
and LJ = {Lil""?Li|J|}> LJ/ = {L Ll’n—l} for J = {’il,. . ,Z|J|} - K.

Q4100

Assume that the volume polynomials V, ,, are expanded as

Von(L1, .. L) = > FY . T]ea (L), (2.3)
ai,...,an>0 =1
where Fé‘f)an is referred to as the volume coefficient, and
L2a

(D)= —— 2.4

call) = Ga 1) (24)
By

/ B(Ly, Ly, O)ea(0)0dl = > B seq, (L1)eas (La),

R ay,a2>0

C(Ly, 6, 0)ea(O)ep(€)e0' LAl = >~ Coyeq, (L (2.5)

2
R+ a1>0

the ABO topological recursion (2.1) gives a recursion for the volume coefficients:

recursion (2.1) whose initial data are found from the inverse Laplace transforms of the CEO topological recursions
for the 2D gravity models. (In this approach, the volume polynomial Vi 1(L1) = VD(L1) is not found as the
integral of the initial data D on Mj,1(L1).)

°In [8, 10], the volume polynomial Vg, (L1,..., L) is denoted as VQg . (L1,. .., Ly).
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stable
1 h’
(e > ) 26

a,b>0 h+h'=g
JUJ'=K
where a; = {ai,,...,a;,} and ay = {ai ;.- -+, } for J ={i1,... i 7} C K. The initial
inputs are Bg} ,, 7', and
0 1
Fél?amas = Agé as? Fél) = Dal’ (2.7>

a _ Ra a _— Ca a _— Aa _— Ab
where note that By . =Bg,, Cj . = CZ, and Ay . = A2, = A, ..

Remark 2.2 (Mirzakhani type ABO topological recursion). The ABO topological recur-
sion (2.1) is a generalization of Mirzakhani’s recursion [69, 70] for the Weil-Petersson volume
Vg\leP(Ll, ..., Ly) of the moduli space Mgy (L1, ...,Ly) of genus g hyperbolic surfaces with n
geodesic boundaries of length L1, ..., L,. In this article, we call the following form of the ABO
topological recursion the Mirzakhani type ABO topological recursion:

L1Vyu(Ly,..., L Z / 2R(L1, Ly, )V p—1(2, Lo\ fmy ) da
Ry
1
+5 [, D) Py, Liydandy, (2.8)
IR+
where
R(z,y,z) = 2B(z,y, 2), D(z,y,z) = 2C(z,y, 2). (2.9)

2.2 Bosonic models

We refer to a class of physical 2D gravity models such as the JT gravity, the topological gravity,
and the (2,p) minimal string (denoted by resp. WP, A, and M(p)) as bosonic models (see
Table 2 in Section 1, and Appendix A for physical arguments). For the JT gravity, the Weil-
Petersson volumes appear in a part of the path integral of the partition function [88]. In the
Mirzakhani type ABO topological recursion (2.8) for each bosonic model, two functions R(z,y, 2)
and D(z,y, z) are given in terms of a kernel function H(z,y) as

R(z,y,z) = ;/Ow (H(z,t+y)+ H(z,t—y))dt, D(z,y,z) = /Ox H(y+ z,t)dt. (2.10)

In the following, we will provide the kernel functions H(z,y) for the bosonic models, and find
their topological recursions for the volume polynomials V.
2.2.1 Weil-Petersson volumes

The initial data of the ABO topological recursion [8, 10] for the Weil-Petersson volumes of
moduli spaces of connected bordered Riemann surfaces are

h(@) +cosh(L1+Z)
AVP(Ly, Ly, Ly) = 1, BWPL,L,e—l——l iy ik
(L1, Ly 3) ( b2 ) ©8 (cosh(L;) —i—cosh(LlQ_g)

!
040 9

Ly
9 -1
CWP(Ll,E, f/) = flOg <82—|—e2> , VDWP(Ll) l + L2 (2‘11)
1

Ly vy 1
e 48
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Here the initial data BVP and CWF are given by the formulae (2.9) and (2.10) with the kernel
function

1,1
1+e 3 14620

HYP (2,y) = (2.12)
For this model, the volume polynomial gives the Weil-Petersson volume of the moduli
space Mg (L1, ..., Ly) of connected bordered Riemann surfaces [70]:

n
L2

W)= [ e [ e (e S )
Mg,n(Lly---an) M =1

Here wWP denotes the Weil-Petersson symplectic form, and in the last equality, VQYYLP is repre-
sented by the integral of the ¢ and k1 classes on the moduli space ﬂg,n, which is the Deligne—
Mumford compactification of the moduli space of stable curves of genus g with n marked points.
(This equality is proved in Wolpert’s work [98].) The psi class 1); is the first Chern class of the
line bundle over M, ,, with fiber over (C,p1,...,p,) being the cotangent space T »C. The first
Miller—-Morita—Mumford class x1 is a tautological class defined by considering the pushforward
of 2 41 with respect to the forgetful map 7: ﬂgﬂﬂ — Mg,n- By comparison of equation (2.3)
with equation (2.13), the Weil-Petersson volume coefficients are

FJP9 = (H@wl)!!) / T (2.14)

i=1 Mg

g,n

Here the volume coefficient F(ylv _F.’.(,%)n does not vanish, if the condition below is satisfied: Y ;" | a; <

39 — 3 + n. Some explicit results of V(]YYLP are listed in (C.1).

Remark 2.3. One can introduce a deformation parameter s for the Weil-Petersson volume
(2.13) by replacing 72 with 72s in VDWF of equation (2.11).

2.2.2 Kontsevich—Witten symplectic volumes

In Witten’s work [95], a novel approach to the intersection theory of the moduli space ﬂg,n of
stable curves is proposed based on the two-dimensional topological gravity, and it is conjectured
that the generating function of integrals over My, is given by the tau function of the KdV
hierarchy. Witten’s conjecture is proved elegantly by Kontsevich [59], and the cell decomposition
of mg,n on the basis of Strebel’s quadratic differential is realized by metric ribbon graphs [77]
in his proof. On the basis of Kontsevich’s work, the symplectic volume of the moduli space of
stable curves is defined on the space of metric ribbon graphs in [12], and is referred to as the
Kontsevich—Witten symplectic volume.

The initial data of the ABO topological recursion [8, 10, 12] for the Kontsevich-Witten
symplectic volumes of moduli spaces of stable curves are

AMLy, Ly, L3) = 1,

1
BA(Ly, L, ¢) = 2L, ([L1—Ly— €, —[~Li+ Lo — 0], + [L1+ Lo — 1].)

1 if 0<0<Lo— L,
¢
11— — if 0<0<L,— Lo,
_ Ly
“ )L Lo —/
e it L — Lo| << Ly + Lo,
214
L0 if L1+ Lo </,
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1 1
A N oy A )
C (Ll,f,g) = 7 [Ll ¢ E] , VD (Ll) = 48L17 (2.15)

where [z]y = z for 2 > 0 and [z], = 0 for z < 0. The kernel function H* which provides the
initial data BA and C* is found from HWP in equation (2.12) for the WeilPetersson volume in
the scaling limit such that

Ay = Jim 5V (B2, 6) = 0y — ) + 02— ),
where 0(t) denotes the Heaviside step function,

1 ift >0,
Q(t)_{ 0 ift<o.

A geometric interpretation of the kernels BA and C* is given in [10].
For the initial data (2.15), the volume polynomial gives the Kontsevich-Witten symplectic
volume of the moduli space M, ,, of stable curves:

n 2
VA(L1,..., Ly) = / exp (Zéw)

Mg n

=1
n n
= ) (H(Qai—l—l)!!) /M gt T ] eas (Lo), (2.16)
ai,...,an>0 \i=1 gn i=1
la|=3g—3+n

where e, (L) is defined in equation (2.4), and note the homogeneity condition
n
|a] :Zai:?)g—?)—i—n. (2.17)
i=1

By comparison of equation (2.3) with equation (2.16), the volume coefficients are

0, = (Teason) [ ote 219
i=1 gm

Note that the volume polynomials Vg‘f‘n are obtained from the Weil-Petersson volumes V;%P in
equation (2.13) by

1
A I WP
Von(L1, ... Ly) = 6hm Fog—6+n Vom (BL1, ..., BLy),

and some computational results are listed in (C.1).

Remark 2.4. Essentially the recursion relation (2.6) for Kontsevich—-Witten’s symplectic volume
coefficients is equivalent to the Dijkgraaf-Verlinde-Verlinde formula [28] for the intersection
numbers on the moduli space of stable curves.

2.2.3 (2,p) minimal string

Let p be an odd positive integer. The (2,p) minimal string reviewed in Appendix A.3 resides
in a class of two-dimensional gravity, which yields the JT gravity for (p = oo) and the topo-
logical gravity for (p = 1). Accordingly, the volume polynomial Vg%(p ) for the (2, p) minimal
string interpolates the Weil-Petersson volume V;%P in Section 2.2.1 and the Kontsevich-Witten
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symplectic volume ng“n in Section 2.2.2. The kernel function given below for the (2, p) minimal
string is derived in Appendix B.1 from the CEO topological recursion for the spectral curve
found from the physical amplitude for the disk topology ending on the FZZT brane [39, 89, 92].
Here we just define it by

HM®)( Z I cos <pj> G @z +y) + e @Gz — Y))
=1
(10]—1)/2 ' -
+ > (—1) cos (pj) (euj(x+y)0(—x —y) + e @Yy — z)), (2.19)
where J
u;j % sin (7;]) . (2.20)

The kernel function (2.19) yields HMW(z,y) = HA(2,y) and HM)(z,9) = HWVP(z,y). The
formulae (2.9) and (2.10) provide the initial data BM®) and CM®) of the ABO topological
recursion, and the remaining initial data are

2 1 1
AM(p)(L17L27L3) =1, VDM( )(Ll) 71r2 <1 pQ> * Z8L%

From these initial data, one finds the volume polynomials V5, M®) for the (2, p) minimal string,
and some computational results are listed in (C.2).
The following theorem is proved from the formula (4.28) in Section 4.2.3 by Theorem 1.3.

Theorem 2.5. The volume polynomials for the (2,p) minimal string obey

Vo (L, Ly) = ) FM®) He (2.21)

ai,...,an=>0
|a|<3g—3+n

where the volume coefficients are

m bj bj 2
(-pm (—27%)" (2k —1)

PP DR U | e el | G

m>0 b1,eeesbm>1 j=1 J k=1

|b|=3g—3+n—|a|
o R e
Mg,n+m
= (H(Qai + 1)!!)
i=1
b/ b
27 2k — 1
><<eXp <_Z(b)(H(l_(pﬁ)>>7—b+1>’ral...7—an> y (222)
b>1 k=1 g

and the condition for non-zero volume coefficients Fal( )&‘Z) is la| =>"" ,a; <39 —3+mn. Here

we set T, = Tq; = 1/1;1 and introduced the notation

T N

m>0 m>0
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Remark 2.6. As mentioned above, the volume polynomial (2.21) interpolates the Weil-Peters-
son volume (2.13) at p = oo and the Kontsevich-Witten symplectic volume (2.16) at p = 1:

VMU(Ly, .. Ln) = Vi (L, .. Ly), VML, L) = VIP(Ly, .., Ly).

In particular, by comparison of the Weil-Petersson volume coefficients (2.14) with the for-
mula (2.22) for p = oo, we obtain a formula

—27? b
/ GZWQleiLl . ¢7C7l,n — <exp < — Z (b')7-b+1) Tay " " * T(ln> , (223)
Mgn b>1 ’

=z g

which is found in the literature (see, e.g., of [29, equation (2.24)]) and intended as

39—3 39—3 - b1+1 -

/ ng B (_1)39 3+m Z / wll . wﬁn +1
—— —3) | —— l... | ’
M, (39 3) m—0 m! broobm>1 Mg,m bl. bm

|b|=3g—3

by the homogeneity condition (2.17).

2.3 Supersymmetric models

Supersymmetric generalizations of the bosonic models are considered as we will discuss in Ap-
pendices A.4 and A.5. We refer to a class of models such as the JT supergravity [91], the BGW
model [15, 50, 79] in the limit of all time variables set to zero, and the (2,2p — 2) minimal
superstring (denoted by resp. SWP, B, and SM(p)) as supersymmetric models (see Table 2 in
Section 1). The super Weil-Petersson volumes [79, 91] arise in a part of the path integral of
the partition function of the JT supergravity. In the Mirzakhani type ABO topological recur-
sion (2.8) for each supersymmetric model, the two functions R(x,y, z) and D(z,y, z) are given
by a kernel function H(x,y) as

Rlz,y, 2) = % (H(zz+y)+ Hzz—y),  Dlwy2) = H(y+ 2 2). (2.24)

We will provide the kernel functions H(x,y) for the supersymmetric models as well as their
volume polynomials Vj ;, in the following.

2.3.1 Super Weil-Petersson volumes

The initial data of the ABO topological recursion for the super Weil-Petersson volumes'®

[79, 91],

are

1
ga
'%In this article, the normalization of the super Weil-Petersson volume V' " is chosen to be identified with V2,

defined in [79], which is equivalent to a specialization of the BGW tau function of the KdV hierarchy. The
normalization is checked as follows:

ASWE (L Lo, L3) =0, VDSWP(L)) =

1) The choice of the model in [79] corresponds to the supergravity for an odd spin structure in Stanford—
Witten’s work [91]. The functions D and R in [79] are related to the functions D and T of [91, equa-
tions (D.44) and (D.47)] by D(z,y, z) = —2D(x,y, z) and R(z,y, z) = 2T (z,v, 2).

2) Let VE,SYLV denote the volume function of the supergravity with the odd spin structure in [91]. Two vol-
umes Vgs,xv and an are related by fov = (71)"21_9\/;")".

3) Multiplying a factor (—1)"297! to the supersymmetric recursion relation (D.30) in [91], we recover the
recursion relation (7) in [79].
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and the remaining ones BSWF and CSWF are found by the formulae (2.9) and (2.24) from the
kernel function

1 1 1
HSWP T . )
(z,9) = 47 \ cosh % cosh ”:Tﬂ

For the above initial data, the volume polynomial gives the super Weil-Petersson volume of
the moduli space of super Riemann surfaces which is given by an integral over the moduli space
of stable curves

n
L2
VngVP<L17 e ,Ln) = / @gm exp (27r2H1 + E 2’1%) , (2'25)
g.m i=1

M,

and the super Weil-Petersson volume coefficients are

Ffl\fv%i) = <H(2ai + 1)”) / 27r m@gn 1 e :}Ln’ (2.26)
Mgn

i=1

where the Norbury classes ©,4, € H 49— 4+2”( g,n Q) are defined in [18, 80]. The super Weil-

Petersson volume coefficients Faslw Pgn) do not Vanlsh only if """ ; a; < g — 1, and this condition

implies that VSWP =0 and VSWP’S are constants which do not depend on L;. Some computa-
tional results of the volume polynomials VgST\ZV P are listed in (C.3) (see also [79)]).

2.3.2 Super symplectic volumes

Using the scaling relation

B

ﬁh—{go 7 cosh(fx) = d(),

one finds the kernel function
H®(z,y) = Jim BHWF Bz, By) = d(x —y) — 6(x +y),

for a supersymmetric analogue of the Kontsevich—Witten symplectic volumes referred to as the
super symplectic volumes. The initial data of the ABO topological recursion is given by

AB(Ly, Ly, L3) =0,

BB(Li, Ly, 0) = 2L (6(Ly — Ly — ) —6(—=Lyi+ Ly — 0) + 6(L1 + Ly — £)),
1
CB(Ly,0,0) = L—é(Ll —¢-0), VDB, = é (2.27)
1

The volume polynomial for the initial data (2.27) gives the super symplectic volume [79,

Proposition 6.2]:
(") n exp 711%
/M ! (Z 2 )

Vy(Li,...,Ly)

gn i=1
n
= > (H(2ai+1)!!> / Ognth® - - Heaz 0 (2.28)
at,...,an>0 \i=1 Mygn

la]=g—1
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where note the homogeneity condition
n
la| => ai=(Bg-3+n)—(29—2+n)=g— 1L (2.29)
i=1

By comparison of equation (2.3) with equation (2.28), the volume coefficients are

20, = (Tlew ) [ ettt 20)

i=1 Mg

Note that some of the volume polynomials Vgl?n are found from the super Weil-Petersson vol-
umes V;ZVP in (C.3) by

B 1 SWP
ng(Ll,...,Ln)_6113010@9_2\/;]7” (BL1,...,BLy),

or from the volume polgnomials VgS}Y ®) for the (2,2p — 2) minimal superstring below in equa-
tion (2.33) by VB, = Vo' .

2.3.3 (2,2p — 2) minimal superstring

Consider a family of ABO recursions interpolating the ABO topological recursions of super Weil—
Petersson volumes in Section 2.3.1 and super symplectic volumes in Section 2.3.2. Such a model
is provided by the type 0A (2,2p — 2) minimal superstring with any odd positive integers p.
A spectral curve of the CEO topological recursion in the (2,2p — 2) minimal superstring is
heuristically obtained in Appendix A.5, and then the kernel function in the Mirzakhani type
ABO topological recursion is derived in Appendix B.2:

(p—1)/2

1 : m 1 '
HMNM®) (g, 4) = — (=1) cos? ( (j - >> (e*uj(z+y)9(x +y)
2 st D 2
— e Y — y) + TP (—a — y) — STy — )
+ 3z —y) — 8z +4)) Gy, (2:31)

o = % sin (Z (j - ;)) . (2.32)

This kernel function obeys HSM1 (z, ) = HB(x,y) and HSM() () = HSWP(z,y). From the
formulae (2.9) and (2.24), the initial data BSM®) and CSM(®) of the ABO topological recursion
are obtained, and the remaining ones are
1

ASM(p)(Ll,LQ,LB) — 0’ VDSM(P)(Ll) — g
Using the initial data, one can compute the volume polynomials Vgsgl ®) for the (2,2p — 2)
minimal superstring iteratively. In particular for the supersymmetric model, the recursion for
the volume coefficients simplifies drastically, and the general form of the volume polynomials for
any odd positive integers p is obtained for ¢ = 0, 1,2, 3 as follows:

Vol ®(Ly, .. L) =0, V(L. L) =
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SM(p) _ 3+ 1) )
‘/Zn (L17 7Ln) = 198 71- + = ZL

SM (n+3 15 1
‘/3,” (p)(Ll""7Ln): 216 < <1—>+185+p ) (1—1)2> 7T4

+ 336(n + 4) (1 — ) ZL2

- 84ZL2L2 + 25ZL4] (2.33)
i#j

More computational results are listed in (C.4).
Similar to Theorem 2.5, the following theorem is proved from the formula (4.43) in Sec-
tion 4.3.3 by Theorem 1.3.

Theorem 2.7. The volume polynomials for the (2,2p — 2) minimal superstring obey

n
VAN Ly, L) = Y FRM®O [T eq, (L (2.34)
ai,y...,an >0 =1
la]<g—1

where the volume coefficients are

PG (neai Ry m)

i=1
b
(—1)™ b 2k—1)

D= S = H

m>0 by, bm>1 \j=1 k=1

[b|=g—1—]a|

x / Gg,n—&-mq/)? : W"%H wmm, (2.35)

Mgn+m

and do not vanish only if |a| = > ;1 a; < g — 1.

Remark 2.8. The volume polynomial (2.34) interpolates the super Weil-Petersson volume
(2.25) at p = oo and the super symplectic volume (2.28) at p = 1:

VML, . L) = VE (L1, .o Ly),  VEME(Ly, o Ly) = VOWP(Ly, ..., Ly).

In particular, by comparing the super Weil-Petersson volume coefficients (2.26) with the for-
mula (2.35) for p = co, we obtain a super analogue of the formula (2.23).

2.4 Twisting

Here we consider a twist action of the ABO topological recursion [8, 10]. The twisting of the
ABO topological recursion is originated from the study of the statistics of length of multicurves
in a connected bordered Riemann surface, which leads to a combinatorial computation of the
Masur—Veech volume [64, 93] for the moduli space of quadratic differentials on Riemann surfaces.
To discuss this aspect of the ABO topological recursion, we summarize a working definition of
stable graphs [71] (see [25, Appendix B] for a formal definition of stable graphs).

Let v; (i =1,...,k) be simple closed geodesics on a bordered surface Sy, of genus g with n
boundary components. We assume that 7; and v; (i # j) are pairwise non-isotopic with regard
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Figure 2. Top: Identification of S, , with an n-valent vertex decorated by an integer g of the stable

graph. Bottom: Identification of a decomposition of a bordered surface with an edge and half-edges of
a stable graph.

to the action of the mapping class group Mod,,, on Sy, and not intersecting each other (see
Figure 1 (left) for an example). A multicurve v is given by

k
v=>_ Hi
i=1

where (Hy,...,Hy) is a set of positive integers and 7;’s are disjoint, essential, non-peripheral
simple closed curves in ng.n For the above multicurve ~y, the reduced multicurve ~,oq is
k
Yred = Zi:l Yi-
A stable graph T" is associated with the pair (Sg.,Vrea) by cutting a bordered surface S,
along a reduced multicurve 7.q such that

N
Sg,n \ Yred = |_| Sga,naa (2.36)

a=1

where Sy, n,’s are connected stable bordered surfaces with 2g, —2+n, > 0. For example, a de-
composition S 2\ {71, 72} is found in Figure 1 (right). The associated stable graph I is the dual
decorated graph made of decorated vertices v, and edges e; found from the decomposition (2.36)
as in Figure 2. The basic data of the stable graph are given as follows:

e Vertex v, (a = 1,...,N): an ng-valent vertex decorated by an integer g, associated
with Sy, n, ;

LA curve v, is said to be essential (resp. non-peripheral) if Sy, \ 7; does not have disk (resp. annulus) compo-
nents.
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e Internal edge ¢; (i = 1,...,k): an edge associated with the simple closed curve ~;;

e Incidence relation: two vertices v, v, are connected by an edge e; if Sy, ,,, and Sy, , are
adjacent to a simple closed curve «; in Sy, s.t. Sy, n, Uy; Sgyn, C Sg,n, Where the edge e;
forms a loop in the stable graph for the case of a = b;

e Half-edge b, (p =1,...,n): a half-edge associated with bordered boundaries in Sy ,,.

We denote by G, the set of stable graphs associated with Sy, and by Vr and Er the sets of
edges and vertices in I' € G5, respectively.

Definition 2.9 (twisted volume polynomials [10]). Let f: Ry — C be an admissible test func-
tion, i.e., a Riemann-integrable function on R such that

sup(1 + £)°*|f(£)] < o0 for any s > 0.
>0

The twisted volume polynomials V, ,[f] are defined as combinations of the volume polynomi-
als V, , on the basis of the basic data of stable graphs by (see [10, Lemma 7.4]),

1
Vol L) = 3 i [ o TT Vi (e (aheacn)
reGgn R vevr

< T fee)eede., (2.37)

ecEr

where E(v) and A(v) denote the sets of edges and half-edges emanating from a vertex v € Vr,
respectively. The expansion (2.3) for V, ,[f] defines the twisted volume coefficients FO[f],, . :

n*

Vorlfl(L1, .. L) = > F9[fa, a, ﬁ ea,(Ls), (2.38)
=1

aty...,an>0
where e, (L) = L?*/(2a + 1)!.

Proposition 2.10 (twisted initial data [10]). The twisted volume polynomials Vy,[f] are ob-
tained from the ABO topological recursion with the following four twisted initial data (A[f], B[f],
C[f], D[f])-
A[f](L1, Lo, L3) = A(L1, Lo, L3), B[f](L1, L2, ¢) = B(Ly, L2, ¢) + A(Ly, Lo, £)f (£),
Clf)(L1,6,0') = C(Ly1,0,0') + B(Ly, £, 0)f(€) + B(L1, ', O)f (') + A(Lq, £, ) (0)F (1),

D[f](0) = D(o) +% D A (9T). o (7)€ (1))F (Lo (), (2.39)

YEST

where ST, is the set of simple closed curves in a torus with one boundary T'. £5(0T) and {s(7)
denote the lengths of the boundary 0T and the shortest geodesic in the homotopy class of v with
respect to a hyperbolic metric o on T, respectively.

From equations (2.5) and (2.7), the twisted initial data (2.39) imply

Amgﬂnggm? Bm$ﬂ3:B$@y+§:A$@me
a>0
C[f]gé,ag = Cgé’a:») + Z (BZ}GQUQ7(13 + Bg,laguava2) + Z Ag,lbua@ZubyaS’
a>0 a,b>0
1
DIf]" = D" + 3 > Al uap, (2.40)

a,b>0
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where

(2a+2b+1
a,b — fa =
tap = lflay /]1h (2a+ 1)1 (26 + 1)!

f(0)de. (2.41)

In particular, we consider the Masur—Veech type twist,

1
MV (p) = Tt (2.42)

as an admissible test function, and then the twist function (2.41) is

- C(2a+2b+2). (2.43)

=ulf ], (2a+ 1)1 (2b+ 1)

Remark 2.11. We can consider the following one-parameter generalization of the Masur—Veech
type twist function [42]:

1

fEMV(p: 5) = w1

(2.44)

The volume polynomial (2.37) twisted by f&MV (/; s) depends on the parameter s such that

Vo [FEMV](La, ..., L ).

The factor of twist functions in equation (2.37) is expanded for f&-MV:

H fg_Mv(Eé s) = Z e’ 2ecEr kele

ecEp keE1
eckp

Since the inverse Laplace transform of (e_S 2. keze)/ s with respect to the parameter s gives
a Heaviside step function §([—)__ kelc) with the dual parameter [, the inverse Laplace transform
of the twisted Weil-Petersson volumes V?%P [fg‘MV] with respect to the parameter s gives the
average number of multicurves whose geodesic lengths are bounded by [ on the moduli space of
bordered hyperbolic Riemann surfaces [71].

2.5 Masur—Veech type twist

Here we focus on the Masur—Veech type twist of the Kontsevich—Witten symplectic volumes in
Section 2.2.2, the volume polynomials for the (2,p) minimal string in Section 2.2.3, the super
symplectic volumes in Section 2.3.2 and the volume polynomials for the (2,2p — 2) minimal
superstring in Section 2.3.3. In the following, we summarize the computational results of the
twisted volume polynomials.

2.5.1 Masur—Veech polynomials

In [8], it is shown that the constant term of the twisted Kontsevich-Witten symplectic volume
VMV(Ly, ..., Ly) == VA, [V (L1, ..., L), (2.45)

which is referred to as the Masur—Veech polynomial, gives the Masur—Veech volume VolQ, ,
reviewed in Section 3.1 (see equation (3.4)). Some computational results of the Masur—Veech
polynomials are listed in (C.5).
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2.5.2 Twisted volume polynomials for (2, p) minimal string

The twisted volume polynomial %1\7/711(;9 ) [fMV] for the (2, p) minimal string interpolates the Masur—
Veech polynomial V%LV in equation (2.45) at p = 1 and the twisted Weil-Petersson volume
VnglP [fMV] at p = oo:

VIOV (Ly, . Ly) = VA MYV (La, - L) = VY (L, -, L),

VMEIMV](Ly, ..., Ly) = VP [MY](Ly, .., L),

v

Some of the twisted Weil-Petersson volumes Vg‘figp [fMV] and the twisted volume polynomial
V;%(p ) [fMV] are listed in (C.6) and (C.7), respectively, where a deformation parameter s is
introduced by replacing © with 74/s, as in Remark 2.3, before the twist. A combinatorial

formula for the constant term of Vg%(p ) [fMV] is provided in Proposition 3.8 of Section 3.2.

2.5.3 Super Masur—Veech polynomials

As a supersymmetric analogue of the Masur—Veech polynomial (2.45), we define the super
Masur—Veech polynomial by

VOV (Ly,... La) = VB[PV (L., L), (2.46)

Some computational results are listed in (C.8), or found from the twisted volume polynomials
VQS}\L/I ®) [fMV] for the (2, 2p — 2) minimal superstring below in equation (2.47) by a specialization
VSMV _ /SM(1) [FMV]

g,n - rgn :

2.5.4 Twisted volume polynomials for (2,2p — 2) minimal superstring

For the twisted volume polynomial Vgsh/[ () [fMV] for the (2,2p — 2) minimal sué)erstring, the
twisted ABO topological recursion is solved iteratively, and the general form of Vg% () [fMV] for
any odd positive integers p is obtained for g =0, 1,2, 3 as follows:

sM SM (n—1)!
Vo MV (L, L) =0, VM@ [MY)(L,..L L) = —.
SM(p) [eMVT (T, L) — 3(n+1)! n(1— 1.1y 2 1 En L2
Vo [ ]( 1y Ln) 193 (n+2) p2+2 7r +4i:1 i

Vfﬁd(p) [FMY](Ly, ..., Ly)

(n+3)! 1\ 455 15 1\  23-40) ,

1 n n n
+ {336(n +4) <1 - 2) + 170}772 LI +84> L3 +25) L
p ; ‘
=1 =1

i

. (2.47)

More computational results are listed in (C.10), where we introduce a deformation parameter s
by replacing 7 with /s before the twist. The twisted volume polynomial VgS}Y () [fMV] inter-
polates the super Masur—Veech polynomial Vgsﬂl\fv in equation (2.46) at p = 1 and the twisted
super Weil-Petersson volume VQSXV P[MV] at p = oo summarized in (C.9) such that

Vgsﬁ/f(l) [fMV} (Ly,...,Ly) = Vg]?n [fMV] (Ly,...,Ly) = Vgs,lnv[V<L1, L),
VMO [MV](Ly, .., Ly) = VEWVP [MV](Ly, .., Ly).

In Proposition 3.12 of Section 3.3, we find a combinatorial formula for the constant term
of %S%(P) [fMV] .



Some Generalizations of Mirzakhani’s Recursion and Masur—Veech Volumes 21

Figure 3. The label set u = (u1, ..., ftm) in the stratum Q(u) of quadratic differentials on a complex
curve of genus g with m distinct labeled marked points.

3 The Masur—Veech volume and its generalizations

In this section, we will discuss generalizations of the Masur—Veech volume of quadratic differ-
entials on a complex curve with marked points, and compute them for some examples on the
basis of Mirzakhani’s combinatorial reformulation.

3.1 Combinatorial formula for the Masur—Veech volume

To begin with, we summarize essential ingredients on the Masur—Veech volume of quadratic
differentials discussed in [25] shortly. Let Mg, be the moduli space of complex curves of
genus g with n distinct labeled marked points. On a smooth complex curve C' € M, ,,, consider
a meromorphic quadratic differential ¢ which would have at most simple poles only at the
marked points and is not equal to the square of an Abelian differential. The moduli space of
pairs (¢, C) on Mg, defines the cotangent bundle over M ,,, and the moduli space of quadratic
differentials Qg , is identified with the total space of the cotangent bundle over M, ,, endowed
with the canonical symplectic structure. The induced volume element on Q,, is called the
Masur—Veech volume element.'?

The moduli space Qg is naturally stratified by the multiplicities of zeros and poles of
quadratic differentials.

Definition 3.1 (stratum of quadratic differentials). The stratum Q(u) of quadratic differentials
is the set of equivalence classes of pairs: a smooth complex curve C of genus g with m marked
points p; (i = 1,...,m) and a quadratic differential ¢ with divisor D = ", pu;p;. Here
w=(p1,..., m) is a label set satisfying (see Figure 3),

m
wi>-1 (i=1,...,m), Zui:4g—4,
i=1

where p; = —1 implies a simple pole. The stratum Q(u) is a complex orbifold of dimen-
sion dimg Q(u) = 29 — 2 + m [94].

In particular, we consider the principal stratum Q(14g_4+”, —1") of meromorphic quadratic
differentials on C' € Mg 4g9—a42,. The fibers of Q(l4g—4+", —1") — Qg are discrete, and the
forgetful morphism Qg 49412, — Qg,n of the 4g —4+mn marked points gives a bijection between
the principal stratum Q(14g*4+", —1”) modulo the choice of 4g — 4 + n marked points and

>The finiteness of the Masur—Veech volume element for a subset Q5> @< of Q-

QgA;;ea(qu)Sa - {(C7 q) € Qgn

Area(C, q) :/ lg] < a} C Qgn,s
c

with the total area Area(C,q) smaller than a > 0 is confirmed by the independent results of Masur [64] and
Veech [93].
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the moduli space Qg ,. The dimension of the principal stratum coincides with that of Q,:
dim¢ Q(149_4+”, —1") = dim¢ Qy,n = 69 — 6 + 2n. We denote the Masur—Veech volume of the
principal stratum Q(149_4+”, —1”) as VolQy .

In the work by Mirzakhani [71], the Masur—Veech volume VolQ,, is reformulated as an
enumerative problem of simple closed curves in a connected bordered (hyperbolic) Riemann
surface, and a connection with the Weil-Petersson volume is found. This reformulation is
established further on the basis of the enumerative problem of square-tiled surfaces in the work
by Delecroix, Goujard, Zograf and Zorich [25]. By such reformulations, a relation between the
Masur—Veech volume of the moduli space of quadratic differentials and the intersection numbers
on the (compactified) moduli space M, ,, is unveiled. The stable graphs I' € G, ,, associated with
a bordered surface Sy, and a reduced multicurve ~,¢q in Section 2.4 are used in the combinatorial
computation of the Masur—Veech volume VolQ, .

Theorem 3.2 (combinatorial formula for the Masur—Veech volume [25, 71]). Consider the
decomposition Sgn \ Yred = UY_1 Sy, na in (2.36) represented by a stable graph T associated with
a bordered Riemann surface Sy, and a reduced multicurve veq. Define a polynomial

WPy, .. WP (g 4
VO T ( 1y 7 H Vga TLa k1 ’ kna) Lp:O(p:L“'vn)7 (3 )

where Vngﬁa (Ckys- -5 lry, ) are the Weil-Petersson volumes of moduli spaces of connected pieces
Sgamas and all boundary lengths L, (p = 1,...n) of the original bordered Riemann surface
set to zero in each connected piece. Let (2dy, ..., Qdk)yp denote the coefficient of E?dl = -Kid’“
n VOIFVP(&, ..., ly). Then, from these combinatorial data, the Masur—Veech volume VolQg ,, of
the moduli space of quadratic differentials is given by'>

VO]Qg,n = Z Ygn

v, |Aut (D) ]
15, (2d; 4 1)!
X > (2. Qdk)WP’—HC(Zdi +2), (3.2)
|d|=3g—3+n—k (69 — 6+ 2n)! i=1

where |d| = Zl 1 di, and the normalization constant oy, is
Qgn =2+ (6g —6+2n) - (4g — 4 +n)! - 24973+, (3.3)

Remark 3.3. The normalization constant oy, in equation (3.3) is obtained in a series of works
[11, 35, 72, 99].

Remark 3.4. Let Vol (£1,. .., ;) be a polynomial defined by replacing the Weil-Petersson vol-
umes in equation (3.1) with the Kontsevich-Witten symplectic volumes of moduli spaces of stable
curves in equation (2.16), and (2dy, . . ., 2d )2 be the coefficient of E%dl . ‘Eid’“ in Vol (¢4,...,41).
The combinatorial formula (3.2) also holds if (2d1, ..., 2d;)F is replaced with (2dy, ..., 2d;)R.

The following proposition is shown in [8].

Proposition 3.5 ([8]). The Masur—Veech volumes are given by the constant terms in the
Kontsevich—Witten symplectic volumes with the Masur—Veech type twist in equation (2.42):

VolQyn = By Vs [MV](0, ..., 0) = By VIV (0,....,0), (3.4)

13In [25, 71], an extra factor 2~ appears in equation (3.2) originated from the normalization for the Weil -
Petersson volume V;"\* (L) in [69, Table 1]. In this article, we employ another normalization V;"i" (L) obtained
from the CEO topological recursion which is different by a factor 2 from Mirzakhani’s original computation.
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Figure 4. Top: A stable graph I‘gli from (S1,1,71). Bottom: A stable graph I‘((f)l from (So,4,71)-

where the normalization constants 3, , are

24972+n 4a — 4 !
Bgn = ( J + n) . (3.5)
’ (6g — 7+ 2n)!

Proof. The integrals of /. in equation (2.37) give the factors involving ((2d; + 2) in the com-
binatorial formula (3.2) for the Masur—Veech volumes. As a result, the collection of monomials
with degree |[d| = 3g — 3 +n — k in V¥ agrees with that of V;}n. [ |

For example, the Masur—Veech volumes VolQ; ; and VolQy 4 are computed as follows. (A huge
table of the Masur—Veech volumes is obtained in [45].)

Example 3.6 (9 =1, n = 1). One finds a decomposition (2.36) which splits Sj 1 into one Sy 3,
and obtains a stable graph I‘(lll) as described in Figure 4 (top). A discrete Z/2Z symmetry of
the loop in Fﬁ is found, and 7‘Aut (I‘ﬁ” = 2. The polynomial (3.1) for this decomposition is
Vol?ég (x) = Vo\fgp(x,a:,()) = 1. Therefore, k =1, d; = 0 and (2d1)¥\£5 =1 for this stable graph
conttibutes to the sum in equation (3.2), and one finds b

wp (2d1 + 1)! 272

o
VolQ1 = é(zdl)w; o (2 +2) = S (3.6)

[Aut(I7Y)]

This agrees with BMVMV(O) =23.72/12 in equation (3.4) (see (C.5)).

Example 3.7 (g = 0, n = 4). One finds a decomposition (2.36) which splits Sp 4 into two Sp 3’s,
and obtain a stable graph F((Jy i as described in Figure 4 (bottom). There are (3) = 6 choices of the
distribution of four labeled external legs into two Sy 3’s in this case. A discrete Z/27Z symmetry
of the stable graph I‘(()z leads to ‘Aut (F&b ’ = 2. The polynomial (3.1) for this decomposition is

Vol (@) = Vo3 (2,0,0) - V3" (,0,0) = 1.

Therefore, kK = 1, di = 0 and (2d1)¥\(’5 =1 for this stable graph contributes to the sum in
equation (3.2), and one finds 04

« 4 2d; + 1)!
VolQp 4 = % <2> (2d1)¥£5(12')((2d1 +2) = 272 (3.7)
| Aut (Tp4)] '

This agrees with So4V{'¥ (0,0,0,0) = 22 - 7%/2 in equation (3.4) (see (C.5)).
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3.2 Generalization to the (2, p) minimal string

Now we consider a generalization of the combinatorial formula (3.2) to the (2, p) minimal string
whose volume polynomials interpolate the Kontsevich-Witten symplectic volumes (for p = 1)
and the Weil-Petersson volumes (for p = oo). For this purpose, we consider a stable graph
I' € Gy, associated to a pair (Sgn, Vred) of the decomposition (2.36) in Section 2.4, and define

(2d1,...,2d;)r = the coefficient of ﬁfdl . -Kid’“ in

N
Vigarria Cys -5 £ - 58
agl Ya, a( k1 k?nu,) Lp:(](pzl,...,n) ( )

Here Vg, no(Crys - -+ lry, )| Lp=0(p=1,...,n) ar€¢ volume polynomials associated with the stable graph I
and with zero boundary lengths L, = 0 (p = 1,...n) for the bordered boundaries in the
decomposed Riemann surfaces specified by the univalent vertices in I'. Then, the following
proposition is proved.

Proposition 3.8. The constant term in the twisted volume polynomzial ‘/;71\7/711(19) [fMV] of the (2,p)
minimal string normalized by By, in equation (3.5),

VolQ)P) := By, VP [fMV] (0, ..., 0), (3.9)

is obtained, as a sum over stable graphs I' € G4, by

VolQ)r) — §~ o

r&os, [Aut (D)
k k
e [15, (2d; + 1)
x> (2di,...2dp)y, “”mnc(zdi +2), (3.10)
|d|<3g—34+n—k i=1

in terms of (2dy, ..., 2dk)¥[(p) defined by equation (3.8) for the (2,p) minimal string, where the
normalization factor ag,, is the same as equation (3.3).

Remark 3.9. We refer to Vong/,Ir(Lp ) as a twisted volume of the (2, p) minimal string, since this is
a natural combinatorial analogue of the Masur—Veech volume, although the geometric derivation
of this volume is missing in the direct study of the quantum moduli space of the Liouville gravity.
A crucial difference between the combinatorial formulae of Theorem 3.2 and Proposition 3.8 is
the degree constraint in the sum. In the computation of the Masur—Veech volume, the imposed
degree constraint is |[d| = 3¢ — 3 +n — k. On the other hand for the (2,p) minimal string,
the weaker degree constraint |d| < 3g — 3 + n — k is imposed. If the degree constraint for the
Masur—Veech volume is instead imposed for the volume formula of the minimal string, then the
twisted volumes Vong/,[,gp ) reduce to the Masur—Veech volumes VolQ, ,,.

Here we show combinatorial computations for VolQll\ill(p ) and VOIQIS/’IAEP ).

Example 3.10 (g = 1, n = 1). By the weaker constraint |d| < 3g — 3 +n — k in the sum in
equation (3.10), an extra contribution to the sum in equation (3.10) is found for £ = 0. Namely
for this contribution, there are no multicurves in S 1, and the factor Hf:1(2di + 1)I¢(2d; +2) is
absent. The corresponding stable graph Fg?i has one vertex labeled by ¢ = 1 and one half-edge
as described in Figure 5 (top). The polynomial factor obeys

M M
(@0 = V1P(0) = 72 (1 - 1/p%) /12
1,1
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Figure 5. Top: A stable graph Fg?i from (S7,1,9). Bottom: A stable graph F(()?i from (Sp 4, D).

for this stable graph, where a deformation parameter s is introduced by 72 — 72s. The contri-
butions to VolQllvflp ) from the stable graph Fﬂ is

01,1 M(p) 1 2725 1
—(2) — = 1-—=].
[Aw(riy)| T2 ’

Combining the contribution (3.6) from the stable graph Fﬁ, one finds

272 1 272
VolQll\fll(p) = % <1 - ) +

This agrees with
51,1V11\,/{(p) [fMV] (0) = 23 . 72 (s — s/p? + 1)/12
in equation (3.9) (see (C.7)).

Example 3.11 (g = 0, n = 4). We compute an extra contribution of k& = 0 which comes from
the weaker constraint |d| < 3g — 3 + n — k in the sum in equation (3.10). The corresponding
stable graph Fé?i has one vertex labeled by g = 0 and four half-edges as described in Figure 5
(bottom). The polynomial factor obeys

(@) = Vou(0,0,0,0) = 27s(1 — 1/p?)

for this stable graph. The contributions to VolQlov,[ ip ) from the stable graph Fg?i is

Q0,4 Mp) L o o < 1 )
204 M ga2g (1 ).
e ez =

Combining the contribution (3.7) from the stable graph F&i, one finds

1
Vong/Iip) = 8% <1 — 2) + 272,
' p
This agrees with

Bo.aV i [MV](0,0,0,0) = 22 - w% (45 — ds/p? +1) /2
in equation (3.9) (see (C.7)).
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3.3 Generalization to the (2,2p — 2) minimal superstring

The combinatorial formula in Theorem 3.2 is also generalized to the volume polynomials for
the supersymmetric models which are associated with the BGW tau function [3]. We consider
the (2,2p — 2) minimal superstring whose volume polynomials interpolate the volume poly-
nomials Vg]’gn(Ll, ..., Ly) for p = 1 and the super Weil-Petersson volumes VgSXV P(Ly,...,Ly)
for p = oo, and find the following proposition.

Proposition 3.12. Let Gy, be the set of stable graphs which does nmot contain any vertices
associated to connected bordered Riemann surfaces of genus zero.'* The constant term in the
twisted volume polynomial Vgn Mp )[fMV] for the (2,2p — 2) minimal superstring is obtained, as
a sum over stable graphs I' € Gg,n: by

1
SM(p) [fMV _ SM(p)
Vo P, ..., 0) § At (0] § (2dy,. .., 2dk)}

IeGyn [d|<g—1—-Fk
k
x []2di + 1)1¢(2d; + 2), (3.11)
=1
where (2dy, . . .,Qdk)?M( P) s defined from the twisted volume polynomial Vgn M(p) [fMV] by equa-

tion (3.8).

Remark 3.13. If the degree constraint |d| < g — 1 — k in equat10n (3.11) is replaced by the
stronger condition |d| = g — 1 — k, then the twisted volume V n Mp )[fMV]( 0,...,0) for an odd
positive integer p reduces to Vg]?n [fMV] (0,...,0).

Here we show combinatorial computations for (g,n) = (2,1) and (3,1).

Example 3.14 (¢ = 2, n = 1). One finds three stable graphs which correspond to decompo-
sitions (2.36) of S 1 without g = 0 components as described in Figure 6. For the graph F(Q?},
a contribution in equation (3.11) is

1 SM(p) 9725 < 1 ) SM(p) SM(p)
O = - where (@ -V 0),
| Aut (r;03)|( e 64 (@) o1 (0)

(0)

voly 1 =
2.1 p2

and a deformation parameter s is introduced by 72 — 72s. For the graph FS{, a contribution

in equation (3.11) is

2
(1) 1 SM(p) m
vol = ( ) C( ): )

S A (g 384

where (0)?(\/1[)(’)) is the coefficient of 9 in Vlsé\/[(p) (¢4,0) - Vfi\/[(p) (¢) =1/64. For the graph I’gi,

a contribution in equation (3.11) is

1 S
R —

[Aut(r57)] w

where (0) (2)(p) is the coefficient of ¢V in VSM(p) (¢,0,0) =1/4, and Aut( T 1) = Z/2Z. Summing

these three con‘crlbu‘clons7 one obtains

2
SM(p) [eMVT () — v (@ (1) (2) 1
Vaa P [f ](0) = voly 7 + voly j + vol; 198 <18s < p2> + 3) ,

which agrees with the constant term of the twisted volume polynomial V;iv[ 2 [fMV] (see (C.10)).
SM(P) (07 X

14The volume polynomial V. .,0) is zero for any n.
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Figure 6. Stable graphs I‘g’)i, I‘gi, I‘;Qi € G, obtained from the decompositions of Sy ; which do not
involve Sy, ’s.

Example 3.15 (g = 3, n =1). One finds ten multicurves which decompose S3 1 without g =0
components as described in Figure 7. Summing these ten contributions, one obtains

SM
‘/371 (p) [fMV] (0)
SM SM SM SM SM
= Vi P(0) + (Vo1 (@) - Vi P (@,0) + VP (@) - V55"V (w,0)

1 swm SM SM SM SM
+ 5V (x,w,())) @+ (V1" (@) 5 P (@ 0) + VP @) - 1357 (w,0)

0

SM SM S
e+ (V@) Vv e) v 0.0

T

1
)

x

1. sm SM SM
+ §V1,1 (p)(m)vm (p)(afayao) V11 (p)(y)

1. sm SM 1. sm SM
+ §V1,2 (p)(a:,y)V173 (p)(x’y’ 0) + 5‘/173 (p)(xﬁ%y) Vi (p)(x,o)

1 sm SM 1 sm
+ §V1,1 ®) () - V1,4 ®) (z,,y,0) + 2§V1,5 ®) (z,, y7y70)>

ml 1 ) 27
= 1— 227 — == ) +2 2
o (5 (07 (27 35) 00) 1),

where | skyt Picks up coefficients of xFy! in the polynomials. This result agrees with the constant

term of the twisted volume polynomial V:J)S&\/I(p [MV] (see (C.10)).

4 CEO topological recursion

In this section, we apply the CEO topological recursion [16, 37], which is a Laplace dual formu-
lation of the ABO topological recursion, to the 2D gravity models in Table 1. In particular, in
Section 4.4 we provide a direct proof of Theorem 4.15 on the Laplace dual relation between the
ABO topological recursion with the Masur—Veech type twist and the CEO topological recur-
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Figure 7. Ten stable graphs obtained from the decompositions of S5 ; which do not involve S ,,’s.

sion with the Masur—Veech type twist for the (2,p) minimal string and the (2,2p — 2) minimal
superstring.

4.1 Formulation

We briefly review the formulation of the CEO topological recursion, and describe a Laplace dual
relation with the ABO topological recursion.

Definition 4.1. A spectral curve C = (X;x,y, B) consists of a Riemann surface ¥, meromor-
phic functions x,y: > — C such that the zeros of dx are different from the zeros of dy, and
a bidifferential B on X2,

Definition 4.2 (CEO topological recursion [37]). For a spectral curve C = (X;x,y, B) such that
the zeros of dx are simple, the meromorphic multidifferentials wg ,(21,...,2n), 2; € X, labeled
by g > 0, n > 1 satisfying 2g — 2 +n > 0, are defined by the CEO topological recursion

Won(21,...,%n) = Z 5£§K(z1,w)72wgvn(w, 2K),

acRam
where K = {2,...,n}, Ram is the set of zeros of dx, and K(z,w) is the recursion kernel
defined by
Jur B(2)
K(z,w) = w _— — 4.1
) = 2] — (@) -y
and
no(0,1)
Ruwgn(w, 25) = Wy 1m41 (W, W, 26) + Y wp11g) (W, 20)wps 1410 (W, 20). (4.2)
h+h'=g

JUuJ'=K
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Here w is the conjugate point of w near ov € Ram such that w # w and z(w) = xz(w). The sum
in equation (4.2) does not include (g,n) = (0,1) part and contains the bidifferential

wo,2(21, 22) = B(21, 22),
and for J = {i1,..., i} C K, zj = {zil,...,zim} and 2y = {ziulﬂ,...,zi%l}.

In this paper, we focus on a class of spectral curves C = (IPI; X, Y, B) with coordinate functions

1
= =22 y =y(2), z e P, (4.3)

x = X(z) 5

which has a simple ramification point only at z = 0 (the solution to dx(z) = 0) and so Ram = {0}.
y(z) € C is a meromorphic function of z, and C admits the global Galois covering by the

conjugation Z = —z. The bidifferential B(z1, z2) has a double pole at the diagonal locus z; = 29
such that
dz1 ® dzy 1
B(z, = — ,z0 € P, 4.4
()= 208 a (1.4

For this class of spectral curves, the recursion kernel for the CEO topological recursion is

 [UBG2) (—1)d=
B ) = 5w) —yCw)dw ~ (2 =) (y(w) —y(—w))dw’

And we introduce correlation functions.

Definition 4.3. The correlation functions Wy, (21,...,2,) for 29 —24+n > 0 are
Won(21, ..., 2n) @i dzi = wgn(21, ..., 2n)-
From the general argument in [9, 10], one finds the following claim.

Theorem 4.4 (Laplace transform of the volume polynomial [9, 10]). For the physical 2D gravity
models in Table 2, the correlation functions Wy, for 2g —2+4+n > 0 are related to the volume
polynomials V, , in Definition 2.1 by Laplace transform

Won(2z1,. ., 2n) = L{Vgn (21, ..., 2n), (4.5)
where the operator L acts on a function f(z1,...,2,) as
L{fHa, oozm) = | f(Ly,... Ly)e” 2= sl [T LidL;. (4.6)
R% i=1

In particular, for the expansion (2.3), we find

Tl
Wg,n(zla S 7Zn) = Z Foglg,)...,an H W (47)

at,...,an >0 =11

Remark 4.5. In Appendix B, based on the Laplace dual relation (4.5) we derive the kernel func-
tions (2.19) and (2.31), which are not known before in the literature, of the (2, p) minimal string
and the (2,2p — 2) minimal superstring from the spectral curves in equations (4.25) and (4.40).
Note that the “local” initial data (Ag! ,.,Bg! .., Cal .., D) in equations (2.6) and (2.7) are
found in [9, 84].

In Sections 4.2 and 4.3, we will discuss the correlation functions Wy, defined by the CEO
topological recursion for the physical 2D gravity models and show some computational results
of Wy, explicitly for our use in other sections and our checks of consistency of computations.
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4.2 Bosonic models

Here we consider the bosonic models in Table 1.

4.2.1 Airy and KdV

For the Airy spectral curve C* = (]P’l;x, yA, B) with coordinate functions

x(z) = %zQ, yA(z) = 2, (4.8)

and the bidifferential B in equation (4.4), the CEO topological recursion defines the meromorphic
multidifferentials

dz;
(J)gptn(Z1, PN ,Zn) = 528 KA(Z17 w)'Ran(w, ZK) = Z Fégg),an ®;l:1 ZQTZ_:_Q, (49)
at,...,an>0 i

)

which give the Airy volume coefficients Ftﬁ(g _an D equation (2.18), where

—1)dz
K2 (21, w) = ( , 410
(21,w) 2 (2} — w?) wdw (4.10)
is the recursion kernel for CA. From equation (4.9), some of the correlation functions are
1
W(f3(zl7227z3):H272a Wl 1(21) = @7
i=1 "1 1
=3\ 171 5 3 1
Moz <Z ) [ Wiz = <Z gt SZ%z%) 11
=1 "t/ ¢=1"1 i=1 v 1=1"1
5
15 18 1
A
W0,5(Zl7 ’25) - ( ? + 2222) H z2’
=1 "t 1<i<j<s 773 ) i=1"1
3 3
35 15 9 1 105
Wik (21, 29, 23) = ST =, Wi (1)
’ ; 821'6 1<4,j<3 4zi2Z;l 4z%Z%Z§ -1 22'2 128219

We now introduce the KdV spectral curve which deforms the Airy spectral curve.
Definition 4.6 (KdV spectral curve). The KdV spectral curve X4V = (Pl;x, yKdV,B) is
defined by

L, KdV a
x(z) = 2% y oV (z) =z + ; ugz®, (4.11)

and the bidifferential B in equation (4.4), where u, are time variables. The KdV spectral

curve C¥4V yields the Airy spectral curve C* when u, = 0.

The correlation functions

n
1
KdV KdV
Wg,n (2’1, R 7271) = Z Fal,...,(ag,z H T2a; 12 (412)
a1,es00 >0 =1 %
obtained from the CEO topological recursion for CX4V obey the following proposition [31].
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Proposition 4.7 ([31]). The coefficients F,E(iv(g) in equation (4.12) are written in terms of

.
the volume coefficients Falg‘??,a in equation (4.9) (or equation (2.18)) as

n

KdV(g) _ (=n™ T U261 ) LAG)
Pl = ™ 22 (H %, + 1>Fa1f.,amb1,...,bmv (4.13)

m>0 b1yebm>2 \j=1

where the sum over m and b; satisfies
n m
> ai=3g-3+n+m—>Y b, (4.14)
i=1 j=1

by the homogeneity condition (2.17) for the volume coefficients.

Proof. The CEO topological recursion for the KdV spectral curve CX4V gives

KdV _ (—1)d= KV
Wy,n (2'1; s 7271) - BE(S) (Z% — w2) (yKdV(w) — yKdV(_w))dwag,n (w7 zK)
= RES KA(zl,w)YKdv(w)Rw;fgv(w,ZK), (4.15)

where K (z1,w) is the recursion kernel (4.10) for the Airy spectral curve C*, and

YEN (w) = YKV () Eu;KdV(_w) =2 <—1)’”<Z “261“)%_2) =1+0(w?)

m>0 b>2

is a regular even function of w at w = 0.
A key formula to prove the proposition is [31],

-1)Y —1)d 2y
Res ( )Q(wl)f(wl) = Res ( Res 4+ Res ) (2 ) 112)2 w2 2(w2)]2%(w1)
w1=0 2(w0 — u)l)wl w1=0 " w2=w1 W2=—w1 2(w0 — w2)w2 (w2 — wl)wl

2Y (ws)d -1
= Res, [y e e e
w 0 2 2 W1 U)2 wl)wl

(4.16)

where Y (w) is a regular function of w at w = 0 and R(w) is a meromorphic differential of w.
Using this formula recursively, we rewrite equation (4.15) as

KdVv m u(wy, )dzy u(wp—1)dwn,
W (21500 vy2n) = (=1)™ Res ———5+——
g,n n mz>:0 Wrm=0 (z% — w?n)wm Wy —1=0 (w?n — w?n—l)wm—l
u(wy ) dw
B ) B R 20, (317
2 1)W1
where
u(w) = Z uzp— 1w,

b>2
and the residue operators

Res —u(wj)(iw )
w;=0 (w? — wj)wj

acting on meromorphic differentials of w; are referred to as the Airy dilaton leaves. Therefore,

the KdV meromorphic multidifferentials w}fﬂv are regarded as the Airy meromorphic multidif-

ferentials wﬁn decorated by the Airy dilaton leaves.
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To find such decorations, we compare a meromorphic even differential
= Z Rodw/w?
a
of w decorated by an Airy dilaton leaf,

u(w;)dwR(w;)
Res 3—2j Z 2d+2 Zu% 1 R4+, (4.18)

w; =0 (w? — wj)wj d>0 b>2

with the (g,n) = (0,2) part in the CEO topological recursion for C*,

B(U}J'?U) B(_wjvv)
Res K wwy) (20 R + 20 Ry

R(w;)dw < 1 1 ) dw 2b+1
= Res J + = Rgip. (4.19)
w;=0 2(w? —wi)w; \ (v —w;)*  (v+w;)? ;} w?2d+2 = p2ot2 T

By this comparison, it is found that the decoration (4.18) of the Airy dilaton leaf is translated
into a decorated (g,n) = (0,2) part in the CEO topological recursion for CA. In this translation,
the Airy meromorphic differential acquires an extra marked point v = 1, and we find the sum
in equation (4.18) by replacing the sum in equation (4.19) by a weighted sum such that

2b+1 2b + 1
> 2z fary — > = 2z Wi (W) Rayp = > uz-1Rate,
b>0 b0 b>2

with weight factors

0 for b=0,1,
Wtb(u) = Uop—1 for b> 2 (4.20)
20 +1 -

In the following, we refer to this translation for the Airy dilaton leaf which decorates the
(g,m) = (0,2) part in the multidifferential as the Airy translation. In the following discussions,
we adopt the Airy translation to prove the formula (4.13) by the mathematical induction on
2g—2+n2>1.

For (g,n) = (0, 3), equation (4.17) gives

u(w,y, )dz; u(wr)dws
Y (romm) = Y1) Res) T e U 2. 2)
>0 Wy, =0 (Zl — wm)wm w1=0 (’U)2 - wl)wl

- w()A,3(Zla 22, 33)7

where the Airy dilaton leaves do not contribute in this case. For (g,n) = (1, 1), equation (4.17)
gives

Kdv Z m u(wy,)dz u(wy)dwy
p— —1 R —_—— e e . R _
w11 (21) mzo( ) wme:SO (z% - w?n)wm ’U)le:SO (w% - wl)w1 w171(w1)

A Z ugp —1 A1) dzi
- wl,l(zl) + bl 4 lFal,b1 Z2a1+2’
a12>0,b1>2 1

where only one Airy dilaton leaf contributes and the Airy translation is adopted. Thus, the
equations (4.13) for (g,n) = (0, 3), (1, 1) are obtained.
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Next, under the assumption that the formula (4.13) is correct for any (g, n) with 29—2+n < k,
we consider equation (4.17) for (g,n) with 29 — 2 4+ n = k 4+ 1. The coefficients of

2a;+2
®fadz /2"

in the factor Rwya" (w, zx) in equation (4.17) are rewritten under this assumption as

Z (—1)dw ® dw FKdV(g 1) + Z KdV FKdV(h/)
w2a+2b+4 a,b,(127.. pred a a‘ll’ ’az‘J‘ b aL|J|+1 9’ 7azn 1

a,b>0 h+h'=g
JCK
- N S (I ) (r!
- w2a+2b+4 m b F 0 b,2. b1 b
a,b>0 m>0 bi ... bm>2
FAM) A(h')
F 4.21
+ Z Z( > Qi 5 ’aZ\J\ ,b1,...,b¢ bal\JH—l’ Qi 17b2+1’ bm |7 ( )
ht-h/=g 6=0
JCK

where the sum E'Hh,:g does not include (h, J) = (0, 9), (g, K). The symmetric factor m! for the
insertion of m Airy dilaton leaves arises, since extra marked points at v = 1 are indistinguishable.

Plugging equation (4.21) into the right-hand side of equation (4.17), we see that the Airy
dilaton leaves in equation (4.17) compensate the (h,h',J) = (0,¢9,9), (9,0, K) parts in equa-
tion (4.21) by Airy translations. As a result, we obtain

KAV
g7 (Zla '-7Zn)
dz; (=)™
= X Shimn X a2 Hwtb
al,...,an >0 i m>0 b1yeisbim>2 \ j=1
A(g—1) Z A(R')
X (Fa,b,az,...,an,bl, bt Fra iy b by e, bt
h+h'=
JcK’
0<t<m
m
= ¥ enpnX S X (giy)e
- =1 2a;+2 m) a17 0n;b1,...0m
a1,e..,0n >0 i m>0 b1,...;bm>2 \j=1

where the sum Zz+h,:g does not include (h, J,¢) = (0,2,0), (g, K, m). Thus, the induction is
completed and the claim is proved. |

4.2.2 Weil-Petersson volumes

For the Weil-Petersson spectral curve CWF = (]P’l; x,yWP, B) defined by [38],

. 71'2 a—1
x(z) = %z2, yWP(2) = % sin(27rz) = g (2a(— i) Za —i z2a_l, (4.22)

and the bidifferential B in equation (4.4), the CEO topological recursion computes the Weil—
Petersson volume coefficients (2.14), which give the Weil-Petersson volumes VgYYf in equa-
tion (2.13), by

S|
WA (21,0 2m) = Z FXP(QCL)TLH o (4.23)
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The coordinate function yWF(2) in equation (4.22) is found from a specialization'® of the coor-

dinate function y®4V(2) in equation (4.11) of the KAV spectral curve as
(=27%)"
uge =0, U2q+1 = (a1 Dllal (4.24)

and Proposition 4.7 implies a formula

m b;j—1
(™ ) Ag)
F:lvf-(v%)n = Z m)! Z H 2[) + b _ 1) Fa17?~7an,b17~--,bm

m>0 Toby,bm>2 \j=1

with the condition (4.14).

Remark 4.8. The deformation parameter s in Remark 2.3 is implemented to the spectral
curve CWT by changing 7 — m/s for the coordinate function y¥4V(z) in equation (4.22).

4.2.3 (2,p) minimal string

The spectral curve for the (2,p) minimal string is found from the disk partition function with
the FZZT boundary condition [39, 92]. For an odd positive integer p, the (2,p) minimal string
spectral curve CM(®) = (IF’I; x, yM(®), B) is defined by

(—1)% _ [on 1 8222
yM(p)(z) =—"—T,—=2)=-sin D arceos (1
o p o 2 p?

p+1
2 a 1

a—1 2
_; a—l”a—1|H< )>Z2a1» (4.25)

and the bidifferential B in equation (4.4), where T},(z) denotes the Chebyshev polynomial of the
first kind defined by T),(cos#) = cos(pf). The minimal string spectral curve CM(®) interpolates
the Airy spectral curve C* and the Weil-Petersson spectral curve CWF by

yMID(2) = yA(2) in equation (4.8), yM)(2) = yWP(2) in equation (4.22).

The coordinate function yM®)(z) in equation (4.25) is found from a specialization of the coor-
dinate function y¥4V(®)(2) in equation (4.11) of the KdV spectral curve as

Usg = 0 for a > 1,
(—272) (20 — 1) p—1
U2g+1 = Za ) ”a' H ( ) for1<a< 5 (4.26)
1
Uggtr1 =0 for a > ]%

Proposition 4.7 then implies that the (2, p) minimal string volume coefficients in the correlation
functions

WM, z) = YD FMO)

9, at,.. 70«71 2a2+2’
a1,.an >0 =1 %

(4.27)

15This specialization is also found in the physics literatures [29, 81].
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obey a formula

m bj—1 bj—1 .
—ym —2n ) : (2i = 1
MO — N H o @-1)°
ALs-elin Z m! e ; (2b; + (b — 1)! e} p?
JETEEN)

m>0 :1

x FAW) (4.28)

Q1,000,015 50m

with the condition (4.14).

4.3 Supersymmetric models

Here we consider the supersymmetric models in Table 1.

4.3.1 Bessel and BGW

For the Bessel spectral curve CB = (]P’l; X, yB, B) with coordinate functions [30],

L 5

(=52 V) =1

: (4.29)

and the bidifferential B in equation (4.4), the CEO topological recursion defines the meromorphic
multidifferentials

dzi

B B B B
wgvn(zl, Ce >Zn) = E){SSK (Zh w)ngvn(w, ZK) = Z ]'7'111(79)7 an ®?:1 W, (430)
at,...,an >0 7
and the Bessel volume coefficients Fﬁ(g ?7% in equation (2.30) are obtained, where
—1)wd
KB(z,w) = (=Dwdz (4.31)

2 (z% — w2) dw’

is the recursion kernel for the CEO topological recursion on the Bessel spectral curve CB. Here,
note the relation yB(z) = d,y*(2) with the coordinate function y*(z) in equation (4.8) of the
Airy spectral curve. From equation (4.30), some of the correlation functions are

n—1) 1 1
W(En(zla'--azn):(), an(zl,...,zn):( )Hi

2
9
Wai(a) = g Waalan =) (Z 12827 >
1 =1

m"_‘

MAM“

=N

N

3
27
W21?3(Zl7227z3) = ( 32Z2> H 2 ’ W3’1(21) - M’
=1

i)nz.,

=1

2
1125 567 1
Wy’ = .
32(21,22) (Z 10242" © 51222 22> 11

i=1 i=1 "7

1

135
pt 322:

1\3"_'

W2]?4(2’1,...,Z4): (

~

Let us introduce the BGW spectral curve which deforms the Bessel spectral curve.
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Definition 4.9 (BGW spectral curve). The BGW spectral curve CBGW = (IP’ x, yBGW, B)
defined by

1
x(z) = 5,22, yEOW () = = + Zva , (4.32)

and the bidifferential B in equation (4.4), where v, are time variables. The BGW spectral
curve CBGW for v, = 0 yields the Bessel spectral curve CB.

Similar to Proposition 4.7, the correlation functions

BGW BGW (g
WoiW(zr,. ) = Y FpOW H 2% — (4.33)
ai,...,an>0 =1 l
obtained from the CEO topological recursion for CBSW obey the following proposition.

Proposition 4.10. The coefficients Fa1 (g) in equation (4.33) are written in terms of the

volume coefficients Fal(g)a in equation (4.30) (or equation (2.30)) as

n

BGW() (=™ T V2,1 B(g)
F 3 Z m! Z (H ij]+ 1 Fal,...,an,bl,...,bm7 (4'34)

m>0 T by, bm>1 \ =1

where the sum over m and b; satisfies

m

iai:g—l—ij, (4.35)
i=1 j=1

by the homogeneity condition (2.29).

Proof. The statement can be shown in the parallel way as the proof of Proposition 4.7. The

CEO topological recursion for the BGW spectral curve CBSW gives
BOW _ (=1)dz BGW
Wo,n (Zla R Zn) - 5:(38 (Z% _ wz) (yBGW(w) — yBGW(—w)) dwag,n (wv ZK)
= Reg KB(zl,w)YBGW(w)RwESW(w,zK), (4.36)
w= b

where KB(z1,w) is the recursion kernel (4.31) for the Bessel spectral curve C2, and

Y (w) = w (yBGW (w) E yBEW (—w)) - Z<—1)’”<Zm1w2”> =1+0(w?),

m>0 b>1

is a regular even function of w around w = 0. Using the formula (4.16) recursively, we rewrite

equation (4.36) as
d - —1d

fSW(zl,,,,,zn) = Z(—l)m Res V(W) wndzy Res V(W —1)0m—1dwm

m>0 wm=0 (Z% - w72n) wWm—1=0 (wgn - w%@—l)

X Res 7v(w1)w1d2wg

5 ResKB(wl,w)RwBGW(w,zK),
w1=0 (w2—w1) w=0

g7n

where

v(w) = Z v2b_1w2b,

b>1
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and the residue operators

Res v(wj)wjdw’

w,;=0 (w2 — w?)
acting on meromorphic differentials of w; are referred to as the Bessel dilaton leaves. In such
a way, the BGW meromorphic multidifferentials MESW are obtained as the Bessel meromorphic
multidifferentials wfm decorated by the Bessel dilaton leaves. Just like the Airy translation for
an Airy dilaton leaf which decorates (g,n) = (0, 2) part in the CEO topological recursion for C*
with weights (4.20), a Bessel dilaton leaf is translated into a decoration of the (g,n) = (0,2)

part in the CEO topological recursion for C® with weights

0 for b =0,
Vop—1

— f > 1.
1 orb2

Repeating the same analysis as the proof of Proposition 4.7, we find that equation (4.34)
holds. |

4.3.2 Super Weil-Petersson volumes
For the super Weil-Petersson spectral curve CSWF = (Pl; x, ySWP. B) defined by [79, 91],

2\ a
X(Z) _ 122 SWP(Z) — 1 COS(27TZ) — E ﬂzza_l (4 37)
277 Y z = (2a - 1)llal ’ '

and the bidifferential B in equation (4.4), the CEO topological recursion computes the super
Weil-Petersson volume coefficients (2.26), which give the super Weil-Petersson volumes, by

n
1
W;XVP(Zl, ey Zn) = Z FEIWP((Z? H T (4.38)

at,...,an >0 =1

Here, note the relation ySWFP(z) = 0,yWF(2) with the coordinate function yWF(2) in equa-
tion (4.22) of the Weil-Petersson spectral curve. The coordinate function ySWF(2) in equa-
tion (4.37) is found from a specialization of the coordinate function yB¢W(2) in equation (4.32)
of the BGW spectral curve as

(_27T2)a+1

2a + 1)!(a + 1)1’ (4.39)

voq = 0, Vog41 = (

and Proposition 4.10 implies a formula

m b;
SWP(g) _ (=pm (—272)” B(g)
Fal,---yai - Z m)! Z H (ij + 1)!!()].! Fal,?~,an,b1,--~,bm

m>0 Toby,bm>1 \ =1

with the condition (4.35).

4.3.3 (2,2p — 2) minimal superstring

A spectral curve CSM®) = (IP’l;x, ySM(p),B) for the (2,2p — 2) minimal superstring with an
odd positive integer p, which is heuristically introduced by ySM®)(z) = d,yM®)(2) from the
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coordinate function yM®)(z) in equation (4.25) of the (2,p) minimal string spectral curve (see
Appendix A.5), consists of

Y= 2.2
ySM®) () = &Up_l (2”;;) _ An cos <729 ArCCos <1 _ 877;))

2
N p
_ 27‘ B 1)2 2a—1 4.40
Z 2a — 1) Hal H S (4.40)

and the bidifferential B in equation (4.4), where Uy, (z) is the Chebyshev polynomial of the second
kind defined by

sin(pf)

Up—1(cosB) = il

Notice that the spectral curve CSM®) interpolates the Bessel spectral curve CB and the super
Weil-Petersson spectral curve CSWFP by

ySM(l)(Z> - yB(z) in equation (4.29), ySM(OO)(z) = ySWP(z) in equation (4.37).

The coordinate function ySM®)(2) in equation (4.40) is found from a specialization of the coor-

dinate function yBSW() (%) in equation (4.32) of the BGW spectral curve as
Vo =0 for a > 0,
+1 . 2
(—27x2)etl g (20 — 1) p—3
— - for 0 <a < ~——
e T et Diia+ 1)1 L 2 rvsaesT (4-41)
-1
Vog+1 =0 for a > p?

Adopting this Spec1ahzat10n to Proposition 4.10, we find that the (2, 2p —2) minimal superstring

volume coefficients Fy, M(p 215?) in the correlation functions

WP (21, oz = Y ngeggH 2“2, (4.42)

a1, >0 i=1 i

obey a formula:

FSN®O) = 3 (=nm

a1,...,an

m!
m>0
- ZZ - 1 B(g)
X Z H ” ' H Fal,...,an,b1,...,bm’ (443)
2b +1 'b;
b1,..,bm>1 Jj= 1

with the condition (4.35).

4.4 Twisting

Definition 4.11. We refer to a twisted spectral curve C[f] = (3;x,y, B[f]) as a spectral curve
with a twisted bidifferential B[f] on C®? with the admissible test function f: R, — C.
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The twisted volume polynomial V;,,[f](L1, ..., L,) with an admissible test function f is equiv-
alent to the multidifferential wy ,[f](21,. .., 2,) which satisfies the CEO topological recursion for
a twisted spectral curve [8, 10]. These are related by the Laplace transform involving an action
of twist-elimination explained below.

Here we consider a spectral curve C = (X;x,y, B) such that the zeros of dx are simple, and
a local coordinate p near a branch point « obeying

x = p?/2 + x(a).

For this set-up, we introduce a globally defined 1-form &, 4(z) on the spectral curve C with
a € Z>p and a branch point a by [9],

ton(e) = Res B ([ B03) )

In the following discussion, we will focus on the spectral curve C only with a single branch
point ap, and define &,(2) by'® £,(2) 1= £up.a(2).

The solutions wg n (21, ..., 2n) (29—2+n > 0) of the CEO topological recursion are represented
by the 1-forms &, (2;) (i = 1,...,n) as the basis of the multidifferentials:

wg,n(zlv cee 7271) = Féf,)...,an ®?:1 gai (Zl)
ai,...,an>0

For a twisted spectral curve C[f] = (2;x,y, B[f]), the solutions wg[f](21,...,2,) of the CEO
topological recursion are also given on basis of

o) = ey P ([ jB[f](-,z>), (4.44)

w=ao p(w)?at+2

wgﬂl[f](zlﬁ ey Zn) = Z P [f]a1,---7an ®i1 €a; [f](zl) (4'45>

a,...,an>0
Now we introduce twisted correlation functions and a twist-elimination map below.

Definition 4.12. The twisted correlation functions Wy, [f](z1,. .., z,) for 29 — 24+ n > 0 are
defined by

Wynlfl(21, ..., 2n) @i d2zi = wgnlf](21,. .., 20), (4.46)

and the twisted recursion kernel K[f] is defined by

fww B[f] ('7 Z)
2 (y(w)dx(w) — y(w)dx(w))

Definition 4.13 (twist-elimination map). Let ©(C) be the space of meromorphic multidifferen-
tials on a twisted spectral curve C[f] = (3;x,y, B]f]), spanned by the symmetric tensors of the
basis &g, [f](z:) (a; € Z>p, i = 1,...,n), the twisted bidifferential B]f] and the twisted recursion
kernel K[f].}” The twist-elimination map [z;] with an index set I = {iy, ..., i¢} is a map acting
on Q(C) and prescribed by the following four properties:

K[f](z,w) =

SFor a spectral curve with the coordinate function x = 2%/2, z € P! in equation (4.3) and the bidifferen-
tial B(z,w) = dz ® dw/(z — w)?, z,w € P! in equation (4.4), £,(2) = dz/2%*T2.

'"In this definition, the twisted recursion kernel K[f](z,w) is regarded as a meromorphic differential of the
variable z.
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Figure 8. In the geometrical interpretation, the action of the twist-elimination map &£[z1,...,2,] on
the correlation function W, ,[fMV](z1,...,2,) is depicted as eliminations of the closed geodesics on n
boundaries of the bordered Riemann surface, and recovers the combinatorial aspects of twisted volumes
in Section 3.

(1) for a 1-form cq,&q,[f](2i) € Q2(C) with coefficient cg,,
~ Ca;€a; (2i) ifielIn{l,...,n},
o) (o f(1)) = LNt
Ca;€a;[f](z:) ifig IN{l,...,n},
(2) for the twisted bidifferential B[f] and the twisted recursion kernel K[f],
€[ (Blfl(z,w)) = B(zw), €[ (K[f)(z,w)) = K(=z,w), (4.47)
(3) for a sum of multidifferentials wM[f], W [f] € Q(C),
Elzr) (W] + w @) = Elz1] (W) + Elz1) (WP [H]), (4.48)
(4) for a tensor product of multidifferentials wM[f], WP [f] € Q(C),
Elzr) (wWV[f] @ w@f]) = Elz1) (wV[f]) ® El21] (wP[F]). (4.49)
The twist-elimination map £[z;] acting on the twisted correlation functions (4.46) is induced by

ELzr] iWanlfl} (21, - - -, 20) Py dzi = Elz1] (wgnlf (21 - -+ 20)) -

For the case I = {iy,...,i¢} C {1,...,n}, we obtain partially untwisted correlation functions
for 2g —24+n >0,

Elziy, s 2| {Wenlfl} (21, .., 2n) ®i dz;

- Z F [flar,....an ®fn=1 Eaip, (Zim) Oke{1,cnP\{in,eic} Sar[f](28)- (4.50)
at,...,an >0
More generally, if {i1,...,i¢} € {1,...,n}, the partially untwisted correlation functions are

given by the maximal subset {j1,...,j¢} C {i1,...,4¢} which obeys {j1,...,50} € {1,...,n},
Elziy, s 2| {Wenlfl} (21, .., 2n) ®j dz;
= Z FOl[f]a, . an @521 €a;, (251) ke (Lo \ {1y} San [F1(20)-

ai,...,an>0

Remark 4.14. In Figure 8, a geometrical interpretation of the action of the twist-elimination
map &[z1,...,2,] on the correlation function Wy, [fMV](21,. .., 2,,) with the Masur—Veech type
twist is depicted. In this picture, the correlation function is described by a capped Riemann sur-
face where caps are glued along all boundaries in a bordered Riemann surface. In this interpreta-
tion, the closed geodesics on the bordered boundaries and bulk in the Riemann surface represent
the Masur—Veech type twists on the bases &,[fMV] and coefficients F'(9) [fMV] o1, I the multi-
differential w, ,[fMV] of equation (4.50), respectively. In the computation of twisted volumes by
the combinatorial method discussed in Section 3, we only enumerate the multicurves wrapping
around the closed geodesics in the bulk'® of bordered Riemann surfaces. To get the twisted

8The “closed geodesics in the bulk” means the “non-boundary closed geodesics”.
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volume polynomial V, ,[fMV](Ly,...,L,) from the correlation function Wy ,[fMV](21,...,2,),

we need to eliminate the effects of twists coming from the boundaries, while keep those from the
closed geodesics in the bulk. This geometrical interpretation of the twist is used in the physical
interpretation discussed in Appendix A.2.

In the following, we consider a class of twisted spectral curves with the coordinate functions
in equation (4.3) and twisted bidifferential [8],

B[fMV] (217Z2) _ le ®d22 1 Z ( le ®d22

T .2 5 5 — 2:21 — 29)d d 4.51
(21 —29)%2 2 21 — 73 +m)?2 CH(25 21 — 22)dz1 @ dzo, (4.51)

mez*
with the Masur—Veech type twist function fMV in equation (2.42), where
11 1 1 2k +2d — 1 o
2d;z) = —5 + = — = =5 2k 4+ 2d 4.52
W2t = 3t 3 =t (R 4

is the Hurwitz zeta function. For this twisted bidifferential B[fMV], the recursion kernel (4.1)
of the CEO topological recursion yields

dz 1 1 1
Kz w) = (y(w) — y(—w)) dw (2'2 2 QmZ (24-111)2—1112)

and the twisted 1-form (4.44) is
a [fMV} (2) = Cu(2a + 2; 2)dz. (4.53)

By acting the twist-elimination map £ involved with the properties of equations (4.47), (4.48)
and (4.49) on the CEO topological recursion for the twisted spectral curve, we obtain

Elz1, 2x] { W [fMV] } (21, 2K)

[ 0] Z w2d+1 (zn: ( €l |
= [w Wo2(w, zm)E 2K\ {m}
242 (g w) — y(—w)) \ &,

X {Wyn-1 [fMV} } (w, zi\fmy) + EL2x] {Qgn [fMV]} (w, —w, zK)>, (4.54)
where K = {2,...,n}, and [wo] implies to pick up all zeroth order terms in the expansion
around w = 0. Here

2d
w
Woa(w, zm) = Woa(w, zm) + Woa(—w, 2m) =2 (2d + 1) =575, (4.55)
d>0 #m
and
Qyn [PV ](w, —w, 2 ) = Wy_1 oy [PV ] (w, —w, 2k)
stable
+ Z Wh,1+|J| [fMV] (w, ZJ)Wh’,1+\J’| [fMV] (—w, ZJ/).
h+h'=g
JUJ'=K

We refer to the recursion (4.54) as the partially twist-eliminated CEO topological recursion.
In the rest of this section, we provide a direct proof of the following claim.
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Theorem 4.15 (Laplace transform of the twisted volume polynomial [8, 10]). For the (2, p) min-
imal string and the (2, 2p—2) minimal superstring, the twisted correlation function Wy ,, [fMV] (21,
..., 2n) with the action of the twist-elimination map £ agrees with the Laplace transform L of
the twisted volume polynomial Vy , [fMV] (L1,...,Ly):

LA{Vyn [fMV]} (215, 2n) = Elz1, -, 20) {Wym [fMV]} (215 2n), (4.56)

where the operator L is defined by equation (4.6).19

4.4.1 Laplace dual relation for the (2, p) minimal string

We will show that the Laplace dual relation (4.56) holds for the (2, p) minimal string manifestly.
Accordingly, by the specializations p = oo and 1, we also find that the Laplace dual relation holds
for the Weil-Petersson volumes and the Kontsevich—Witten symplectic volumes, respectively.

Proposition 4.16. For the (2,p) minimal string, the Laplace transform of the Mirzakhani type
ABO topological recursion (2.8) with the Masur—Veech type twist,

J

2 / (R(Ly, Lin, ) + LafY (@) Vgt [V (2, Ly gy )
1 m=2 Ry
1
+ 5 /2 (D(Ll,ﬂ?,y) +R(Ll,$,y)fMV(y) + R(Ll,y,l')fMV(:L‘) + LlfMV(J:)fMV(y))
R+

n
x 2y Py [MV] (2, y, Li)dzdy| e P1dLy [ [ e #H Lid L, (4.57)
1=2

where Py, [fMV] (x,y, Lk) is given by equation (2.2) for the twisted volume polynomials, agrees
with the partially twist-eliminated CEO topological recursion (4.54) for 2g —2 +n > 1.

To prove this proposition, we prepare some key integration formulae involving the kernel
function HM®)(z,5) in equation (2.19) for the (2,p) minimal string. (See [78, equations (2.2)

and (2.3)] for analogous formulae of Mirzakhani’s recursion for the Weil-Petersson volumes.)
For k € Z>q, one finds

2k+1
W) (1) = / N0 (0, #)da
2k+1 R, (2]€+ 1)| ’

£2k+2 (r-1)/2 . - k srops 12
= 9 —1 J —q mahTma
(2k + 2)] JZ (=1)7 cos <pj> PIL (20!

=1 0=0

k+1 2k+2-2¢
(9L 9 — 9\ 4.58
"2k +2 - 20) (4.58)

=0
where u; = (p/2m)sin(j7/p) in equation (2.20), and
2a+1, 2b+1
r Y M(p) _ M)

H™Y t)dazdy = h t). 4.59
/Ri (2a+1)!(2b+1)! (@ +y, t)dzdy = hy, i, 5(0) (4.59)

19This relation is derived formally in the general set-up in [8]. In this article, we give a direct proof specialized
for the physical 2D gravity models.
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The coefficients s,’s in equation (4.58) agree with those in the following expansion for 1/yM®)(z)
of the (2, p) minimal string spectral curve:

(p—1)/2
1 p—1 2T 1 . T 1 1
Ry G e S —1)J a
yM(P)(z) ( ) ’ Tp(%ﬂz) z + ]Z_; ( ) o8 <p]> <Z — Uy + Z+Uj>
=3 s (4.60)

In addition, we will use an integration formula involving the Masur—Veech type twist function,
/ MV ()22 de = (2k + 1)1¢(2k + 2). (4.61)
R4
Lemma 4.17. In equation (4.57), the ?**1 term in 2V, 1 [fMV] (z, L\ {m)) obeys

/ (R(L1, Ly, ) + Lif™Y () 2? e~ lr=#mbm q2d L, L, d Ly,
R3

2d+1
w) Y =i 2d+2 NG, )Wo,z(w, 2m) (2K + 2;w)(2k + 1)1, (4.62)
d>0

[\3\*—‘

Proof. We perform the integrations on the left-hand side of equation (4.62) using (2.10), (4.58)
and (4.61):

Ly
/ |:;/ (HM(p) (1', t+ Lm> + HM(p) (x’ t— Lm))dt + LlfMV<1') x2k+1
R3 0

x e Abv=zmlm Qo [y L, d L,

k+1k+1—¢ 1 1
= (2k +1)! (Z Z sg- (2k +3 — 20— 2d) 202 2k 20—2d
(=0 d=0

1
+ 2%((% + 2)) : (4.63)

where we also used a formula of the Laplace transform:

N
/}R+ L' ML = . (4.64)

On the other hand, by equation (4.55) the right-hand side of equation (4.62) is

2d+1 2d’

w] Y =i 2d+2 2> (2d + 2 Cu(2k + 2;w)(2k + 1) (4.65)
d>0 d'>0

l\.’)\r—t

Adopting the formula (4.52) for ((2k + 2;w) and the expansion (4.60) for 1/yM®)(w) to this
expression, we find the agreement between equations (4.63) and (4.65). |

Lemma 4.18. In equation (4.57), the x22t1y?*1 term, in xyPy [fMV] (xz,y, Li) obeys

% / (D(Lh xz, y) + R(L17 Z, y)fMV(y) + R(Lb Y, x)fMV(w) + Llva(x)fMV<y))
R}
$2a+1y2b+le_zlL1 dxdydLl
2d+1
w'] Y e 2d+2 N w) (Cu(2a + 2;w)(2a 4+ 1)) (G (26 + 2;w) (20 + 1)!) . (4.66)

d>0
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Proof. We perform the integrations on the left-hand side of equation (4.66) using (2.10), (4.58),
(4.59) and (4.61). The term involving D(Ly, z,y) yields

).
2 Jr

Ly
(/ HM®) (5 4 y,t)dt> gty o=zl gy dyd L,
0

3
+
1 a+b+2 s
l
= 5(2a+1)(20+1)! > T e (4.67)
=0 ~1

The term involving R(L1, z,y)fMV (y) yields:

1 /
R
a+1 (l+171€

1 (20 + 2b+ 3 — 2 — 2d)! 1
= —(2a+1)! 20+ 2b 44— 20— 2d) 7, (4
g (20t )ZZ; % a2 s SZeTT )zfd“’ (468)

Ly
</ (HM®) (2, + y) + MO (2, ¢ — y))dt) 220ty 2oL MY (e ==1ln dpdyd Ly
0

3
+

and we find the term involving R(L1,y,z)fMV (x) by replacing the role of parameters a and b in
equation (4.68):

b+1 b+1—4

1 (2a +2b+ 3 — 20 — 2d)! 1
—Z | — — N
2(2b+ 1).;0 dEO S¢ (@b 12— 90— 24 C(2a+2b+4—2¢ 2d)2%d+2.

Finally the term involving fMV (z)fMV(y) yields

1
ﬁ(2a F )26+ 1)1¢(2a + 2)C(2b + 2). (4.69)
On the other hand, adopting equations (4.52) and (4.60) on the right-hand side of equa-
tion (4.66), we correctly recover the sum of four terms (4.67) — (4.69). [

Combining the claims in Lemmas 4.17 and 4.18 as well as the expansions (2.38) and (4.45)
with (4.53), we find the claim of Proposition 4.16.

4.4.2 Laplace dual relation for the (2,2p — 2) minimal superstring

We will show that the Laplace dual relation (4.56) holds for the (2,2p — 2) minimal superstring.
Accordingly, by the specializations p = oo and 1, we also find that the Laplace dual relation
holds for the super Weil-Petersson volumes and the supersymmetric analogue of the Kontsevich—
Witten symplectic volumes, respectively.

Proposition 4.19. For the (2,2p—2) minimal superstring, the Laplace transform of the Mirza-
khani type ABO topological recursion (2.8) with the Masur—Veech type twist,

J

n

R(L17 L, x)x‘/;],n—l [fMV] (1': LK\{m})dx

t Lm=27R+
1
+ 5 /2 (D(L17 €T, y) + R(Ll, x, y)fMV(y) + ]%(L17 n $>va(1'))
RY
X l’yPg,n [fMV] (_7;7 Y, LK)dSCdy:| e*Z1L1 dL, H eiziLiLidLi, (470)

=2

agrees with the partially twist-eliminated CEO topological recursion (4.54) for 2g —2+n > 1.
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To prove Proposition 4.19, we use an integration formula

2k-+1
SM(p) 4y . _ € SM(p)

h (t) := / H>YP) (g t)dx
2k+1 R, (2k+1)!

R, 1 el 9 - )2=2k=1 20
e LR _1)d _ v
Qk+1)1 7 2 (1) cos ( (J ))Z 20+ 1)!

j=1 =0
k / $2k+1-2¢

= - 4.71
Z‘Sf(%ﬂ—%)!’ (471)

(=

r—ho

involving the kernel function HSM®)(z y) in equation (2.31) for the (2,2p — 2) minimal su-
perstring, where u; = (p/2m)sin((j — 1/2)7/p) in equation (2.32). (See [79, Section 5.4] for
an analogous formula of Stanford—Witten’s recursion for the super Weil-Petersson volumes.)
The following expansion for the (2,2p — 2) minimal superstring spectral curve also gives the
coefficients s}’s in equation (4.71):

1 p=1 z
SM(p)(Z) - (71) ’ 27
v ()

, P2 - 1 1 1
_ z e (T B
Z5p,l + o Z ( 1) COS <p (j 2>) (Z _ U; P +U;>

J=1

=) s (4.72)

>0

Lemma 4.20. In equation (4.70), the 2**™ term in xVy,—1 [fMV] (2, L\ fmy) obeys

R(Ly, Ly, x)a?* e~ bi—2mlm qpd [ L,,d Ly,
R3
2d+1
w’] ) 2d+2 wr )WOQ(w 2m)Cr (2 + 2; w) (2 + 1)1 (4.73)
d>0

[\3\*—‘

Proof. The equation (4.73) is verified in the parallel way as equation (4.62). We rewrite the
left-hand side of equation (4.73) by equations (2.24), (4.64), and (4.71):

1
5 /3 (H™MP) (2, Ly + Ly) + HM® (2, Ly — Ly,))a? el =2mlm qgd Ly Ly d L,
R
ko k—t . .
= (2k +1 'ZZS (2k —20—2d +1) L2042 2R3
/=0 d=0

The right-hand side of equation (4.73) is in the same form (4.65) as the (2,p) minimal string.
By the formula (4.52) for ¢(11(2k + 2;w) and the expansion (4.72) for 1/ySM®)(2), the claim
follows. [

Lemma 4.21. In equation (4.70), the z**T 1y 1 term in xyPy, [MV](x,y, Lk) obeys

1
2 / (D(L1, %, y) + R(L1, 2, )" (y) + R(Ly, y, 2)f"Y (2)) 2”1y e P dadyd Ly
R
1 2d+1
5 9 %M ST )(CH(Qa +2;w) (2a + 1)) (Ca(2b + 2;w) (26 + 1)1).  (4.74)
d>0
Proof. The equation (4.74) is verified in the parallel way as equation (4.66). [

Combining the claims in Lemmas 4.20 and 4.21, we find the claim of Proposition 4.19.
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5 Virasoro constraints

In this section, we first overview an algebraic formulation, called the quantum Airy structures [9,
60], of the ABO topological recursion and the CEO topological recursion. In particular, we will
see the equivalence between the quantum Airy structures and the Virasoro constraints for the
physical 2D gravity models in Table 1. We then discuss explicit computation of the volume

n

coefficients Féf)a as well as the twisted volume coefficients F(9) [fMV] o using the cut-

and-join equations in [2, 3] derived from the Virasoro constraints and homogeneity conditions,
and a group action in [9] which is associated with the twist action.

5.1 Formulation
Consider the generating function of the volume coefficients Fy (g ) _an 10 equation (2.3) of the ABO
topological recursion or equation (4.7) of the CEO topologlcal recursion for 2¢g —2+4+n > 0:
Z(h;t) = ')
B B ta, - ta,
F(h;t) = Z h2972F, (t) = Z 292 Z Féf)analni,a (5.1)
g>0 g>0,n>1 atye5an 20

Here t = {to,t1,t2,...} is the set of variables ¢, which are related to the length variables L; in
equation (2.3) and the spectral curve variables z; in equation (4.7) by

tay - ta, L i (S
n! (2(11 + 1)' (2an + 1)' ) z%a1+2 zga”+2.

In this set of variables, the recursion (2.6 ) leads to

OLF (B t) Z BE ta0y F (Fis t) Z Ch y(0aOpF (hit) + 0 F (s )0, F (B t))
a,b>0 a,b>0
+ 572 Z A jtaty, + DF,
a,b>0

where 0, = 0/0t,, and the following proposition is obtained.

Proposition 5.1 ([9]). The generating function (5.1) satisfies constraint equations,

LiZ(ht) =0, k> -1, (5.2)
where

=~ 1 1 k41 e+l n k41 k1

Ly = =501+ 113 Q%:OA taty + = Q%:OB taOp + agoc Da0p + = D . (5.3)

When the differential operators Ek satisfy

[Le. L) = > fiyLa, k0> -1, (5.4)
a>—1

where f ¢ are scalars, the operators Lk define a so called quantum Airy structure on the space
of the variables t, [9, 60]. The quantum Airy structure is shown to be a sufficient condition
for the existence of the solution to the constraint equations (5.2) [9]. In particular, when the
differential operators Ek satisfy the Virasoro relations

[Liy L] = (k= 0) Ly, k0> —1, (5.5)

the constraint equations (5.2) are referred to as the Virasoro constraints. As we will show below,
the generating functions of the volume coefficients for the physical 2D gravity models in Table 1,
with or without twist, satisfy the Virasoro constraints.
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5.2 Bosonic models

Here we discuss the bosonic models in Table 1.

5.2.1 Airy and KdV

From equation (2.15), the Airy initial data for the Kontsevich—-Witten symplectic volumes of
moduli spaces of stable curves are

Ag; as — = Oay,a2,a3,05 BZ; as — = (2az + 1)5a1+a2,a3+1’
1

Cg;,as = Oa1,a2+as+25 D™ = §5a1,17 (5.6)
and the differential operators for £ > —1 in equation (5.3),

~ 1 1 h? 1 1

Ly = ~50k1 + > <a + 2) taOa+i + > a0+ thtsk,q + 760k (5.7)

a>0 a,b>0
a+b=k—1

satisfy the Virasoro relations
(L1} = (k- OL, k0> 1.

Then, the constraint equations (5.2) provide the Virasoro constraints [28, 41],

LpZMhit) =0, k> -1, (5.8)
for the generating function of the Airy volume coefficients (2.18):
tooeeet
log ZM(lt) =D RTPFNM(6) = Y BT Y R, (5.9)
g>0 g>0,n>1 a1,...,an>0 '
|a|=3g—3+n

which satisfies the homogeneity condition (2.17).

Remark 5.2. The Virasoro operators E? in equation (5.7) admits the free field realization
[28, 41]:

TA(z) = 06 (2)0¢* () 7 )
nez
by a chiral bosonic field with the anti-periodic boundary condition:

008w =+ 3 (nt 5 ) (tn—zour ) 2" 5 4 DS B E = Y0 e

T h 2)\" 3 B nt3 '
n>0 n>0 nez
From the Virasoro constraints (5.8) with the homogeneity condition (2.17), a cut-and-join

representation of the Airy generating function (5.9) is derived in [2] following [75].

Proposition 5.3 ([2]). The Airy generating function (5.9), which is a solution of the Virasoro
constraints (5.8), is given by

Mahyat) =Y 220 WA (5.10)
k>0

where the cut-and-join operator WA s

1 12 t3
A 0
WA =2 3" (204 1) (2b+ 1) tatsays 3" (20 + 26+ 5) tayp12040)
3ab>0(a+ )( + ) bOatb—1 + 6ab>0(a+ + ) +b+42 b+6h

where 0_1 = 0.

t1
+ o
8
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Proof. From the Virasoro constraints (5.8), we find

2 —~ —~ —~
0= 2> @k + DLy 2 (i t) = ~DAZA (i) + WA ZA (s t), (5.11)
k>0

where DA denotes the Euler operator

~y 1
DA = 3 Z(% + 1)t,0.
k>0

The homogeneity condition (2.17) leads to the action of the Euler operator on Z* such that
DAZ (hst) = kZp (s t),
and equation (5.11) gives

ST AFWAZN ) = R Rz (5.12)
k>0 k>1

From z* terms in equation (5.12), a recursion relation WAZk ((B;t) = kZ{ (R t) is found, and
we obtain a solution ZA(h t) by adopting the recursion relation iteratively,

1~
ZR(hit) = TWAZY (ht) = -+ = — (WM .1, (5.13)

where Z5'(h;t) = 1. And finally, we find the cut-and-join representation (5.10) by taking
a generating series of Z(h;t) in equation (5.13). [

By the iterative use of the cut-and-join equation (5.10), we obtain the first few volume
coefficients in equation (5.9) as:

3 3t 5 3 7 45 9
Fi(t) = EO - 021 - <8t3t2 + 2t3t§> + <8t8t3 + §t§t1t2 + 2t8t§’) e
ty Stota 33 35 5 15 3 3
FAt) == =1 t2t totita + —t
() 8+<8+16 +1603+4012+81+ ’
105ty (1155tgts ~ 945t1ty  1015tat3
Fi(t) = .
2(8)= 355 + ( 28 128 128 > ’
FA () = 25025t; [ 425425tgty  375375t1ty  385385tats  193655tsts 191205t
3 1024 1024 1024 1024 512 1024
e (5.14)

The Airy generating function (5.9) generates the coefficients ng\/(agg in equation (4.12) by

the following proposition.

Proposition 5.4. The generating function of the coefficients Fa1 (,172 in equation (4.12),

to oot
KAV (. 5 _ 2g—2 KdV(g) la an
log Z8V(hit)y = > ¥ > FRN ,ggT, (5.15)
g>0,n>1 at,...,an>0
|a|<3g—3+n

is obtained by shifting the variables in the Airy generating function (5.9) as

for a>2. (5.16)
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Proof. The shift (5.16) for the Airy generating function (5.9) gives

n+m
S e 1T (525
017 7an+m a; ‘
at,...,an+m >0 (n + m 2az + 1
|la|=3g—3+n+m

1 <n + m) A < L u2a 4
| Q1,..,antm a; ,
at,...,an4m=>0 (n + m) m =1 20“”«4‘] +1
la]=3g—3+n+m

where u_; = u; = 0. This leads to the right-hand side of the formula (4.13) in Proposition 4.7,
and the claim is proved. |

Proposition 5.4 implies that the KdV generating function (5.15) also satisfies the Virasoro
constraints and can be computed by the cut-and-join equation (5.10) with the shift (5.16).

5.2.2 Weil-Petersson volumes

P(g)

From Proposition 5.4, the generating function of the Weil-Petersson volume coeflicients FLXV lin
in equations (2.14) and (4.23),

t. ..t
log ZVP(hit) = Y RMTPE)N ()= Y pr Y FT) e (5.17)
g>0 g>0,n>1 ai,...,an>0 G
|a|<3g—3+n

is given by the shift of variables in the Airy generating function (5.9) [62]

(—27?2)(171

to — tg —
N (2a+ 1)M(a—1)!

for a>2. (5.18)

This shift is found from the specialization (4.24) of the time variables u, of the KdV spectral
curve to obtain the Weil-Petersson spectral curve CWF. The cut-and-join description of the
generating function (5.17) is obtained in [4].

Adopting the shift (5.18) to equation (5.14), we find the first few volume coefficients in
equation (5.17) such that

FVP(t) = t3+ t+1tt + t+3 T —|—3tt2 + -
7"' .
6  \120" 210 12707 4" 0T TR0 T 5 T0M ’

tom? t 4 2 5 3 7 13
FVP(t) = <° + 1> + <8t3+ tots + gtato + 117 > + (27 ot + Sttt

35tt2+§ttt +§t3 +
1630 4210 81 )

29 169 139 203 105
FOVP (1) = 78t 70t 7y + =ty + ——t
2 (t) <192 * 180 T T g™ BT gl ) T

+5 2424 —i—tht—l—
g™ otz T ton

5.2.3 (2,p) minimal string

From Proposition 5.4, the generating function of the (2,p) minimal string volume coefficients

Fé\f,(p),&gn) in equation (4.27),
ta, -t
log 240 (hit) = YRR = S0 w3 pinpie e (s

n:
g>0 g>0,n>1 a,...,an>0

|a|<3g—3+n
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is given by the shift of variables in the Airy generating function (5.9),

(-2 27,—1) p+1
_ <a<t——. .
ta — ta (2 +1 i a—l ' < ) for 2<a 5 (5.20)

This shift is found from the spemahza‘mon (4.26) of the time variables u, of the KdV spectral
curve to find the (2, p) minimal string spectral curve cM),

By the iterative use of the cut-and-join equation (5.10) and the shift of variables (5.20), we
find the first few volume coefficients in equation (5.19) such that

3 4 4 3
M(p) to to to 2 | titg
M0 gy = 20 00 120
0o () 6+<<12 )" T2
Nty A tot1  3tgty ﬂ2+5t§t2+3t3t% L
12 30p2  20p* 4 Ap> 8 2 ’
t to \ o t
<12 12p2>7T * 8)
t2 t2 5t2 A tot1  tot1\ o  Dtato 313
3 T ot )T P e )T T s T s

N <<7t0 N 13t Tty >7T6—|— < ot 115t N 13t§t1> 4

27p2  9pb  27pt 4p? 8p?t 8
5t2ta  tot?  5tite  9tot? 35tst2  15totity  3t3
_ Igl2 0l] o2 01>7r2 3b0 2104_1)4_...7

+ 22 4p? 2 4 6 4 8
29t 6557t 497t 58Tt 17t
M@ () = e R R R
192 2880p 720p 480p 80p
169t; 361ty 8Tt1 23ty 6
+ o 5T 2 4
480 480p 160p 160p
139ty 23ty 312\ 4 203t3  203t3\ o 1054
— — T — T
192 96p2  64p* 192 192p? 128
Note that the minimal string volume coefficients interpolate the Airy volume coefficients at p = 1
and the Weil-Petersson volume coefficients at p = oo:

M(1 A M (oo WP
FYO() = FMt),  FMCI(t) = F)P(t).

5.3 Supersymmetric models

Here we discuss the supersymmetric models in Table 1.

5.3.1 Bessel and BGW

From equation (2.27), the Bessel initial data for the supersymmetric analogue of the symplectic
volumes of moduli spaces of stable curves are

Aal _ O Ba‘1 = (2@2 + 1)5a1+a27a37

az,as ) az,a3
1
Cg; a3 — 5a1,a2+a3+17 D" = §5a1,0; (5.21)
and the differential operators in equation (5.3),%
LB——8k+Z<a+ >t8a+k+ D Oadyt 5k0, k>0, (5.22)
a>0 a,b>0
a+b=k—1

20Note that E],? + %31@ = E? + %8;94_1 for k > 0.
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satisfy the Virasoro relations
(LB IP] = (k-0 LE, k>0
Then, the constraint equations (5.2) provide the Virasoro constraints [49, 68],
LPZP(m;t) =0, k>0, (5.23)

for the generating function of the Bessel volume coefficients (2.30)

t.oo.t
B 29—2 B 2g—2 B a an
log ZB(h;t) = Y PP PEP(6) = > B9 YRR — (5.24)
g>0 g>0,n>1 ai,...,an>0
la|=g—1

which satisfies the homogeneity condition (2.29).
From the Virasoro constraints (5.23) with the homogeneity condition (2.29), the following
claim is proved in [3].

Proposition 5.5 ([3]). The Bessel generating function (5.24), which is a solution of the Virasoro

constraints (5.23), is given by

B(zh; 2t) Zkak we 1, (5.25)
£>0
where the cut-and-join operator WB is

— h? t
WP = Eb;O(?a +1)(2b + Ditatydats + 5 ;O(M + 20+ 3)tasp10a0s + 5
a,b> a,b=

Proof. From the Virasoro constraints (5.23), we find

0=2 2k + )ty LEZB(hst) = —DPZB(h; t) + WEZB (s t), (5.26)
k>0

where DB denotes the Euler operator

BB = Z(2]€ + 1)tk6k.
k>0

The homogeneity condition (2.29) lead to the action of the Euler operator acting on Z® such
that

DBZB(hit) = kZ2(n:t).

Repeating the same analysis as the proof of Proposition 5.3, we see that equation (5.26) leads
to equation (5.25). [

Due to the homogeneity condition (2.29), the to-dependence of F) B in equation (5.24) are
irrelevant to the genus growth, and in fact, FB for ¢ > 2 are found from the following simple
replacements of variables for F,’ with tg = 0 [3 5, 48, 82]:

h t
h— —, ty — ——.
1—+t 1—+t
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The first few volume coefficients are found by the iterative use of the cut-and-join equation (5.25)
such that

1 t2 t3 t4 t5 t6
F(t) =0, FlB(t):_gIOg(l_tO) —+—+—+—+—+7+

8 16 32 40
FB(t) = 9t 9t | 2Ttoty | 27150 45t3t1 135t4t,
23T 128(1 —tg)3 128 128 64 64 128 ’
FB(t) = 225t5 N 567t _ 225t 1125tgty 567t
3 1024(1 — tg)5  1024(1 — )6 1024 1024 1024 ’
B(h) 55125t3 388125t 1t 649893

= 32768(1 — fo)7 | 32768(1 — fo)® | 4096(1 — tg)°
55125t5 (385875t3t0 388125t2t1)

~ 32768 32768 * 32768
(64989 3 385875 ., 388125

. 2
2006 1T 8192 310" 4096 t2t1t°> T (5:27)

Similar to Proposition 5.4, the Bessel generating function (5.24) generates the coefficients
F(EGV%,?) in equation (4.33) by the following proposition which also implies the Virasoro con-

straints for the BGW generating function.

Proposition 5.6. The generating function of the coefficients Fﬁ?m(f) in equation (4.33),

t oot
BGW /3. _ 2g—2 BGW(g) ‘a an
log ZPW(hit) = > n2 Y FEOV a(n)iln!
g>0,n>1 a1,...,an >0
laj<g-1

9

is obtained by shifting the variables in the Bessel generating function (5.24) as

V2a—1
2a + 1

te — ta — for a>1. (5.28)

5.3.2 Super Weil-Petersson volumes

From Proposition 5.6, the generating function of the super Weil-Petersson volume coefficients
FEXVF:C(L? in equations (2.26) and (4.38),

ta, ta
log ZSWF (hit) = Y RO PEWVE(e) = Y p? Yo ppWR i (5.2)

g>0 g>0,n>1 at,...,an>0 -
laj<g—1
is given by the shift of variables in the Bessel generating function (5.24) [79]:
20" g a1
ta — ta — m or a-~ 1. (530)

This shift is found from the specialization (4.39) of the time variables v, of the BGW spectral
curve to obtain the super Weil-Petersson spectral curve CSWP. The cut-and-join description of
the generating function (5.29) is also obtained in [4].

Adopting the shift (5.30) to equation (5.27), we find the first few volume coefficients in
equation (5.29) such that

FSWVP(t) = FR(t) =0,  FSVP(t) = FB(t) = —% log(1 — ),
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9t 372 1
FSWP(gy— — 2 s (1
O = 2sa—wp t 6 ((1 EWE )

(Ot N (9 e 2T N (10 2T Y
“ U 64 128 327 10T 19gt1t0 327 0T gyttho ’

FSWP (1) — 225t 567t N 18972t 37%(37 +5tp)  111x*
1024(1 — t9)5 ' 1024(1 — t0)® ' 256(1 — to)® ' 512(1 —to)6 512
B (681 iy, 4 189 225 )
512 256 1024
N (2421 gz D67 o 1125 567 t2> L
512 7 0T 1287 MO T 10247270 T 1024 '

5.3.3 (2,2p — 2) minimal superstring

From Proposition 5.6, the generating function of the (2, 2p—2) minimal superstring free energies

FaSlM(gi 9 in equation (4.42) labeled by an odd positive integer p,

log ZM®) (1 £) = SR 2EME () = S 2z 30 FSM(’?L&)Mv (5.31)
>0 g>0,n>1 a1,.,an>0 "
laj<g—1

is given by the shift of variables in the Bessel generating function (5.24),

21—1) p—1
ta = ta — 2a+1 WH( > for 1<a<=—. (5.32)

This shift is found from the specialization (4.41) of the time variables v, of the BGW spectral
curve to obtain the (2,2p — 2) minimal superstring spectral curve CSM®),

Adopting the shift (5.32) to equation (5.27), we find the first few volume coefficients in
equation (5.31) such that

1

SM(p) 91 372 372

F. t) = _ P

2 () 12801 — 1) (64(1 “1)} 64 )"

9 9 9t, 9 9\ o o . 2Ttito
— - _ - _ — )¢ - -
<<64 64p2> +128> + ((32 32p2> 0™+ o8 >+ ’
SM 225t 5672 18972t Py
F3 (P)(t)_ 1

©1024(1 — tg)5 + 1024(1 — t()8 * 256(1 — to)0
3miP; (42P) — 5Py + 5t Py
512 (1 —t)8

681ty 381ty 81t 4 1891 189t1\ o 225t
= - + m - "+
512 256p?  512p4 256  256p? 1024

2421 1521 621 \ , , (567 567 )

* <( 512 2567 512p4) fom+ <128 N 128]92) foham
1125¢t9tg 56Tt

1024 ' 1024 )

—42P + 5P2>

)

where P, = 1 —1/p? and P» = 1 — 9/p?. Note that the minimal superstring volume coeffi-
cients interpolate the Bessel volume coefficients at p = 1 and the super Weil-Petersson volume
coefficients at p = oo,

SM(1 _ B SM (oo _ SWP
Fg ()(t)_Fg(t)v Fg ( )(t)_Fg (t)
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5.4 Twisting

The twisted initial data (2.40) of the ABO topological recursion defines the generating func-
tion Z[f] of the twisted volume coefficients F9)[f],, .

Z[f](h;t):exp< Soonwr N F<9>[f]a1,...,ant“1”,'t“”>,
g>0n>1 a1y @n, >0 v

which satisfies constraint equations
LIflxZ[f](h;t) =0, k> —1,

where L[f]; are twisted differential operators

- 1 1 1
Liflk = = 301 + 535 S ALfE aty + 5 S BIfE a0y
a,b>0 a,b>0

1 k+1 L ehtt
+ > Clf1E 9a0s + 5 DIf* L

a,b>0
The following proposition is then established.

Proposition 5.7 ([9]). The generating functions Z and Z[f], and the differential operators Ly
and L[f] are related by the group action of

~ h?
U[f] = exp (2 > u[f]a,b8a8b>, (5.33)
a,b>0
defined by the twist function ulf], in equation (2.41), as

Z[f)(h: ) = U[f) Z (s 9), Lflx = U[f)L,U[f] " (5.34)

When the differential operators Zk satisfy the constraint equations (5.4) of the quantum Airy
structure, it is found from the group actions (5.34) that the twisted differential operators L[f]
also satisfy

(L. LIfle) = > feoLlfla, k0> -1

a>—1

In particular, when the differential operators Ek satisfy the Virasoro relations (5.5), the twisted
operators L[f]; also satisfy the Virasoro relations

[L[flk, LIfle] = (k — O)L[fls1e, ko> —1.

In the case of the Masur—Veech type twist, ug/lly in equation (2.43), the operator (5.33) of the
group action yields

~ PN h? (2a + 2b+1)!
MV _ MV] _
UMW =U[f"Y] =exp < 5 a§b>0 a1 D12+ 1)!((2a +2b+ 2)aaab>. (5.35)

Remark 5.8. The twist action U [f] is regarded as an exponentiated quadratic operator of
Bogoliubov’s transformation type. It preserves Virasoro algebra of differential operators acting
on a partition function, but can be harmful for integrable hierarchy equations.?!

21This aspect of the twist action is pointed out by an anonymous referee.
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5.5 Masur—Veech type twist

In the following, we discuss the Virasoro constraints with the Masur—Veech type twist for the
physical 2D gravity models in Table 1.

5.5.1 Masur—Veech polynomials

The initial data for the Masur—Veech polynomials are found from the Airy initial data (5.6)
twisted by equations (2.40) and (2.43):

A [fMV] Z;ag = 5 a1,a2,a3,0)
B [fMV] Z; as ( ag + 1)5a1+a2,03+1 + C(2a3 + 2)501@2,0’
CIMY]e ) = darastast2 + C(2a2 +2)((2a3 + 2)8a, 0

2a0 + 2a3 — 2a1 + 3 2a0 + 2a3 — 2a1 + 3
+ +
2a9 + 1 2a3 +1
X C(QCLQ + 2a3 — 2aq +4),

a 1 2
D[fMV] 1 _ g(5a171 + Cg)éa171°

By Proposition 5.7, the twisted differential operators
=~ =~ SMVTA (73 -1
Lll;/[V _ LA |:.|:MV:| L= UMVLQ (UMV) ’

of the Airy Virasoro operators E‘,? in equation (5.7) by the twist (5.35) also satisfy the Virasoro

relations?2

[Ekavi%/l ] = (k 6) Lk-‘,—ﬁ’ kj7€ 2 _]—7 (536)
and provide the Virasoro constraints
LWVZMV(hit) =0, k> -1,

for the generating function of the Masur—Veech polynomials

log ZMY (1;t) = log Z* [MY] (75 t) = log (UMY ZA (15 1))

t .ot
_ 29—2 MV 2g—2 MV ai an
=Y n¥°F) = > w9 Fah,_(g}nT. (5.37)
g>0 g>0,n>1 ay,...,an>0
|a|<3g—3+n

Remark 5.9. The twisted Virasoro operators E%V in equation (5.36) admit the free field
realization

TMV({L') = 6¢Mv(x>8¢Mv(x) + i + @ — ZLnMinn727

by a “twisted” chiral bosonic field with the anti-periodic boundary condition

oMY (x) = %Z <n+ ;) ( <t > hQZuMVa ) n=3 4 g Zanm—n—%

n>0 a>0 n>0
= a -3 .
=D_ae
nez

Note that the Virasoro relation (5.36) follows from this free field realization immediately.

22These Virasoro relations can also be checked directly by verifying the commutation relations or using the free
field realization in Remark 5.9 below.
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By Proposition 5.3, the Masur—Veech generating function (5.37) is computed by

ZMV (zh; 2t) = (/jMVZA(xh; xt) = JMVeaWh

)

and we obtain the first few volume coefficients such that

t3 1 5 3
YV (t) = EO + <48t0+ ~t tg) + (160t0+ 3 — oty + 81&3752 - 2t2t0> NN

w2ty t 2 5 3 11 3
FMV(t) = < 12°+ 81>+<32t0+ ot + gtota + 5t >+<576 6t0—|—16 i3t
+65 w2 tit +3 2tot? +35tt + 5ttt +3t3 +-
b9 - .
9 ol2 4 041 16()3 4 0t102 ] )
29 1 119 35 105
FMV(t) = 8o + — w0t s oty + —t . 5.38
2 (t) <2560 0T T T 2 e BT g™ ) T (5.38)

Proposition 5.4 leads to the following proposition.

Proposition 5.10. The generating function of the twisted KdV volume coefficients,

tooeeet
KdV [¢eMV D 2g—2 KdV(g) [eMV tap " tan
log Z*Y [FY ] (h; t) = E h E F [f ]al,...,an nl
g>0,n>1 ai,...,an>0
|aj]<3g—3+n

is obtained by shifting the variables t, as equation (5.16) in the Masur—Veech (i.e., twisted Airy)
generating function (5.37).

5.5.2 Twisted (2, p) minimal string volume polynomials

The generating function of the twisted volume coefficients for the (2,p) minimal string:

log 2N [MV] (i t) = Dm0 2 Fy1 0 [V] (t)

920
— Z K292 Z FM@)(9) [FMV] tay -~ tay
A1y yOn n! ’
g>0n>1 at,...,.an>0 ’

la|<3g—3+n

is obtained by shifting the variables ¢, as equation (5.20) in the Masur—Veech generating func-
tion (5.37). Here we introduce a deformation parameter s as

a—1 a—1
( 2m s) (26 — 1)? p+1

which yields the shift (5.20) at s = 1.
Adopting the shift (5.39) to the Masur—Veech generating functions (5.38), we find the first
few volume coeflicients such that

t3 tds  tis  th tit3
FM®) MV ) — Y0 s Tp o) 2, Ulg
o P =5+ {15 127 Tag) ™ T

N tos®  ths®  ts? +tgj s N t 4
2 4 2
12 30p2  20p* 36 36p2 160
N <3t3tls 3tit1s N t3t1> 2 Stits N 3t3t%> N

4 4p? 8 8 2
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2.2 2.2 2.2 2
M(p) [eMV tos  tos o) 2, t tos tgs 5t5s 13tgs
F f t) = = _ it o _
D ((12 12p2+12 mry) T 8 +12p2 24p* ST
1312 12 tot tot tot Statg  3t?
_ 0S 7071_4_’_ ot1s  lol1s 271'2—1— 20_'_71
144p% 32 2 2p? 4 8 16
N <<7th3 T1t3s?  6ltds 11t 13tdsd 33 T3St

27 432 864 576  27p? * 27pt  9pS
_6ltgs  11t3s®  49t3s 6 3tgt  totis®  1ltghs®
864p?  216p2  432p? 16 4p? 8p?

_13t3t13+ 1313t s* 13t3tls) 4 <3tot% 65t5t2  Ototis

16p2 8 16 4 96 4p2
_5t(2)st2 N Iot?s N 5t2sts 2 15t9t:1to ﬁ 35t5t3 7
2p? 4 2 4 8 16

2 720p2 * 480p* + 80pS  2880p8  128p2  25920p2
629t0s2  23tgsd  tgs®  331tps®  115tps®  Stgs  29tgst

_10368p4+ 962 +96p4  864p6 * 64 128 ' 192
4199t9s?  29to\ ¢ . [ 8Tt1s®  23t;s3 361183 119¢s
51840 T 2560) i <160p2 ©160p*  480p5  960p2

t182 2182 16918 119t 5t182  t
18 15° 157 18 18 1>7r6

4 4 4 4 2
FM(p) [va] (t) _ <<4g7t08 587t0$ 17t08 6557t08 5t08 527t0$

C18p? 9pt 480 960 18 32
245sty 2352ty 31s%ty N 13952ty L bsty 1100y
- - - T
576p>  96p%  64p? 192 576 1152

~ 203st3 2035t3+35t3 2 10524
192p? 192 96 128

These volume coefficients reduce to the Masur—Veech volume coefficients (5.38) at p = 1 and
the twisted Weil-Petersson volume coeflicients at p = oo.

5.5.3 Super Masur—Veech polynomials

The initial data for the super Masur—Veech polynomials are found from the Bessel initial
data (5.21) twisted by equations (2.40) and (2.43):

Al e =0 BIFYTG o, = Qa2+ 1) tasas,

az,as az,as
2a9 + 2a3 — 2a1 + 1 2a9 + 2a3 — 2a1 + 1
MViar 2 3 1 2 3 1
C[f ]ag,a3 - 5a1,a2—|—a3+1 + << 2a9 + 1 > - < 2a3+1 >>

x ((2az + 2a3 — 2a1 + 2),
1
D[FMV]™ = gdar0-
By Proposition 5.7, the twisted differential operators
E%MV _ B [va]k _ [?MVEE ([’jMV)*l’

of the Bessel Virasoro operators ZE in equation (5.22) by the twist (5.35) also satisfy the Virasoro
relations

(LMY IMY] = (k- 0L, kez0,
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and provide the Virasoro constraints
LMWV ZMV(pt) =0, k>0,
for the generating function of the super Masur—Veech polynomials

log Z5MV (h; t) = log ZB[MY] (5 t) = log (UMY ZB(h; 1))

_ 29-2 pSMV (¢ 29—2 SMV(g) tar * " “tan
= S % =Y > RNV (5.40)
>0 g>0,n>1 a1,..yan,>0 ’
laj<g—1

By Proposition 5.5, the super Masur—Veech generating function is computed by
ZMY (zh; 2t) = UMV ZB (wh; 2t) = gMVerW?
and we obtain the first few volume coefficients such that

FSWV(t) = FP(t) =0,  FMV(t) = FP(t) = —% log(1 — ),

9t 372 1
MV — 2 s (1
(&) = 250 =2 T 256 ((1 “h)? )

(3%t 9y 9 27 3 55 27

= (128 +128>+<256 t0+128t1t0>+<64 t0+64t1t0>+ o
225t5 567t3 15372ty 2374 1

1024(1 — f0)° | 1024(1 — f0)® | 2048(1 — to)5 | 4096 <(1 T 1)

23 4 153 2 225
= | ——7mtlo+ ——=7"t1 + —— 19

F§MY(t) =

1024 2048 " 1024
15 45, T65 o 125, 567
2048 10T 9048 M0t g9y 1024
15 45 2295 5 o 3375, 1701 ,
tt2 % . Al
+ (1024 0 5008™ 110 F 104" o+ p1g 170 ) T (541)

Proposition 5.6 leads to the following proposition.

Proposition 5.11. The generating function of the twisted BGW wvolume coefficients,

log 7BGW [va] (hs t) = Z £;29-2 Z FBGW(9) [fMV] tay - .‘. la,
’ ai,...,an ’
g>0,n>1 at,...,an>0 ' -
la|<g—1

is obtained by shifting the variables t, as equation (5.28) in the super Masur—Veech (i.e., twisted
Bessel) generating function (5.40).

5.5.4 Twisted (2,2p — 2) minimal superstring volume polynomials

The generating function of twisted volume coefficients for the (2,2p — 2) minimal superstring,

log Z3M®) MV (n;¢) = >~ p29 2SN MV (),

920

_ Z 1292 Z FSM(p)(g)[fMV] ta, - ta,
a1,...,0n n‘ ’

9>0,n>1 a1,eensan >0 '

la]<g—1
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is obtained by shifting the variables ¢, in the super Masur—Veech generating function (5.40) as

(—27%s)" 1 (2i —1)? b1
(2a+1)!m!,Hl<1‘p2> for 1<as<——, (5.42)

tg — tg —

where a deformation parameter s is introduced.
Adopting the shift (5.42) to the super Masur—Veech generating functions (5.41), we find the
first few volume coefficients such that

FOSM(P) [fMV] (t) = Fég(t) —0, FISM(p) []cMV} (t) = FB(t) = 7% log(1 — to),

SM(p) [ MV 9t 32 32 32 372
F. f t) = 2 Vs 27
> 128(1 — tg)3 + (64(1 —tg)3 64 st 256(1 —t9)2 256

. 9$t0 9St0 3t0 2 9t1
- << 64 oap? 128> KR

9st2  9stZ 93\ o 2Tht
+(< 32 332 26)" i )T

SM(p) oMV 225t 567t2 18972t 5P 15372t
F. MY (t) =
s L) = Too0 = o5 t 109801 — 10)8 T 26(1 = to)° T 2043(1  tg)°
2374 1 3m4s?Py [(42P) — 5P + 5tg Py
+ 1)+ 5
4096 \ (1 — to) 512 (1—tp)
51mtsPy 1
—42P; + 5P —1
R TIFY <(1 — t0)5 >
681s%ty  381s%tg N 81s%ty  255sty  255sty 23ty \ 4
= - - ™
512 256p2  512p* 1024 1024p% 1024

180st;  189sty 1531\ , 225t
256 256p2 ' 2048 )" T 1024

<(242152t3 1521523 621s%*2  765st3  T65stl 1151%) 4

512 2562 512pt 1024 1024p% ' 2048
+ 5678t1t0 5678t1t0 765t1t0 2 1125t2t0 56715%
128 128p? 2048 i 1024 1024 ’

where P; =1 —1/p? and P> = 1 — 9/p?. These volume coefficients reduce to the super Masur—
Veech volume coefficients (5.41) at p = 1 and the twisted super Weil-Petersson volume coeffi-
cients at p = oo.

A Physical derivations of spectral curves
and the Masur—Veech twist

In this appendix, we discuss a physical derivation of spectral curves for the JT gravity and
the (2,p) minimal string as well as their supersymmetric generalizations. And we also discuss
a physical interpretation of the Masur—Veech type twist in terms of the JT gravity.

A.1 JT gravity and Weil-Petersson volume

Here we summarize basic results of the JT gravity in [88] which is necessary for our physical
derivation of the Masur—Veech type twist.
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®

Figure 9. Left: A disk with a wiggly boundary parametrized by a proper length coordinate u. Right:

A double trumpet with two wiggly boundaries.

B b1 Ba
L L
L Q@

Figure 10. Left: A hyperbolic trumpet with a wiggly boundary and a geodesic boundary of length L.
Right: A double trumpet made of two hyperbolic trumpets.

The JT gravity is the two-dimensional dilaton gravity which appears in a model of AdS,/CFT}
correspondence. In this gravity theory, the dilaton function plays a role of the Lagrange mul-
tiplier setting a hyperbolic constraint R = —2 for the Ricci curvature of a two-dimensional
surface.

From the physical duality conjecture of the AdSe/CFT; correspondence, it is found that the
partition function Z(‘)]E (8) of the JT gravity on the Euclidean AdSs homeomorphic to a hyperbolic
disk with a wiggly boundary is dual to the thermal partition function (Z(8)) = (e #HsvK) of
the Sachdev—Ye—Kitaev (SYK) model on the boundary circle in the low energy limit which is
described by the Schwarzian theory. On the boundary of the disk parametrized by a proper
length coordinate u in Figure 9 (left), the metric gy, and the dilaton field ¢ of the JT gravity
obey the wiggly boundary conditions below with a parameter ~:

1 v

guu‘bdy = ?7 d)‘bdy = ;7 €— 07 (A].)

and it is necessary to perform the path integral over the boundary graviton modes to get the
partition function of the JT gravity. In [90], a direct computation of the disk partition func-
tion Z(H(ﬁ) is performed, and the following striking formula is obtained
JT g 2y
Z38(8) = — e
(2m)2 B2

Further evidence of the duality conjecture is observed for the partition function of the JT
gravity on the hyperbolic double trumpet with wiggly boundaries which is homeomorphic to the
cylinder in Figure 9 (right). The double trumpet partition function of the JT gravity is shown
to be dual to the spectral form factor (Z(8 +iT)Z (5 — iT)) of the SYK model in the ramp
region.

The double trumpet is divided into two hyperbolic trumpets by cutting along the waist curve
(see Figure 10). Each hyperbolic trumpet is also homeomorphic to a cylinder, and one of two
boundaries is the wiggly boundary which obeys the boundary condition (A.1) for the JT gravity
fields. Another boundary is the geodesic boundary, and we choose its length to be L. In [88, 91],
a striking formula of the trumpet partition function ZJ3, (3, L) is obtained

[N B STV

»

L

B

e

=] Nl
[N]83

ZJT ,L — 771
trumpet (/8 ) (2’7‘(’) 55
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Figure 11. A hyperbolic Riemann surface with genus g and n wiggly boundaries, which is constructed
by gluing n hyperbolic trumpets to the bordered hyperbolic Riemann surface.

Gluing two hyperbolic trumpets along the geodesic boundaries, one obtains the double trumpet,
and the gluing formula for the double trumpet partition function Z(‘)]E (B,L) is

B152

27 Brt Ba) (A.2)

Z(L)]:g(ﬂl?/@?)_/R Z‘E]r{mpet(ﬁh ) trumpet(ﬁ% )LdL:
+

The gluing formula is generalized to the genus ¢ partition function with n boundaries in
Figure 11. The JT gravity partition function Zg% (81, .-, Bn) of a genus g hyperbolic bordered
Riemann surface with n wiggly boundaries obeys

ZT(Br, ..., B) _/ (Hzgrﬂmpet BZ,Li)> VVP(Ly,..., L HL dL,, (A.3)

where V;%P(Ll, ..., Ly) denotes the Weil-Petersson volume of genus g bordered Riemann surface
with boundary lengths L1,..., L,. In the path integral of the JT gravity, the Weil-Petersson
volume arises from the path integral with respect to the metric g, and the dilaton field ¢ on
the bulk of bordered Riemann surfaces.

Weil-Petersson spectral curve from JT gravity. The JT gravity partition func-
tion (A.3) is directly related to the connected correlation function W%P(zl, ..., zn) of the CEO
topological recursion for the Weil-Petersson volume. Here we will focus on the derivation of the
basic data, the y-coordinate function in equation (4.22) and the bidifferential B in equation (4.4)
of the Weil-Petersson spectral curve CWF = (]P’l;x, yWP B) from the disk and double trumpet
partition functions.

The y-coordinate function is found from the disk partition function Z(‘)]E (B) rewritten in the
form

250 = [ AtE)eEaE,
R4
where p}T(E) denotes the genus zero density of states
JT _ 0
py (E) = ) sinh (271/27E).

By a change of variable E = —2z? and the analytic continuation, one finds the y-coordinate
function [88§]

y'1(2) = —7ipdT(E) = % sin (271/272).
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Putting v = 1/2, we find the y-coordinate function yWF(z) in equation (4.22) up to an overall
constant factor.

We now use a formula which relate the correlation function Wg\ylp (21,...,2p) for 2g4+2—n >0
of the CEO topological recursion for the Weil-Petersson volume and the JT gravity partition
function ZJT n(B1s. .., Bn) with vy =1/2:

Wg,\YLP(Zlv'--vzn):2nzl"'2n/ ZJT(BI»---aﬁn s Biz Hdﬂ (A4)
R™

+

This formula is found from the Laplace dual relation between the Weil-Petersson volume
VWP(Ly,...,L,) and the correlation function Wg\f\flp (#1,...,2n). Here the integral formula in-

volving Ztrumpet(ﬁ, L),
— (322 f‘)/
2'2/ Zgr?lmpet(ﬁvl/)e pz dg = 22/ — I T
5 . (2m)16%

is applied to equation (A.3). The bidifferential B in equation (4.4) is found by applying the
above formula to equation (A.2),

2
e TR a = 29)Ee VI (A)

o= NI

1

2222/ Z3T(By, Bo)e AP AB1dBy = ———
122 | 0,2(B1, B2) p1d B2 EETE

R

(A.6)

and this agrees with the regularized (g,n) = (0,2) correlation function [36] given by

dx(z1) ® dx(z2) dz1 ®dzy  4z1z9dz; ®dze  dzp ®dze
B(z1,22) — 2= 2 2 _ .2\2 2°
(x(21) = x(22))* (21— 22) (21 — 23) (21 + 22)
Thus the basic data of the Weil-Petersson spectral curve CWF = (IP x, yWP, B) are found from
the JT gravity partition functions.

A.2 Including a scalar field and the Masur—Veech type twist

Here we introduce an extra scalar field with mass m coupled to the JT gravity fields. The
partition function of the scalar field Zgcaar(L; A) on the hyperbolic trumpet with a geodesic
boundary of length L is found in [54] via the heat kernel method,

1 e—wLA
Zscalar(L; A) = H 1 —oLarp ~ &P (Z w(le“’L)>’ (A7)

p=>0 w>1

where??

1 /1
A== - 2,
2—1— 4+m

The partition function of the scalar coupled JT gravity is computed by introducing the scalar
partition factor Zga1ar(L; A) for each of the closed geodesics of the hyperbolic bordered Riemann
surface with wiggly boundaries in the gluing formula. Namely, Zgcalar(L) is regarded as a twist
function of the ABO topological recursion. In particular, we focus on a sector of the scalar field
path integral in the exponential formula of equation (A.7),

—AwL 1

A e & —(k+A)wL
fulliA) = on =y = kzme :

2When the bulk scalar field is associated to an operator defined in the boundary field theory on the Riemann
surface, the quantity A is identified with its scaling dimension (see, e.g., [1]).
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B2

Figure 12. A simple closed geodesic with geodesic length L in a hyperbolic double trumpet.

This sector in the scalar partition function comes from path integral contributions of the closed
world lines of the scalar field wrapping w times around a closed geodesic of length L. In
particular, by considering the w = 1 sector for a massless scalar field with A =1 (m = 0), we
find the Masur—Veech type twist function in equation (2.42),

.1} — fMV —
fumr (L:1) = V(D) = .
Thus we get a physical interpretation of the Masur—Veech type twist from the physical arguments
based on the JT gravity.

Remark A.1. The generalized Masur—Veech type twist function f&MV in equation (2.44), nor-
malized by the winding number w, is also found as a sector of equation (A.7) for the massless
scalar field,

R B 1
fw(L;1) = Efg (Lyw) = m.

Twisted Weil-Petersson spectral curve from scalar coupled JT gravity. Based on
the above physical interpretation in the JT gravity, we will find the bidifferential B[fMV](21, z0)
in equation (4.51) with the Masur—Veech type twist, and recover the twisted Weil-Petersson
spectral curve CWF [fMV] = (Pl; x,yVP B [fMV]). We start from the scalar coupled JT gravity
partition function Zg:g‘scalar(ﬂl, B2) on the double trumpet that is found by gluing two partition
functions for the hyperbolic trumpets and introducing the scalar partition function along a simple
closed geodesic with geodesic length L as depicted in Figure 12 [54],

Zb]:g—scalar(ﬁl’ BQ) = /R Z‘E]rzmpet (ﬁlv L)Zscalar(L; A)Zgr?lmpet (52’ L)LdL (A8)

+

We now replace Zgcalar (L; A) by the Masur—Veech type twist function fMV(L) for the L-integral in
the right-hand side of equation (A.8). The sum of the twisted and untwisted partition functions
denoted by Z(‘)]:g [fMV] (B1, B2) is

Zy5 [MV](By, B2) = / Zionmper (81, L) (1 4+ V(L)) Zihmpet (B2, L) LAL. (A.9)

Ry

Adopting equation (A.5) with v = 1/2, for Re(z1 + 2z2) > 0, we find

2oz / L Z35[PY](B, Br)e P 4By dBy
R

+

1 1 1
_ —L(z1+22) _
= e 1+ LdL = + E
/R+ < el — 1) (z1+22)* = (21+ 22+ m)?

= ((2; 21 + 22),
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Figure 13. Closed geodesics on a hyperbolic Riemann surface with genus g and n wiggly boundaries.

where ((2; z) is known as the generalized zeta function. By an analytic continuation to z € C\Z,
((2;z) is replaced by the Hurwitz zeta function (3(2;z) in equation (4.52). By changing the
signature zo — —z9 to obtain the correlation function between two points in the same branch
of the double cover of the spectral curve, we find the twisted bidifferential B[fMV](z1,22) in
equation (4.51). Thus, the basic data of the twisted Weil-Petersson spectral curve CWF [fMV] =
(IP’l; x, yWP B [fMV]) are also found from the physical arguments of the scalar coupled JT grav-
ity.

As a generalization of the double trumpet partition function (A.9), we consider the twisted
JT gravity partition function of a genus g hyperbolic bordered Riemann surface with n wiggly
boundaries (see Figure 13) twisted by the Masur—Veech type twist function:

Z;]]E [fMV] </81" ’ ’Bn) - /n (HfMV( )Zgr?lmpet(ﬁialfi)>

i=1

X VP [V (La, o L) T] Lid s, (A.10)

where %YXP [fMV](L1,...,Ly) is the solution of the ABO topological recursion of the Weil-
Petersson volume with the Masur—Veech type twist, i.e., the twisted Weil-Petersson volume.
The ABO topological recursion twisted by fMV is equivalent to the Laplace dual of the CEO
topological recursion for the twisted Weil-Petersson spectral curve CWVF [fMV}.

Remark A.2. Here we comment on a physical observation of the twist-elimination map intro-
duced in Section 4.4 in terms of the twisted JT gravity partition functions. To extract the twisted
Weil-Petersson volume from the twisted JT gravity partition function, we should eliminate the
twist factors fMV(L;) and the trumpet partition functions Ztmmpet(ﬁl7 L;) in equation (A.10).
Such manipulation is geometrically interpreted as follows. By the physical argument, similar to
the relation (A.4), the twisted JT gravity partition function Z; JT [fMV] and the twisted correla-

tion function W;N P fMV] of the CEO topological recursion are related by an integral transform
T (2P [MV]) 2 WWP[PY] such that

WgV,YF[fMVMZL---,zn):2”21---zn/Rn ZIN V(B B)em i et Hdﬁz

+

In the geometric picture, this integral transform Z replaces the hyperbolic trumpet in the Rie-
mann surface with wiggly boundaries by the marked points depicted as the left arrow in Figure 14
(see [86] for physical discussions on this geometrical picture for this integral transform). Further-
more, the twist-elimination map £ eliminates the twist factors associated to the boundaries of
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Z;/}/nP [fMV} W;),\;LP [fMV] VgV\;LP []cMV]

Figure 14. A geometrical interpretation of the integral transform Z and the twist-elimination map &
involved with the inverse Laplace transform £7!.

f MV] . Finally, adopting

fMV]

the bordered Riemann surface in the twisted correlation function W;ZLP [
the inverse Laplace transform £7!', we obtain the twisted Weil-Petersson volume VgYYLP[
with boundary length variables L;.

A.3 Liouville gravity and (2, p) minimal string

Consider a matter CFT coupled to the ghost sector and Liouville CFT which is referred to
as the Liouville gravity. When the matter CFT is the minimal model CFT labeled by a pair
of relatively prime integers (p,p’), the Liouville gravity yields the (p,p’) minimal string which
is a class of non-critical string theory. In particular, the (2,p) minimal string with any odd
positive integers p is found by specializing the Liouville parameter b in the Liouville gravity as
b= %. It is pointed out in [88] that the partition function of the (2,p) minimal string leads
to the partition function of the JT gravity in the p — oo limit. Detailed studies on the relation
between the Liouville gravity and the JT gravity in terms of the topological expansion of the
partition functions are found in [67].

The Liouville gravity partition function on the two-dimensional surface with a simple bound-
ary condition [39, 92] which fixes the boundary cosmological constant up is studied in [33, 73, 89].
Such a boundary condition is known as the FZZT boundary condition. The inverse Laplace
transform of the Liouville gravity partition function with the FZZT boundary conditions gives
the correlation function of macroscopic loop operators of the Liouville gravity, which is the Li-
ouville gravity partition function of the two-dimensional surface with fixed boundary lengths.
In [88], it is pointed out that the JT gravity partition function on the hyperbolic surface with
wiggly boundaries coincides with the Liouville gravity partition function with fixed boundary
lengths in the b — 0 limit. (Detailed derivations are found in [67].)

The disk partition function Z; (1 )(E) of the Liouville grav1ty with a fixed boundary length ¢
is given by the integral transform of the density of states ,00( )(E) [74] as?*

Z(Ii(lb) (0) ~ / _ZEpOL( )(E)dE, pg(b)(E) = ﬁ sinh <bl2 arccosh <f>> ,

where ~ implies a multiplication of a constant factor N (b) and a bulk cosmological factor '/ (26%)
(cf. [67, equation (3.9)]), and the parameter  is given by x2 = u/sin(7b?). By rescaling the

24The disk partition function of the Liouville gravity in the JT gravity notation is found such as [88, equa-
tion (150)] and [67, equation (3.11)].
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energy E and the boundary length ¢ as®®
g

_ 274 _
E—K(1+27T bEJT), f—m,

we obtain the partition function of the JT gravity in the b — 0 limit. By an analytic continuation
of the genus zero density of states ,oIOJ(b) (E) with E = K,(l — 2772b422), we find the y-coordinate
function

L(b _ L) _ L1 4
yO (z) = —mipy (E) = 5 sin <anrccos(1 — 27%b z2)> ,

which defines the Liouville gravity spectral curve CH®). In particular for b = ﬁ , the coordi-
nate function y“()(z) yields the coordinate function yM®)(z) in equation (4.25) of the (2,p)
minimal string spectral curve cMp) — (Pl;x, yM(p),B).26 Now we consider two specializa-
tions of the parameter p. One specialization is the limit p — oo. In this limit, the minimal
string reduces to the JT gravity, and the coordinate functions (4.22) of the Weil-Petersson
spectral curve CWVFP = (]P’l;x, yWP,B) are recovered. Another specialization is p = 1. In this
case, the minimal string is identified with the topological gravity whose matter CFT has
central charge ¢ = —2 [27, 43, 44], and the coordinate functions (4.8) of the Airy spectral
curve C = (IP’l;x, yA,B) for the Kontsevich-Witten theory are recovered. In [47], the CEO
topological recursion for the spectral curve CM®) ig studied , and the non-perturbative behavior
of the minimal string theory is discussed in great detail.

Next, we consider the cylinder partition function of the Liouville gravity with fixed bound-
ary lengths /1, /5 to find the bidifferential of the spectral curve. From the detailed analysis
of the two point function of the Liouville gravity, a gluing formula for the cylinder partition
function Z(I;’ (Qb) (£1,02) is obtained in [63, 67] such that

2y (1, 6) = % /R tanh(m\) Kix (01 Kix (kl2) AdA = Eﬁlze—%%), (A.11)
+

where K (¢) denotes the modified Bessel function of the second kind, and a formula of the
Kontorovich-Lebedev transform is adopted to obtain this result (e.g., see [34, Section 12.1]). In
the Liouville gravity, the trumpet partition function Ztl;g?npet (¢,\) is computed as the bulk one
point function of the disk with a fixed boundary length ¢, and given by (see [67, equations (4.8)
and (7.57)]),

ZEO (0,0) = Koy (k). (A.12)

trumpet

Then, the formula (A.11) is considered as an analogue of the gluing formula (A.2) for the double
trumpet in the JT gravity. Performing the following integral transform for the (g,n) = (0,2)
correlation function Z(Iigb) (01,62) with E; = k(1 — 272b127) (i = 1,2):
22 (27r2b4/<a) 221 29
27

1
(21 + 22)2’

/Z(I;(Zb)(gl,62)621E1+Z2E2d€1d€2: (A.13)
R2

+

we obtain the same answer as the (g,n) = (0,2) correlation function (A.6) of the JT gravity.
Consequently, by a change of signature zo — —z3 of equation (A.13), we find the bidifferen-
tial B in equation (1.3) for the Liouville gravity spectral curve. Thus, the basic data of the

25The boundary length ¢ of the Liouville gravity is identified as the Euclidean time of the JT gravity in this
coincidence. Due to this identification, we use the inverse temperature g for the boundary length ¢ in the Liouville
gravity partition function.

26The coordinate function is also found in [89] from the ground ring relation [96] of the tachyon module.
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Liouville gravity spectral curve C*() = (]P)I;X, yL®), B) are derived from the Liouville gravity
partition function, and the spectral curve CH®) reduces to the (2,p) minimal string spectral
curve CM(®) = (IP’I; X, yM(p), B) in Table 1 by the specialization b = \/%

Rescaling the parameters in the Liouville gravity such that

L B

Tk = orm2pd

we recover the JT gravity results in the b — 0 limit. Indeed the trumpet partition function (A.12)
and the measure factor in equation (A.11) reduces to those of the JT gravity in this scaling
limit [67]:

¢ L T L2 1
2 (BA) = b /Be . tanh(TA)AN = o LdL,
and the Liouville gravity partition function reduces to the JT gravity partition function.
Having obtained a set of basic data of the CEO topological recursion, we can consider an ana-
logue of the Weil-Petersson volume for the (2, p) minimal string. Let V;jéb)(Ll, ..., Ly) be the
volume polynomial which is the Laplace dual of the solution of the CEO topological recursion

for the Liouville gravity spectral curve C“". By the specialization b = /2 /p, the volume poly-

nomial VgI}(Lb) (L1,...,Ly) reduces to the volume polynomial va%(p (L1,...,Ly) for the (2, p) min-
imal string.?” In particular, for p = oo (resp. p = 1), the volume polynomial %%p (Ly,...,Ly)
reduces to the Weil-Petersson volume VQYYZP (L1,...,Ly) (resp. the Kontsevich-Witten symplectic

volume V;}n(Ll, ..., Ly)) which appears in the path integral for the JT gravity (resp. topolog-
ical gravity) partition functions. To establish the p — oo limit, the non-perturbative study of
the (2, p) minimal string is also necessary, and such aspect is addressed in [47].

A.4 JT supergravity

Supersymmetric generalizations®® of Mirzakhani’s recursion relation [69, 70] are given by Stan-
ford-Witten’s work [91] from the study of the JT supergravity defined on a bordered super
Riemann surface. Mathematical aspects of the volume of the moduli space of super hyperbolic
surfaces and the CEO topological recursion formalism are further studied in [79]. The super
Riemann surface is a Riemann surface equipped with a spin structure, and the partition function
of the NV = 1 supersymmetric JT gravity (i.e., JT supergravity abbreviated by SJT) is given
by the integral over the moduli space of Riemann surfaces involving the sum over spin struc-
tures [91]. The topological expansion of the JT supergravity partition function with respect to
the underlying Riemann surfaces is found in the parallel way as the (bosonic) JT gravity, and
a classification of fermionic and non-orientable extensions of the JT gravity is discussed in [91].

The basic data for the topological expansion of a fermionic/(non-)orientable JT gravity par-
tition function are also found essentially from the disk, trumpet and double trumpet partition
functions. In the strategy of Stanford—Witten’s work, the disk and trumpet partition func-
tions of the fermionic/(non-)orientable JT gravity are studied on the basis of the dual SYK-like
models. Furthermore, the fermionic/non-orientable JT gravity partition function has a de-
scription by a random matrix integral, and a correspondence between the classification of the
fermionic/(non-)orientable JT gravity and the Dyson f-ensembles [32] or the Altland—-Zirnbauer
(cv, B)-ensembles [7] is established as Tables 1-4 of [91].

2"The p-deformed Weil-Petersson volume is computed independently on the basis of the (2,p) minimal string
in [67, Section 7], and we find agreements between the volume polynomials Vglfln(p)(Ll, ..., Lyp) in (C.2) and the
p-deformed Weil-Petersson volumes for (g,n) = (0,4) and (1,1) under a change of parameters as b7 = L? —4x? /p?
(see version 5 of [67] in arXiv).

28 A supersymmetric extension of the McShane identity is studied independently in [51] on the basis of Bowditch’s
approach [14] by Markoff triples.
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The disk and trumpet partition functions for the JT supergravity are?’
SJT 1 = ZSIT -
Z (/8) = me s, trumpet(lBa ) 2\/7 48,

where the parameters v and € of the super Schwarzian path integrals in [91, Appendix C] are
fixed to be 1/2 and 1, respectively. From the disk partition function ZSJT(B)7 as was done in
the JT gravity, we obtain the coordinate functions x(z) and ySWF(2) in equation (4.37) of the
super Weil-Petersson spectral curve CSWP | where we employed a normalization given in [79].
Gluing two trumpet partition functions along the geodesic circle of length L, we obtain the
double trumpet function

vV B152

SJT(/Bhﬁ?) = 2/ tSr{;ll;qpet(/Bh ) trumpet(ﬂQv )LdL = M’

where we assume the JT supergravity on orientable surfaces without time-reversal symmetry,
and the factor 2 in front of the middle integral arises from the sum over the spin structures.
The JT supergravity partition function on an orientable surface with genus g and n wiggly
boundaries without time-reversal symmetry is

Z3T (B, ..., Bu) = / <H2Z§i?npet @L») VIW(Ly,...,L HL dL;, (A.14)

where V;XV (L1,...,Ly,) denotes the Weil-Petersson volume for the moduli space of super Rie-
mann surfaces computed from the supersymmetric generalization of Mirzakhani’s recursion
in [91, Appendix D].

From this double trumpet partition function, we also obtain the bidifferential B(z1,22) of
the super Weil-Petersson spectral curve CSWP in the same way as the JT gravity, and the
super Weil-Petersson spectral curve CSWP = (Pl;x,ySWP,B) is obtained. Then, the correla-
tion functions W;XVP(zl, ...,2pn) are obtained from the CEO topological recursion, and their
inverse Laplace transforms give the volume polynomials VQSXV P(Ly,...,Ly,) of the moduli space
of super Riemann surfaces which are the supersymmetric analogue of the Weil-Petersson vol-
umes %%P(Ll, ..., Ly) and obey the ABO topological recursion. The Weil-Petersson volume
for the moduli space of super Riemann surfaces in the JT supergravity partition function (A.14)
and the super Weil-Petersson volume defined in equation (2.25) are related by [79, Section 5.3]

VEW(Li,... L) = (~1)"2"9VSWP(Ly, L, L),

A.5 Type 0A minimal superstring

It is conjectured in [82] that the Bessel generating function ZB(f; t) in equation (5.24) is obtained
from the string equation [20, 21, 76] for the complex matrix model which gives a non-perturbative
definition of the free energy of type OA minimal superstring [58].3C In particular, when a finite
number of variables t, is turned on such that ¢, # 0 (1 < a < (p — 1)/2), the string equation
gives the free energy of type OA (2,2p — 2) minimal superstring.3!

29For the disk and trumpet partition functions Z&yr(8), Zdyr(B, L) computed in [91, Appendix C] from the
boundary super Schwarzian path integrals, a factor 1/2 is multiplied to employ the matrix model normaliza-
tion [82): Z§17(8) = L 28y (8), Z8IE et (B, L) = 2 2&10(8, L).

30Proofs of the correspondence between the (generalized) BGW free energy and Kontsevich-Witten free energy
is given in [100, 101].

31For the JT supergravity, the free energy is found from the string equation by tuning an infinite number of ¢,’s.
The role of the string equation in the JT supergravity is discussed in [55, 56, 57].
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Heuristically we consider a spectral curve which interpolates the super Weil-Petersson spec-
tral curve CSWP and the Bessel spectral curve C® with coordinate functions in equation (4.29).
We obtain the zySWP(2) and 2y®(z) by differentiating yWF (z) and y*(2) of the spectral curves for
the Weil-Petersson volumes and Kontsevich-Witten symplectic volumes in the bosonic models>?

1dyWP(2) 1dy?(2)
SWP,_\ _ + B(,) _ =
y N (2) = R y~(2) o P

Adopting this heuristic relation to the y-coordinate in equation (4.25) of the (2, p) minimal string
spectral curve CM®) | we find a supersymmetric analogue of the (2,p) minimal string spectral
curve CSM(®) with the coordinate functions in equation (4.40). The cut-and-join equation ob-
tained from the spectral curve CSM®) is studied in Section 5.3.3, and we find that the generating
function ZSM®)(; t) in equation (5.31) is obtained by the shift (5.32) for the finite number of
variables t, in the Bessel generating function Z B(h; t):

2@— 1) 1
- for 1 <a < B2,
to = ta +Ya with Ta 2a + 1 uau H < ) <a< 5

Yo =0 for others.

Accordingly, we can regard

B(B1) - B(Bn)Z™MP)(hst)| = B(B1) - B(Ba) 25 (I t)

tq=0

ta="a

with an operator

=35

a>0

as a correlation function of type 0A (2,2p — 2) minimal superstring, where the operator g(ﬁ) is
considered as a boundary creation operator [81, 82, 83] with a variable 3 associated to a bound-
ary. Although we do not know the appropriate boundary condition for the disk partition function
of type 0A (2,2p — 2) minimal superstring which leads to the spectral curve CSM®) | from these
physical observations, we expect that the spectral curve CSM®) is obtained from the brane par-
tition functions in type 0A (2,2p — 2) minimal superstring.3

B Derivation of the ABO topological recursion data

Originally, a derivation of the CEO topological recursion for CVF is given explicitly in [38] by
Eynard and Orantin from Mirzakhani’s topological recursion for the Weil-Petersson volume.
We apply their computation to the (2, p) minimal string and the (2,2p — 2) minimal superstring
in a reverse way (i.e., inverse Laplace transform of the CEO topological recursion), and derive
the ABO topological recursion data given by the kernel functions HM®) (x,y) in equation (2.19)
and HSM®) (2, y) in equation (2.31) explicitly.

We focus on the spectral curves CM®) and CSM®) | and start from a partially (inverse) Laplace
transformed CEOQO topological recursion for 2g — 2 +n > 1:

2Wg,n (2,Lg) = Res

=0 y(w)z —

dw 1 ~
22wl (Qg,n(wvvaK)

32This property will be originated from the fact that the supersymmetric formulae for the Mirzakhani-McShane
identity found in [91] allows a superfield representation with fermionic coordinates.

33The boundary condition of the branes in type 0A minimal superstring should be clarified from the matrix
models and super Liouville field theories (e.g., [89]).
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n
+ 2Wo,z<w,Lm>wg,n-1<w,LK\{m}>>], (B.1)
m=2
where K = {2,...,n}. In this recursion, ng are partially inverse Laplace transformed corre-

lation functions for (g,n) # (0, 2),

/ Woan(z, Lic)e™ Zima 58 ] LidLs = Wy (2, 25), (B.2)
R7“'L‘71 =2

and for (g,n) = (0,2),

— 1
Wo2(z, Lin)e b Lyyd Ly, = Woo(2, 2m) = ———,
. ( ) (2, 2m) )
which gives
Woo(z, L) = e, (B.3)

In terms of the fully inverse Laplace transformed function V;; for the correlation function W, ,,,

n
Won(z 26) = | Vyn(L, L) #m2i=2# LAL T | LidLs,
RY i=2

the relation (B.2) leads to

Wyn(z, Li) = / Vyn(L, Li)e *FLdL.
R4

In the recursion (B.1), Qg is a partial Laplace transform of P, ,,

©g7n(Z,Z,LK) = /2 ‘/L‘yngn(‘/L‘ayuLK)eiz(z+y)d$dy)
R

+

where Py, is the Laplace dual of Qg , given by

stable

Qqn(2:2,2K) = Wy_1n41(2, 2, 2k) + Z Witz 20)Whe 1417 (25 20)

h+h'=g
JuJ'=K

n
= / 2y Pyn(w,y, Lic)e ") Lizesbiddy [ [ Lid L.
Ry i=2

In the following computations, we will rewrite equation (B.1) into the recursion relation for V, ,
to find the basic data of the ABO topological recursion.
B.1 Derivation for the (2, p) minimal string

We will rewrite the partially Laplace transformed CEO topological recursion (B.1) with the co-
ordinate function y = yM®) in equation (4.25) into the form of the Mirzakhani type ABO topo-
logical recursion (2.8) written in terms of the kernel function in equation (2.10) with HM®)(z, y):

2 / Vyn(L, Li)e *FLdL
Ry
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L
:/ (/ HM®) (4 —i—y,t)dt) 2y Py (,y, Lic)e” *FdLdzdy
RB

+Z/ </ HMP>(a;t+L) HM(p)(x,t—Lm)>dt>

X Vg n—1(z, Lo\ my ) *"dLd

1
= z/ cyHM®P) (2 4 4, )Py (2, y, Ly Je ™ dtdady
R3

+Z / P) (2.t + L, )+HM(p)(x,t—Lm))

X .’L’ng_l (x, LK\{m})e*thtdx. (B.4)

Firstly, we focus on the first term on the right-hand side of equation (B.1),

dw 1 1 ~
- (w,w, L) B.
5€82wy M(P) (w) <z—w z—l—w) Qgnlw,w, Lic) (B-5)

Based on the following properties:

. @g,n(u% w, L) and wyM®) (w) are even functions of w,

o dw/yM®) (w) has poles at w = u; = (p/27)sin(j7/p) (j = 0,%1,...,%(p — 1)/2) with the
residue (—1)7 cos(mj/p) by equation (4.60),

equation (B.5) is rewritten as

- dw 1 ~
P wfje‘i] + Res wyM®) (1) 2 ——Qgn(w,w, Lg)
]:
p—1
2 Trj
=— Z(—l)ﬂ cos <) 5Qgn (uj,uj, L)
j b))z
j=1
p—1
Ll ' mJ 1 1 _
il Y, mj .
+Z<z+j;( ) COS(p)(Z—Uj+z+uj>>ng”(zvza K)
p—1 - - N
1 2 . —uj(r+y 2 ' . oty
- / = > (=1) cos (M) e T (1) cos (Wj) =)

. . i\ e—wi(zty) _ o—z(z+y)
— Z(—l)] cos <7r‘7> e’ € xyPyn(z,y, Lix)dzdy
j=1 z — u]'
p—1
2 . . ot
= 1/ — Z(—l)] CcOS <7T‘7> </ e_uj($+y+t)e_2tdt _|_/ ye—uj(Z"H/—t)e—ztdt)
< JRZ = p 0 0

+) (~1) cos (?) (/ e+“j(x+y_t)e_3tdt> > zyPyn(x,y, L )dzdy.
. T+y
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Comparing the final expression with the first term in equation (B.4), we find the kernel func-
tion HM®P)(z, ) given in equation (2.19).3*

Consistency check. To check the consistency of the kernel function HM(®) (x,y) derived
above, we will focus on the second term on the right-hand side of equation (B.1), and show the
following relation:

Res
R+ ’L,U:O

= 1/ (HM(p)(a:, t+ L) + HM® (2t — Lin))aVgn-1(x, L\ {m)
R}

z

dw 2
yM(p) (w) 22 _

w? WO,Q(w7 Lm)Wg,n—l(UJ, LK\{m}) e*ZmLmdLm

x e #==mlm qrdzdL,,. (B.6)

Using the expression (B.3) of /Wv/o,g(w, L,,), we rewrite the left-hand side of equation (B.6) as

dw 2 1
BESyM(p)(w) 22 —w? 2, — ng,n—1(w, L\{m})

dw 1 1 1 __
- EESYM(M(W) 2% —w? (Zm —w + Zm + w> Won-1(w, Lic\m})

2dw Zm —
- ngyM(P) (w) (22 — w?)(22, — w?) Wyn—1(w, L\ {m})

2dw 1 Zm . N
- “’EgyM(p)(w) (23, — 2%) (Z —w Zy— w> Won-1(w, Lic\(m})

p—1
: 2dw 1 Zm . N

= — ]leR:?:%,] + wEZG,Em yM(p)(w) Z(ZVQn — 22) <Z —w - Zm — w) Wg’n_l(’u)7 LK\{’ITL})

p—1
2 2 : g z z z z
= | — —1) cos | — m + m__ —
2(2%—22)< j;( ) (p><2+uj Zouj Zmt Uy Zmo— U

—~ ; gm Zm o
X Wg,n—l(uj7LK\{m}) =+ (—1)] COS () > _mUAWg,Tl—l(Z7 LK\{’ITL})
N P ’
, g z o=
— Z (—=1)’ cos <> ng,nl(zmaLK\{m})>
i P/ Zm =t
p=1
2 2 . . m —Uu;x —U;T
:72(22 _22)/ [— (_1)Jcos<]7r> (sz_u _Zze—i_u‘)
m Ry 1 p J m J
J
% . —u;x —2zT —Uix —ZmT
_ (_1)jcos <]7r) (Zm(e T —e ) _ z(e”W® —e7Fm ))
=1 p Z— Uy Zm — Uj
% ) g Zmefzx se—ZmT
—1y JO — Von_1(x, L d
+].:0( ) cos<p> (z+uj Zm+uj) Vg n—1(2, Lg\ fmy)dz

34The kernel function HM® (z, ) in equation (2.19) is symmetrized under the action y — —y. The extra terms
which appear in the anti-symmetrization do not contribute to the integrals in the first term in equation (B.4),
because the Heaviside functions in the extra terms vanish in these integrals.
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p—1

2 - —zt —zmt
— 2/ =) (=17 cos <J7T> (/OO g (att) Zm Zz — Zi ™t
z R+ . p 0 Zm -z

J=1

x —zt —zmt
+ e Ui dt
O 22 _ 2’2

(e%e] —zt —zZmt
tuj(z—t)Fm€ T T € dt
e () ([

X a:Vg,n,l(x, LK\{m})dSL‘ (B7)

On the other hand, the right-hand side of equation (B.6) is rewritten as follows [38]:

1/ </ e_z(t_Lm)HM(p)(x,t)dt+/ e_z(t+Lm)HM(p)($,t)dt>
z Ri m —Lm
X &V n—1(, Lo\ my)e > dad L,

oo t o0
_ 1/ / (/ e—(zm—z)LmdLm +/ e_(Zm+Z)LmdLm> e—ZtHM(P) (ZL‘, t)dt
z Ry 0 0 0

0 00
- / < / e—(Zm+Z>LmdLm> e—thM@)(x,t)dt)ngm1(m,LK\{m})dx

—00 —t

1 —2t _ Ao—2zmt —zt —zmt
— Z/ <€ (S + € +e ) HM(P) (x,t)x%m,l(l‘, LK\{m})dtd{E, (BS)
R

Zm — 2 Zm + 2

where HM®) (g, —t) = HM®) (g, t) is used in the last equality. Applying the kernel func-
tion HM®)(z,y) in equation (2.19) to the final answer of equation (B.8), we find the final
expression of equation (B.7). Thus we derived the kernel function HM®)(z, ) in equation (2.19)
of the Mirzakhani type ABO topological recursion for the (2, p) minimal string.

B.2 Derivation for the (2,2p — 2) minimal superstring

In the same way as the (2,p) minimal string, we will rewrite the partially Laplace transformed
CEO topological recursion (B.1) with the coordinate function y = ySM®) in equation (4.40) into
the form of the Mirzakhani type ABO topological recursion (2.8) written in terms of the kernel
function in equation (2.24) with HSM®) (g, ):

2 / Vyn(L, Lr)e *FLAL
Ry

= / wcyHM®P) (3 4y, L) Py (2, y, Li)e *LdLdzdy
]R3

+Z/ (M) (2, L+ L) + HSM® (2, L — L))

X Vg n—1(z, Lo\ my ) dLdz. (B.9)
Adopting the following properties:

. Qvg,n(w, w, L) and wySM®) (w) are even functions of w;

o dw/ySM®) (1) has poles at w = +ul = £(p/2m)sin((j — 1/2)7/p), (G =1,...,(p —1)/2)
with the residue +u3(1/27r)(—1)j cos?(m(j — 1/2)/p) by equation (4.72);



74 H. Fuji and M. Manabe

the first term on the right-hand side of the partially Laplace transformed CEO topological
recursion (B.1) is rewritten as

p—1

dw 1 ~
|4 wl::{:?:i’. + 522 z — w wySM@) (w) @on(w,w, Lic)
Jj=1 J

p—1
2L (—1)d 1 1 1
-y et (2(i-3)) (o -
1 p Z = Uy z—i—uj
/

X (@ ,n( K) - @g,n(zwzaLK)) + @g,n(2727LK)5p,1

p—

J
g0 Ujo
> )
_ (_1)] cos? (ﬂ- <] _ 1)) 1 - 1 : (e—u;(:c—‘ry) i e—z(m—i—y))
r2 \ o 27 P 2 ztu; oz

Jj=

3

1+ e 2@ ty) dp 1) xyPyn(z,y, L )dzdy

/ <7T <] _ 1)) (/OO e—u;-(:t"ry"!‘L)e—zLdL
R2 P 2 0

;B+y [e%¢)
—u’ (z+y—1L) —zLdL / e—l—u} (J:+y—L)e—zLdL)
z+y

+ 0p.1 / (L —x— )e_ZLdL> 2y Py n(z,y, L )dady.

Comparing the final expression with the first term in equation (B.9), we find the kernel func-
tion HSM®)(z,5) given in equation (2.31).3

Consistency check. As the (bosonic) minimal string, we will show the following relation
to check the consistency of the kernel function HSM®)(z, y):

dw 2 Z'mLm
/]R+ e [ySM(p>(w) 2 Vo, L) Woua (0, Licygy) | €L
- / (HM®) (2, L + L) + H™MP) (2, L — L)) 2V o1 (2, L\ (my)
RS
x e=2L=2mLmqLdzdL,,. (B.10)

The left-hand side of equation (B.10) is rewritten in the similar way as equation (B.7):

p*l

2dw 1 Zm z —~
ZwRii + Bes YN (w) (22, — 22) (Z - > Wy n—1(w, Lg\fm})

E )

Zm Zm Zm Zm 17 /
X | = 7+ ;T T /) Wg,n—1<ujaLK\{m})
( z—l—uj Z = u; zm—i—uj Zm — U

35The kernel function HSM®) (g, y) in equation (2.31) is anti-symmetrized under the action y — —y. The extra
terms which appear in the anti-symmetrization do not contribute to the integrals in the first term in equation (B.9),
because the Heaviside functions and delta functions in the extra terms vanish in these integrals.
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p—1
p-1 .
5 A _
+ Zmp’1+jz; or O P 773 z—u; z—l—u;-

X ng_l(z, LK\{m})
p—1
= .
(-1)’ 2(
ZmOp 1 + ~—cos” | —
i+ (5

X /W/g,n—l (Zm7 LK\{m}):|

3
VRS
|
N |
N———
N———
VR

N
3
N
E
b@
|
N
3 N
+ 13
<
s
N~

p—1

= 22m / 22:(71>ja82 m j_l
22, — 2% Jg, = 27 P 2

<e—u;$ N e—U;Z _ e R e—u;l" — e *mZ e—U}JB _ e—zmx>

!/ / / +
z—l—uj Z = u; zm—i-uj Zm — W

+ (G_Zx _ e_Z"LI) 5p,1] fCng—l(xv LK\{m})dx

p—1

2 (=1) 1 00 , —2L  —zmL
=2 [ |3 5 o (” <j - 2)) ( [Teen e

1

T —zL —zm L 00 —zL —zmL
i (o—L) € —e Fm I T € —e m
— [ e e dL - [ T L
0 25 — % z 2o — %

e #L _ e—sz

00 L
+p1 / o(L — x)HdL] Vg n-1(z, Lg\ {my)d. (B.11)
0 m

2oy T R

On the other hand, similar to equation (B.8), the right-hand side of equation (B.10) is rewrit-
ten as

Zm — % Zm + 2

e—zt _ e—zmt e—zt . e_th
22m/ < + ) HSM(P) ({B, L)l'Vg’n_l(x, LK\{m})dea:, (B.12>
B2

where HSM®) (g, L) = —HSM®) (g, L) is used. Applying the kernel function HSM®)(z, y) in
equation (2.31) to equation (B.12), the final expression of equation (B.11) is found. Thus,
the consistency equation (B.10) for the kernel function HSM®)(z y) is verified, and the CEO
topological recursion for the spectral curve C3M(®) is shown to be equivalent to the Mirzakhani
type ABO topological recursion with the kernel function HSM®)(z y).

C Volume polynomials

In this appendix, we give some computational results of volume polynomials for the 2D gravity
models and their Masur—Veech type twist.

C.1 Volume polynomials

Weil-Petersson volumes:
WP _
V073 = 17

Vvl\,]\lfP =5+ 7L%7
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Vorl =21 + = ZL

4 2 2

wp _ T ™ 4 2
= — 4 — LL
Vin 4+12,1 192Z *

VouP = 107t +37T22L2+ ZL4+7 >,

1<i<j<5
WP 7T6 1377 24 L 4 2 272 ’ 6
VL3 = ZL 4ZL73+§ Z ZLJ+115 ZLZ'
1<i<j<3 i=1
L2L4 L2L2L
192 Z *
1<4,5<3
(i#7)
2078 16976 1397% 2972 1
WP 22T T 2 L} S+ —— 18 C.1
2,1 102 " 2880 “* T 230401 T 1382401 T 142368 (C.1)

Volume polynomials of (2, p) minimal string:

Vs =1,
2
M T 1 1
= (1) + gt

@ _ 1 5\  n2 1) < 1 o 1
Mp) 2 4 272
4= () () 5 () St m e et
=1 =1

1 1\ o 1§ 1
vo%g<p>:10w4(1_2> <1+52>+3W2(1_2>ZL%+82L§1+ S

p p i=1 i=1 1<i<j<5

6 4 >

M(p) 147 1 20 3 137 1 11 2
Vis" = - n) (et )t ) U e ZL

8
Mp) 297 1 2423 41 6557
=2 () (e 2 2 090
Va ( + 435p2 + 3pt + 435p6

16970 1 430 361 1397 1 93
(1= I+ —— 2 2+ (11— = ) (14 —— ) I}
2880 p? 169p2 ~ 169p* 23040 p? 139p2
297 1 1
1— = | L8+ ——1I8. C.2
T 138240 ( p2> 1 142368 1 (€2)

Super Weil-Petersson volumes:

VSWP O7
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VWP (n—1)!

8 b
97 3
VSWP _ 2
2.1 64 = 256 1
2
swp _ 91 + 3 2
2,2 16 256 &~
2 3
SWP 457T 9 2
2,3 16 64"
135
]
945 135
Vas'h = - ZL
6817 63772 15
VSWP _ 12 I
3,1 512 512 1T g102t0
2 2
242174 189 75
SWP 2
= = —L L2,
Vs 256 z_: 819 Z_: BT
3 3
1959374 1323 225 189
SWP 4 2712
— Ly 22 L2I2
Vi 256 Z * 1006 Z i ¥ 1004 Z el
i=1 =1 1<i<j<3
27883370 1069117% 862572 175
VWP = L3 Li LS. C.3
4,1 §192 T 32768 17T 13107271 T 524288 (C3)

Volume polynomials of the (2,2p — 2) minimal superstring:

V[)Sf,lz/[(p) — 07
— 1)
Vls,’rl;/[(p) = (n ) ) )
972 3
V28&\4(p):67;<1 R

4
SM(p) _ 1357 1 45 9
Vau =3 1—]§ +672Li7
=1
5
sM(p) 94572 ( 1 > 135 5
‘/2 5 = 1- 9 + 55 Z 79
8 P 2 P
sM(p) 6817 1 27 6312 1 15 4
V. = 1—-=](1- 1— — kil
31 512 p> 227p? 512 1 22 ) TRl
1




78 H. Fuji and M. Manabe
sMp) 195937 1 111 13232 1\ <
Vst = 22 (- ) (1 1-= > 1
3 256 < p2> ( 311p2> T a6 ( p2> ; '

225 <~ 4, 189 -
1.2]2
4096Z o1 > LI

1<i<5<3
sM(p) _ 278833m 1 44866 1233
1% = [(1—-= 1- C4
4,1 8192 P2 278833p2 + 278833p4 (C.4)

10691174 1 12637 862572 1 175
— (1-=)(1-——= )12 1— = | Li+ ——18
* 732768 < p2> < 35637p2> 1t 131072< p2) 1 5240881
C.2 Twisted volume polynomials

Masur—Veech polynomials:

Vog =1,
2
MV T 1 5
- §
Vi 12 T
2 1S 9
Voi' =5 +3 2 L
=1
7_‘_4 7T2 2 2
N2y L} L2L
Vi 16+24; i 192Z 9
3l 2 > 1 >
MV _ 2 4 212
Vo5 _TJF?ZL%JFSZLW’ >, LiL}.
=1 1<i<j<h
1178 7t &
MV 2 2712
_ -t TN i L1
Vis 96 +16, : 1152Z + Z
=1 1<1<]<3
3
1
LS L2L4 L2L2L
1152Z i T 102 Z 9 3
=1 1<4,5<3
(i#7)
2978 76 11974 2 1
VMV = 222 4 2 Lt L8 8. C.5
21 9560 1021 T 1382401 T 138241 T 142368 (C5)
Twisted Weil-Petersson volumes:
‘/(]ng [fMV] — 1’
WP [MV (s+D)r* 1 ,
f =T 7 L
Vvl,l [ ] 19 +48 1
4
4s+1)m? 1
VP [FMV] = (2)7T +3 ZL?a
=1
VP [PIV] (365" +265 +9)m! 25+ ZL2 1 XZ:L4+ Lo
1,2 - 144 192 —~
1202 + 40s + 9 63+1 20 1
e ZL3+82L14+* > o
1<z<]<5

44853 + 28452 + 1225 + 33) 7 2652 + 13s + 3)m
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+48s~|—13 ZL4 35+1 Z 122

1152 s
3
1
=1 1<z,j<3
(1#7)
VP V] (313205 + 2760053 + 167965 + 8100s + 2349) 7
2! - 207360
(101453 4 800> + 357s +90)7® , (83452 + 490s + 119)74 _,
+ Ll + Ll
17280 138240
2 10)72 1
(295 + 10)7* ¢ I )

138240 LT 4492368

Twisted volume polynomials of the (2, p) minimal string:

=1

M(p) My _ | 1 2 B !
Vg [FY] = _(1 p2> <123 (3+p2>+26s>+9] il

2

1 2 1
2s (1 - = 1= 12 L} LQL
() ] S s

4
P = [(1- 1) (200 (54 2) 1) 9] 7

5

+[65<1—> ] ZL2+;ZL§+— > L

1<i<y<h

M 1 20 21 49 76
V1,3(p)[va] _ [(1_p2> < <7++ )—1—452 (71_1_292) +1225> —1-33] 588
1 1 S
1—— ) (2s*(13+ =) +13 30 =) L2
+[( p2)<8< +p2>+ 8>+]48;Z

wlass(1- L) 113 . ZS:L4+ 3s(1- L)1 m? D%
P2 1152 &= P2 24 i

1<i<j<3

3
1 1 1
— ) Li4+ — L0+ — 121212
+11522 l+192 Z 2J+96123’

i=1 1<i,j<3
(i)
1 2423 5945 6557
VP [MV] = [(1 - > <72$ <435+ —+ =+ —5 >
’ p? p p p

8
207360

322 331 185
+ 240s° <115 + 2 + p) + 685> (247 + ]92> + 81003) + 2349]

1 4 1
+[<1—2> (6 (169—1—3()4-?’6)
p p? p*
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) ]

+ 160s? <5 +

4
2) + 3575> + 90}
p
1 93
+ [<1 -~ 2> (652 (139 + 2) + 4903> + 119]
p

2

L6

76

L2

17280

1

Super Masur—Veech polynomials:

138240

VSMV O,
— 1)
vy = =
312 3
SMV 2
Vai 128 T o561
2
972 9
smy __ 97 I 2
Var = 128 256 Lo
=1
g2 9 <
smy _ 27 J 2
Vaz = 32 64 i
=1
VSMV _ 457 45
2.4 32 ' 64~
13572 135
SMV __
Vs © = 16 ZL
2374 5172 15
VSMV _ 12 4
3,1 1024 T 20961 T 8109270
11574 2257r
SMV __ 4
Vaz' = 1024 4006 Z 8192 Z 2048 LiL
MV _ 34574 765 225 1, 189
3,3 512 2048 g * 1006 1024
182775 47374 62572 175
SMV 2 6
41 32768 163841 T 13107271 T 524288 !

Twisted super Weil-Petersson volumes:

VUS,7\1NP [fMV] = 07
VWP [MV] (n g 1)!7
SWP [fMV7] __ 3(63 + 1)712 3
Vil ] = 128 256L ’
swpremvy _ 9(8s+
Vaz 7] = 71 556 ZL
45(125 + )

Var P[] =

ZL

442368

2
2

D

1<i<5<3

8.

4
4

138240 Ly

(C.7)

LIL2,
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135(14s + 1)72 135 >
SWP reMV
= T L2,
‘/2,5 [f ] 16 Z
4
VSWE [PMV] (1362s% 4 2555 + 23) 3(168s + 17) 7 2, 15 It
) 1024 4096 8192
VWP [pMV] (96845% + 1530s + 115) 7t N 3(1008s + 85) 72 Z 12
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