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Abstract. We exhibit the Kontsevich matrix model with arbitrary potential as a BKP
tau-function with respect to polynomial deformations of the potential. The result can be
equivalently formulated in terms of Cartan–Plücker relations of certain averages of Schur
Q-function. The extension of a Pfaffian integration identity of de Bruijn to singular kernels
is instrumental in the derivation of the result.
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1 The formula

1.1 The Kontsevich matrix model with arbitrary potential

Let HN be the space of Hermitian N ×N matrices equipped with the Lebesgue measure

dH =
N∏
i=1

dHii

∏
1≤i<j≤N

dRe(Hij) d Im(Hij).

Given a positive matrix Λ = diag(λ1, . . . , λN ), we introduce the Gaussian probability measure
on HN

dPN (H) =

√
∆(λ,λ)

2
N
2 (2π)

N2

2

dHe−
1
2
Tr(ΛH2). (1.1)

We use the notations ∆(λ) =
∏

1≤i<j≤N (λj −λi) and ∆(λ,µ) =
∏

1≤i,j≤N (λi +µj). We denote
[n] = {1, . . . , n} and λmin = min{λi | i ∈ [N ]}.

Let V0 be a continuous function on R such that the measure e−
1
2
λminx

2+V0(x) dx has finite mo-
ments on R (take for instance V0 to be a polynomial of even degree with negative top coefficient).
Then the measure dPN (H)eTrV0(H) on HN is finite. Let

Vt(x) = V0(x) +
∑
k≥0

t2k+1x
2k+1,

where t = (t2k+1)k≥1 are formal parameters. The partition function of the Kontsevich model
with arbitrary potential is defined by

ZN (t) =

�
HN

dPN (H)eTrVt(H). (1.2)

This note aims at showing that ZN (t) is a tau-function of the BKP hierarchy [6].

mailto:gaetan.borot@hu-berlin.de
mailto:raimar@math.uni-muenster.de
https://doi.org/10.3842/SIGMA.2024.050


2 G. Borot and R. Wulkenhaar

1.2 Pfaffian formula

First, we establish a Pfaffian formula for ZN (t). The proof proposed in Section 2 consists in
classical algebraic manipulations with matrix integrals and an analysis argument – that one
may find of independent interest, see Lemma 2.1 and Remark 2.2 – to justify the extension of
de Bruijn’s Pfaffian formula [7] to singular kernels like the one appearing in (1.3).

Theorem 1.1. For even N , we have

ZN (t) =

√
∆(λ,λ)

2
N2

2 (2π)
N
2
∏N−1

n=1 n!
Pf0≤m,n≤N−1(KN ;m,n(t)), (1.3)

where
�
= limϵ→0

�
|x+y|≥ϵ is the Cauchy principal value integral and

KN ;m,n(t) =

 
R2

x− y

x+ y
FN ;m(x)FN ;n(y)e

Vt(x)+Vt(y) dxdy,

FN ;n(x) = x2n +
(−2)nn!

∆(λ)
det
(
λ0
i

∣∣λ1
i

∣∣ · · · ∣∣λn−1
i

∣∣RN

(
−1

2λix
2
)∣∣λn+1

i

∣∣ · · · ∣∣λN−1
i

)
,

RN (ξ) =
ξN

(N − 1)!

� 1

0
du (1− u)N−1eξu = eξ

(
1− Γ(N ; ξ)

(N − 1)!

)
.

Note that RN (ξ) is simply the N -th remainder of the Taylor series of eξ. The expression given
for FN ;n(x) emphasises that it is x2n + O

(
x2N+2

)
as x → 0, but we also have the equivalent

expression

FN ;n(x) =
(−2)nn!

∆(λ)
det
(
λ0
i

∣∣λ1
i

∣∣ · · · ∣∣λn−1
i

∣∣e− 1
2
λix

2∣∣λn+1
i

∣∣ · · · ∣∣λN−1
i

)
.

For instance, the formula for N = 2 involves the two functions

F2;0(x) =
e−

1
2
λ1x2

λ2 − e−
1
2
λ2x2

λ1

λ2 − λ1
, F2;1(x) = 2

e−
1
2
λ1x2 − e−

1
2
λ2x2

λ2 − λ1
.

1.3 BKP hierarchy

If we ignored regularisation of the integrals, we would recognise in (1.3) the expression of a BKP
tau-function according to [18], see also [10, Section 7.1.2.3], where the functions yk of equa-
tion (7.1.49) should be taken to

yk(t) =

�
R
FN ;k(x)e

Vt(x) dx

and depend on Λ. Yet, the presence of a regularisation requires some care and the existing results
in loc. cit. cannot be applied as such (cf. Remark 3.4). We propose in Section 3 an adaptation of
the usual proof that works in presence of Cauchy principal integrals. The obtained Lemma 3.3
covers our case.

Corollary 1.2. For fixed Λ, the formal power series ZN (t) is a BKP tau-function with respect
to the times t, i.e., it satisfies the Hirota bilinear equation of type B

ZN (t)ZN

(
t̃
)
= Res

z=0

dz

z
e
∑

k≥0 z
2k+1(t2k+1−t̃2k+1)ZN

(
t− 2

[
z−1
])
ZN

(
t̃+ 2

[
z−1
])
, (1.4)

where
[
z−1
]
=
(
1
z ,

1
3z3

, 1
5z5

, . . .
)
.
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Expanding the bilinear equation (1.4) near t = t̃ = 0 yields the BKP hierarchy of equations.
In the present case, they give algebraic relations between the odd moments (or the cumulants)
of the Kontsevich model with arbitrary potential, defined as

M2ℓ1+1,...,2ℓn+1 =
1

ZN (t)

∂

∂t2ℓ1+1
· · · ∂

∂t2ℓn+1
ZN (t)

∣∣∣∣
t=0

=

�
HN

dPN (H)eTr(−
1
2
ΛH2+V0(H))TrH2ℓ1+1 · · ·TrH2ℓn+1

�
HN

dPN (H)eTr(−
1
2
ΛH2+V0(H))

,

K2ℓ1+1,...,2ℓn+1 =
∂

∂t2ℓ1+1
· · · ∂

∂t2ℓn+1
lnZ(t)

∣∣∣∣
t=0

=
∑

I=partitions of [n]

(−1)|I|−1(|I| − 1)!
∏
I∈I

M(ℓi)i∈I
.

Note that the hierarchy of equations (1.4) does not depend on N , Λ and V0, though the particular
solution ZN (t) does through the initial data ZN (0).

For instance, the first two BKP-equations are

0 =
(
D6

1 − 5D3
1D3 − 5D2

3 + 9D1D5

)
(ZN , ZN )(0),

0 =
(
D8

1 + 7D5
1D3 − 35D2

1D
2
3 − 21D3

1D5 − 42D3D5 + 90D1D7

)
(ZN , ZN )(0) (1.5)

in terms of the Hirota operators Dk(τ, τ)(t) =
(
∂tk − ∂t̃k

)
τ(t)τ

(
t̃
)∣∣

t̃=t
. For even V0, we have

M2ℓ1+1,...,2ℓn+1 = 0 for n odd, and (1.5) results in

0 = M16 + 15M14M1,1 − 5M3,13 − 15M3,1M1,1 − 5M3,3 + 9M5,1,

0 = M18 + 28M16M1,1 + 35(M14)
2 + 7M3,15 + 70M3,13M1,1 + 35M3,1M14

− 35M3,3M1,1 − 70(M3,1)
2 − 21M5,13 − 63M5,1M1,1 − 42M5,3 + 90M7,1. (1.6)

Or, equivalently in terms of cumulants,

0 = K16 + 30K14K1,1 + 60(K1,1)
3 − 5K3,13 − 5K3,3 − 30K3,1K1,1 + 9K5,1,

0 = K18 + 56K16K1,1 + 70(K14)
2 + 840K14(K1,1)

2 + 840(K1,1)
4 + 7K3,15

+ 70K3,1K14 + 420K3,1(K1,1)
2 + 140K3,13K1,1 − 35K3,3K1,1 − 70(K3,1)

2

− 21K5,13 − 126K5,1K1,1 − 42K5,3 + 90K7,1.

When V0 is not even, many more terms contribute.

It is instructive to test these equation in the simplest case V0 = 0. The moments can be
found,1 e.g., in [16], with pk = TrΛ−k

M1,1 = p1,

M3,1 = 3p21, M14 = 3p21,

M16 = 15p31, M3,13 = 6p3 + 9p31,

M3,3 = 3p3 + 12p31, M5,1 = 5p3 + 10p31.

They satisfy the first equation of (1.6), as expected.

1Note that in [16], equation (45) follows from substituting Λ → 1
2
Λ in equation (44). Equation (45) is the

one they use to compute moments, and the Gaussian probability measure it induces agrees with our PN defined
in (1.1).
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2 Proof of Theorem 1.1

A Hermitian matrix H decomposes as

H =
N∑
a=1

(ReHa,a)Ea,a +
∑

1≤a<b≤N

(√
2ReHa,b

)
1√
2
(Ea,b + Eb,a)

+
(√

2 ImHa,b

)
i√
2
(Ea,b − Eb,a).

As Ea,a,
1√
2
(Ea,b+Eb,a) and

i√
2
(Ea,b−Eb,a) have unit norm for the standard Euclidean metric on

MatN (C) ∼= R2N2
, the volume form onHN induced by the Euclidean volume form on MatN (C) ∼=

R2N2
is 2

N(N−1)
2 dH. Denote UN the unitary group and dν its volume form induced by the

Euclidean volume form in MatN (C). The corresponding volume is

Vol(UN ) =
(2π)

N(N+1)
2∏N−1

n=1 n!
.

We also recall the Harish-Chandra–Itzykson–Zuber formula [13]

1∏N−1
n=1 n!

�
UN

dν(U)

Vol(UN )
eTr(AUBU†) =

det
(
eaibj

)
∆(a)∆(b)

,

where A = diag(a1, . . . , aN ) and B = diag(b1, . . . , bN ).
Diagonalising the matrix H = UXU † with X = diag(x1, . . . , xN ) and U ∈ UN defined up to

action of SN × UN
1 brings the partition function (1.2) in the form

ZN (t) =

√
∆(λ,λ)

2
N
2 (2π)

N2

2

1

N !(2π)N2
N(N−1)

2

×
�
RN

(�
UN

dν(U)e−
1
2
Tr(ΛUX2U†)

)
(∆(x))2

N∏
i=1

eVt(xi)dxi

=

√
∆(λ,λ)

2
N2

2 (2π)
N
2 N !∆

(
−λ

2

) �
RN

(∆(x))2

∆
(
x2
) det

1≤i,j≤N

(
e−

1
2
λix

2
j
) N∏
i=1

eVt(xi)dxi. (2.1)

Here we could use Fubini because the integrand in the first line of (2.1) is real positive, and in fact
integrable due to the assumptions on V0 and Λ. We observe that ∆

(
−λ

2

)
= (−2)−

N(N−1)
2 ∆(λ)

and recall Schur’s Pfaffian identity [20], for N even

(∆(x))2

∆
(
x2
) =

∏
1≤i<j≤N

xj − xi
xj + xi

= Pf1≤i,j≤N

(
xj − xi
xj + xi

)
.

So, up to a prefactor, ZN (t) is an integral of the form

�
RN

Pf1≤i,j≤N (S(xi, xj)) det
0≤m≤N−1
1≤j≤N

(
fm
(
x2j
)) N∏

i=1

ρ(xi) dxi. (2.2)

De Bruijn’s identity [7] would allow rewriting (2.2) as

N ! Pf0≤m,n≤N−1

(�
R2

S(x, y)fm
(
x2
)
fn
(
y2
)
ρ(x)ρ(y) dxdy

)
, (2.3)
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but the proof in loc. cit. is solely based on algebraic manipulations, valid when (fn)
N−1
n=0 is

a sequence of measurable functions on R≥0 and S(x, y) = −S(y, x) is a measurable function on R2

such that
�
R2

∣∣S(x, y)fm(x2)fn(y2)∣∣ρ(x)ρ(y)dxdy < +∞. The choice of S(x, y) = x−y
x+y in general

violates this integrability assumption due to the presence of the simple pole on the anti-diagonal
combined with the non-compactness of R2. Nevertheless, we show that the conclusion (2.3)
remains valid provided the integral in the Pfaffian is understood as a Cauchy principal value,
under a Schwartz-type condition.

Lemma 2.1. Let ρ > 0 be a measurable function on R and (fn)
N−1
n=0 be a sequence of CN−1-

functions on R≥0 such that f
(ℓ)
m is bounded by a polynomial for any m, ℓ ∈ {0, . . . , N − 1}. Let

S(x, y) = S̃(x,y)
x+y where S̃ is a measurable function on R2 such that

∀k, l ∈ Z≥0

�
R2

∣∣S̃(x, y)xkyl∣∣ρ(x)ρ(y) dxdy < +∞.

Then, for N even

�
RN

Pf1≤i,j≤N (S(xi, xj)) det
0≤m≤N−1
1≤j≤N

(
fm
(
x2j
)) n∏

i=1

ρ(xi)dxi

= N ! Pf0≤m,n≤N−1

( 
R2

S(x, y)fm
(
x2
)
fn
(
y2
)
ρ(x)ρ(y) dxdy

)
,

where
�
= limϵ→0

�
|x+y|≥ϵ and the integrand in the left-hand side is integrable.

Proof. Take ϵ > 0 and set Sϵ(x, y) = S(x, y) ·1|x+y|≥ϵ. In this situation, we can use de Bruijn’s
formula and write

�
RN

Pf1≤i,j≤N (Sϵ(xi, xj)) det
0≤m≤N−1
1≤j≤N

(
fm
(
x2j
)) N∏

i=1

ρ(xi)dxi

= N ! Pf0≤m,n≤N−1

(�
R2

Sϵ(x, y)fm
(
x2
)
fn
(
y2
)
ρ(x)ρ(y) dxdy

)
. (2.4)

The right-hand side tends to

N ! Pf0≤m,n≤N−1

( 
R2

S(x, y)fm
(
x2
)
fn
(
y2
)
ρ(x)ρ(y)dxdy

)
when ϵ → 0. Call Iϵ(x) the integrand in the left-hand side of formula (2.4). We clearly have
limϵ→0 Iϵ(x) = I0(x) for x almost everywhere in RN . Provided we can find for Iϵ(x) a uniform
in ϵ and integrable on R2 upper bound, the lemma follows from dominated convergence.

To find such a bound, we introduce the matrix W (ξ) with entries ξnj at row index n ∈
{0, . . . , N − 1} and column index j ∈ [N ], which satisfies ∆(ξ) = detW (ξ). Its inverse matrix is

(
W (ξ)−1

)
i,n

=
(−1)N−n−1eN−n−1

(
ξ[i]
)∏

j ̸=i(ξi − ξj)
,

where ek is the k-th elementary symmetric polynomial and ξ[i] =
(
ξ1, . . . , ξ̂i, . . . , ξN

)
. Then

det
0≤m≤N−1
1≤j≤N

(
fm
(
x2j
))

= ∆
(
x2
)

det
1≤i≤N

0≤n≤N−1

(
fn
(
x2i
))

· det
(
W
(
x2
)−1)

= ∆
(
x2
)

det
0≤m,n≤N−1

(
N∑
i=1

(−1)N−m−1fn
(
x2i
)
eN−m−1

(
x2
[i]

)∏
j ̸=i

(
x2i − x2j

) )
. (2.5)
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Up to a sign that we can take out of the determinant, the (m,n)-entry inside the determinant is

[
uN−m−1

] N∑
i=1

fn
(
x2i
)∏
j ̸=i

1 + ux2j
x2i − x2j

=
[
uN−m−1

] N∏
i=1

(
1 + ux2i

)( N∑
i=1

fn
(
x2i
)

1 + ux2i

1∏
j ̸=i(x

2
i − x2j )

)

=

N−m−1∑
k=0

eN−m−1−k

(
x2
)( N∑

i=1

(−1)kx2ki fn
(
x2i
)∏

j ̸=i

(
x2i − x2j

) ).
In the first two steps, [um] acting on the formal power series of u to its right meant extracting
the coefficient of um. Up to the use of squared variables, we recognise the divided difference

g[ξ1, . . . , ξN ] :=
N∑
i=1

g(ξi)∏
j ̸=i(ξi − ξj)

.

When g is CN−1, it can be written (see, e.g., [12, Theorem 2, p. 250]) as an integral over the
(N−1)-dimensional simplex ∆N−1 = {p ∈ [0, 1]N | p1+ · · ·+pN = 1}, equipped with the volume
form dσ(p) = dp1 · · · dpN−1:

g[ξ1, . . . , ξN ] =

�
∆N−1

g(N−1)(p1ξ1 + · · ·+ pNξN ) dσ(p).

We use this for gk,n(ξ) = (−1)kξkfn(ξ). Inserting the integral representation in (2.5) yields

|Iϵ(x)| =
∣∣∆(x2

)∣∣Pf1≤i,j≤N (Sϵ(xi, xj))

×

∣∣∣∣∣ det
0≤m,n≤N−1

(
N−1−m∑

k=0

eN−1−m−k

(
x2
)�

∆N−1

g
(N−1)
k,n

(
p1x

2
1 + · · ·+ pNx2N

)
dσ(p)

)∣∣∣∣∣
N∏
i=1

ρ(xi).

Since
∣∣∆(x2

)∣∣ cancels the denominators in Sϵ, the first line of the right-hand side admits an upper
bound by sum of terms, each of which is a polynomial in x multiplied by

∏
{i,j}∈P

∣∣S̃(xi, xj)∣∣,
where P is a partition of [N ] into pairs. In the second line, we first expand the determinant
inside the absolute value and use the triangular inequality to get an upper bound by a sum of
finitely many positive terms, each of which involves an N -fold product of simplex integrals of

functions with at most polynomial growth, since the derivatives f
(ℓ)
n

(
and thus g

(N−1)
k,n

)
have at

most polynomial growth. Therefore, they result in a polynomial upper bound in the variable x.
We are thus left with an upper bound by a sum of finitely many terms of the form

∏
{i,j}∈P

∣∣S̃(xi, xj)∣∣ N∏
i=1

xqii ρ(xi) =
∏

{i,j}∈P

∣∣S̃(xi, xj)∣∣xqii xqjj ρ(xi)ρ(xj)

for various N -tuples of integers q and pair partitions P of [N ]. Integrating each term of this form
over RN factorizes into a product of N

2 two-dimensional integrals, each of them being finite by
assumption. This provides the domination assumption to conclude limϵ→0

�
RN Iϵ(x)

∏N
i=1 dxi =�

RN I0(x)
∏N

i=1 dxi as desired. ■

Remark 2.2. The proof can easily be adapted to obtain an analogous statement for kernels
of the form S(x, y) = S̃(x,y)

x−y , in which case one can use fn(x) instead of fn
(
x2
)
.

The assumptions of Lemma 2.1 are fulfilled for

S(x, y) =
x− y

x+ y
, ρ(x) = e−

1
2
λminx

2+Vt(x), fm(ξ) = e−
1
2
(λm+1−λmin)ξ,
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where we stress that t are formal parameters. Therefore, coming back to (2.1) and tracking the
N -dependent prefactors, we arrive to the identity of formal power series in the variables t:

ZN (t) =
(−1)

N(N−1)
2

√
∆(λ,λ)

2Nπ
N
2 ∆(λ)

Pf1≤m,n≤N

(
Lm,n

)
,

Lm,n =

( 
R2

x− y

x+ y
e−

1
2
λmx2− 1

2
λny2+Vt(x)+Vt(y) dxdy

)
.

We would like to rewrite this formula by absorbing the denominator ∆(λ) in the Pfaffian.
Recall the transposed Vandermonde matrix W (λ)T, whose entries are W (λ)Ti,n = λn

i indexed by
i ∈ [N ] and n ∈ {0, . . . , N − 1}. We have

Pf(L)

∆(λ)
=

Pf(L)

detW (λ)T
= Pf

((
W (λ)T

)−1
LW (λ)−1

)
,

and by Cramer’s formula for the inverse((
W (λ)T

)−1
LW (λ)T

)
m,n

= vmvn

 
R2

x− y

x+ y
FN ;m(x)FN ;n(y)e

Vt(x)+Vt(y) dxdy,

where vn are non-zero constants to be chosen later, rows and columns are indexed by m,n ∈
{0, . . . , N − 1}, and we introduced

FN ;m(x) =
1

vm

N∑
i=1

(
W (λ)T

)−1

i,m
e−

1
2
λix

2

=
det
(
λ0
i

∣∣λ1
i

∣∣ · · · ∣∣λm−1
i

∣∣e− 1
2
λix

2∣∣λm+1
i

∣∣ · · · ∣∣λN−1
i

)
vm∆(λ)

.

With Taylor formula in integral form at order N near 0, we can write

e−
1
2
λix

2
= PN−1

(
−1

2λix
2
)
+

(
−1

2λix
2
)m

m!
+RN

(
−1

2λix
2
)
,

RN (ξ) =
ξN

(N − 1)!

� 1

0
(1− u)N−1eξu du

for some polynomial PN−1 of degree at most N − 1 and without its term of degree m (which
we wrote separately). The contribution of PN−1 disappears as it is a linear combination of the
other columns, while the contribution of the degree m term simply retrieves the Vandermonde
determinant. Hence,

FN ;m(x) =
(−1)mx2m

2mm!vm
+

det
(
λ0
i

∣∣λ1
i

∣∣ · · · ∣∣λm−1
i

∣∣RN

(
−1

2λix
2
)∣∣λm+1

i

∣∣ · · · ∣∣λN−1
i

)
vm∆(λ)

.

We now choose vm = (−1)m

2mm! to get FN ;m(x) = x2m + O
(
x2N

)
when x → 0. Introducing the

matrix

KN ;m,n(t) =

 
R2

x− y

x+ y
FN ;m(x)FN ;n(y)e

Vt(x)+Vt(y) dxdy,

we arrive to

ZN (t) =
(−1)

N(N−1)
2

√
∆(λ,λ)

∏N−1
n=0 vn

2Nπ
N
2

Pf0≤m,n≤N−1KN ;m,n(t)

=

√
∆(λ,λ)

2
N2

2 (2π)
N
2
∏N−1

n=1 n!
Pf0≤m,n≤N−1KN ;m,n(t).
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3 Proof of Corollary 1.2

3.1 Preliminaries

It is well-known that the BKP integrable hierarchy can be formulated in terms of neutral
fermions (ϕj)j∈Z which satisfy the anti-commutation relations {ϕj , ϕk} = (−1)jδj+k,0, in par-
ticular (ϕ0)

2 = 1
2 . There is a highest-weight representation of the algebra of neutral fermions,

with highest-weight vector (or vacuum) |0⟩ which satisfies ϕ−j |0⟩ = 0 = ⟨0|ϕj for j > 0 and
⟨0|ϕ0|0⟩ = 0. The pair expectation values are

⟨0|ϕjϕk|0⟩ =


(−1)kδj,−k if k > 0,
1
2δj,0 if k = 0,

0 if k < 0.

(3.1)

We introduce the generating series2 ϕ(x) :=
∑

j∈Z x
jϕj for x ∈ R. Vacuum expectations of

products of ϕ(xi) are understood in a radial ordering. If all |xi| are pairwise distinct, then

⟨0|ϕ(x1) · · ·ϕ(xN )|0⟩ := (−1)sign(π)⟨0|ϕ
(
xπ(1)

)
· · ·ϕ

(
xπ(n)

)
|0⟩ (3.2)

if
∣∣xπ(1)∣∣ > ∣∣xπ(2)∣∣ > · · · >

∣∣xπ(N)

∣∣.
From (3.1), one finds

⟨0|ϕ(x1)ϕ(x2)|0⟩ =
1

2

x1 − x2
x1 + x2

,

understood as convergent power series in x1
x2

for |x1| < |x2| and as convergent power series in x2
x1

for |x2| < |x1|. The following is known as Wick’s theorem: For pairwise different |xi|, one has
for N even

⟨0|ϕ(x1)ϕ(x2) · · ·ϕ(xN )|0⟩ = Pf1≤k,l≤N (⟨0|ϕ(xk)ϕ(xl)|0⟩)

=
1

2
N
2

Pf1≤k,l≤N

(
xk − xl
xk + xl

)
=

1

2
N
2

∏
1≤k<l≤N

xk − xl
xk + xl

, (3.3)

and for N odd ⟨0|ϕ(x1)ϕ(x2) · · ·ϕ(xN )|0⟩ = 0.

Next, consider the source operators

∀m ∈ Z≥0, Jm =
1

2

∑
j∈Z

(−1)j(ϕ−j−mϕj − ⟨0|ϕ−j−mϕj |0⟩).

One checks that all even J2m vanish identically, and that the (J2m+1)m≥0 commute with each
other. This gives rise to an infinite family of commuting BKP flows

γ(t) := e
∑∞

m=0 J2m+1t2m+1 , t = (t1, t3, t5, . . . ).

These satisfy γ(t)γ
(
t̃
)
= γ

(
t + t̃

)
and γ(t)|0⟩ = |0⟩. One finds [J2m+1, ϕj ] = ϕj−(2m+1) which

leads to [J2m+1, ϕ(x)] = x2m+1ϕ(x) and

γ(t)ϕ(x) = e
∑

m≥0 x
2m+1t2m+1ϕ(x)γ(t). (3.4)

2Up to Lemma 3.1, all statements hold for x, xi, x
′
i ∈ C. The restriction to real variables is motivated by the

intended integration.
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3.2 A residue formula

Let N ∈ Z≥0 be even. For pairwise distinct |x1|, . . . , |xN | and a sequence of formal variables
t = (t1, t3, . . . ), we consider

τ(t;x1, . . . , xN ) := ⟨0|γ(t)ϕ(x1) · · ·ϕ(xN )|0⟩.

Let
[
z−1
]
:=
(
1
z ,

1
3z3

, 1
5z5

, . . .
)
. The group law implies

τ
(
t− 2

[
z−1
]
;x1, . . . , xN

)
= ⟨0|γ

(
−2
[
z−1
])
γ(t)ϕ(x1) · · ·ϕ(xN )|0⟩. (3.5)

When commuting γ(−2[z−1]) to the right just before |0⟩, we see that the exponentials produced
by (3.4) are well defined for |z| > maxi |xi|. We use [10, Lemma 7.3.9]

⟨0|γ
(
−2
[
z−1
])

= 2⟨0|ϕ0ϕ(z)

and ⟨0|ϕ0a|0⟩ = ⟨0|aϕ0|0⟩ for any element a of the Clifford algebra generated by ϕj (see, e.g.,
[10, Exercise 7.5]) as well as (3.4) to turns (3.5) into

e
∑

m≥0 z
2m+1t2m+1τ

(
t− 2

[
z−1
]
;x1, . . . , xN

)
= 2⟨0|γ(t)ϕ(z)ϕ(x1) · · ·ϕ(xN )ϕ0|0⟩. (3.6)

Recall that τ
(
t − 2

[
z−1
]
;x1, . . . , xN

)
is a convergent power series in z−1 if |z| > maxi |xi|. At

the very end the t2m+1 will be formal parameters. But at this intermediate point we choose
|t2m+1| < R̃−2m−1 for some large R̃ > R ≥ maxi |xi|. Then (3.6) is analytic in z in the domain
R < |z| < R̃. We multiply by a second copy 2⟨0|γ(t̃)ϕ(−z)ϕ(x′1) · · ·ϕ(x′N )ϕ0|0⟩ with analogous
parameter range. The product is analytic in z in the domain maxi{|xi|, |x′i|} ≤ R < |z| < R̃
and has there a convergent Laurent series expansion in z. We multiply by z−1, take the contour
integral around a positively oriented circle C in this annular domain, and make the radial
ordering (3.2) explicit:

A :=
1

2iπ

�
C

(
dz

z
e
∑

m≥0 z
2m+1(t2m+1−t̃2m+1)τ

(
t− 2

[
z−1
]
;x1, . . . , xN

)
× τ
(
t̃+ 2

[
z−1
]
;x′1, . . . , x

′
N

))
= 4

�
C

dz

z
⟨0|γ(t)ϕ(z)ϕ(x1) · · ·ϕ(xN )ϕ0|0⟩⟨0|γ

(
t̃
)
ϕ(−z)ϕ(x′1) · · ·ϕ(x′N )ϕ0|0⟩.

This would be evaluated to

A = 4(−1)sign(π)+sign(π′) (3.7)

×
∑
j∈Z

(−1)j⟨0|γ(t)ϕjϕ
(
xπ(1)

)
· · ·ϕ

(
xπ(N)

)
ϕ0|0⟩⟨0|γ

(
t̃
)
ϕ−jϕ

(
x′π′(1)

)
· · ·ϕ

(
x′π′(N)

)
ϕ0|0⟩

if the sum over j converged absolutely, where we have introduced the permutations π, π′ such
that

R >
∣∣xπ(1)∣∣ > · · · >

∣∣xπ(N)

∣∣ and R >
∣∣x′π′(1)

∣∣ > · · · >
∣∣x′π′(N)

∣∣.
The next lemma justifies the convergence under mild additional conditions on x’s and x′’s.
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Lemma 3.1. Let R̃ >R >0, assume |t2m+1|,
∣∣t̃2m+1

∣∣<R̃−2m−1, that |x1|, . . . , |xN |, |x′1|, . . . , |x′N |
are pairwise distinct and such that maxi{|xi|, |x′i|} ≤ R. Then

1

2iπ

�
C

(
dz

z
e
∑

m≥0 z
2m+1(t2m+1−t̃2m+1)τ

(
t− 2

[
z−1
]
;x1, . . . , xN

)
τ
(
t̃+ 2

[
z−1
]
;x′1, . . . , x

′
N

))
= τ(t;x1, . . . , xN )τ

(
t̃;x′1, . . . , x

′
N

)
−4

N∑
p=1

(−1)p⟨0|γ(t)ϕ(x1) · · · ϕ̂
(
xp
)
· · ·ϕ(xN )ϕ0|0⟩⟨0|γ

(
t̃
)
ϕ
(
xp
)
ϕ(x′1) · · ·ϕ(x′N )ϕ0|0⟩

−4
N∑
q=1

(−1)q⟨0|γ(t)ϕ
(
x′q
)
ϕ(x1) · · ·ϕ(xN )ϕ0|0⟩⟨0|γ

(
t̃
)
ϕ(x′1) · · · ϕ̂

(
x′q
)
· · ·ϕ(x′N )ϕ0|0⟩. (3.8)

The expectation values are understood as radially ordered, see (3.2), so that they represent con-
vergent power series in ratios xi

xj
when |xi| < |xj |

(
and similar ratios involving x′i

)
. The Laurent

series in z on the left-hand side converges for R < |z| < R̃.

Proof. In the right-hand side of (3.7) we anti-commute both ϕ±j to the right, but there is
a distinguished order to proceed. If at some step ϕj sits left of ϕ

(
xπ(p)

)
and ϕ−j left of ϕ

(
x′π′(q)

)
,

� we anti-commute ϕj to the right through ϕ
(
xπ(p)

)
if
∣∣xπ(p)∣∣ > ∣∣x′π′(q)

∣∣ or q − 1 = N ;

� we anti-commute ϕ−j to the right through ϕ
(
x′π′(q)

)
if
∣∣x′π′(q)

∣∣ > ∣∣xπ(p)∣∣ or p− 1 = N .

The procedure stops at p−1 = q−1 = N and produces after the final step

∑
j∈Z

(−1)j⟨0|Φϕjϕ0|0⟩⟨0|Φ′ϕ−jϕ0|0⟩ =
1

4
⟨0|Φ|0⟩⟨0|Φ′|0⟩.

In the anti-commutators the sum over j is restored in the other factor, where it produces
ϕ
(
xπ′(q−1)

)
ϕ
(
xπ(p)

)
ϕ
(
xπ′(q)

)
or ϕ

(
xπ(p−1)

)
ϕ
(
x′π′(q)

)
ϕ
(
xπ(p)

)
, respectively. The resulting expec-

tation values evaluate by Wick’s theorem (3.3) to polynomials in the pair expectations. Under
the new condition that all |xi|, |x′i| are pairwise different, every pair expectation becomes a con-
vergent power series. This is the assertion (3.8) with radial ordering (3.2) made explicit. ■

3.3 Integration away from the (anti)diagonal

Let us introduce the complement of the fat (anti)diagonal, first in a bounded version

DN
R,ϵ :=

{
x ∈ RN | max

i
|xi| ≤ R and min

i<j
||xi| − |xj || ≥ ϵ

}
,

and 1NR,ϵ be its indicator function. We will soon pass to the unbounded version 1N∞,ϵ =

limR→∞ 1NR,ϵ.

Lemma 3.2. Let N be an even natural number and ϵ > 0. Let h1, . . . , hN be continuously differ-
entiable functions on R such that hi and h′i are bounded by a polynomial, and ρ is a positive even
function admitting moments of all order. Then the integral (with expectation value in τ under-
stood as radially ordered, see (3.2)) is a well-defined formal power series in

(
t2m+1, t̃2m+1

)
m≥0
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which satisfies

�
R2N

Res
z=0

dz

z
e
∑

m≥0 z
2m+1(t2m+1−t̃2m+1)τ

(
t− 2

[
z−1
]
;x
)
τ
(
t̃+ 2

[
z−1
]
;x′)

× 12N∞,ϵ(x,x
′)

N∏
i=1

hi(xi)hi(x
′
i)ρ(xi)ρ(x

′
i) dxidx

′
i

=

�
R2N

τ(t;x)τ
(
t̃;x′)12N∞,ϵ(x,x

′)

N∏
i=1

hi(xi)hi(x
′
i)ρ(xi)ρ(x

′
i) dxidx

′
i.

Proof. Now we consider t, t̃ formal. Consider a term

⟨0|γ(t)ϕ(x′q)ϕ(x1) · · ·ϕ(xN )ϕ0|0⟩⟨0|γ(t̃)ϕ(x′1) · · · ϕ̂(x′q) · · ·ϕ(x′N )ϕ0|0⟩

appearing in the last line of (3.8), which by Wick’s theorem (3.3) is anti-symmetric when ex-
changing x′q ↔ xq. This term is multiplied by a function symmetric in x′q ↔ xq and integrated
over a symmetric domain, thus integrating to zero for every 1 ≤ q ≤ N . Similarly for the
next-to-last line of (3.8).

In particular, this is valid for integration over the symmetric domain DR,ϵ for fixed R, ϵ. We
now change the perspective and view (3.8) as formal power series in the variables t, t̃. After
commuting γ(t) and γ(t̃) via (3.4) to the right, the extraction of the coefficient of some monomial
in t, t̃ yields a polynomial of bounded degree in xp, x

′
q and z. Next, commuting in the first line

of (3.8) the γ
(
±2
[
z−1
])

via (3.4) to the right we see that only finitely many terms contribute to
the contour integral, and the coefficients are again polynomials in xp and x′q of bounded degree.
Finally remains the expectation values which by Wick’s theorem (3.3) factor into polynomials
of pair expectation values ⟨0|ϕ(xi)ϕ(xj)|0⟩. These can be estimated by a geometric series which
is bounded3 by 1+ ϵ−1max(|xi|, |xj |). Since ρ has finite moments on R, the limit R → ∞ exists
by the dominated convergence theorem. In particular, the vanishing of the last two lines of (3.8)
after integration remains true for R → ∞. ■

3.4 Regularisation and Pfaffian expression

Lemma 3.3. In the same setting as Lemma 3.2, we have

Res
z=0

dz

z
e
∑

m≥0 z
2m+1(t2m+1−t̃2m+1)TN

(
t− 2

[
z−1
])
TN
(
t̃+ 2

[
z−1
])

= TN (t)TN
(
t̃
)
,

where

TN (t) = Pf1≤i,j≤N

( 
R2

Hi,j(t;x, y)ρ(x)ρ(y) dxdy

)
,

Hi,j(t;x, y) = e
∑

m≥0 t2m+1(x2m+1+y2m+1) · 1
2

x− y

x+ y
· hi(x)hj(y). (3.9)

Proof. Commuting γ(t) with (3.4) to the right and using Wick’s theorem (3.3), one can rewrite
for even N

τ(t;x1, . . . , xN ) = Pf1≤i,j≤N

(
e
∑

m≥0 t2m+1(x
2m+1
i +x2m+1

j ) · 1
2

xi − xj
xi + xj

)
.

3Such a bound is necessary to apply the dominated convergence theorem. It forces us to keep ϵ until the very
end and it will lead to Cauchy principal values.
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Inserting this in Lemma 3.2 and expanding the two Pfaffians, we get

�
R2N

[
12N∞,ϵ(x,x

′)
N∏
i=1

ρ(xi)ρ(x
′
i)dxidx

′
i

]

×
�
C

dz

2iπz
e
∑

m≥0 z
2m+1(t2m+1−t̃2m+1)

∑
π,π′∈SN

(−1)sign(π)+sign(π′)

2N (N !)2

×
N∏
i=1

Hπ(2i−1),π(2i)

(
t− 2

[
z−1
]
;xπ(2i−1), xπ(2i)

)
×Hπ′(2i−1),π′(2i)

(
t̃+ 2

[
z−1
]
;x′π′(2i−1), x

′
π′(2i)

)
=

�
R2N

[
12N∞,ϵ(x,x

′)
N∏
i=1

ρ(xi)ρ(x
′
i)dxidx

′
i

] ∑
π,π′∈SN

(−1)sign(π)+sign(π′)

2N (N !)2

×
N∏
i=1

Hπ(2i−1),π(2i)

(
t;xπ(2i−1), xπ(2i)

)
Hπ′(2i−1),π′(2i)

(
t̃;x′π′(2i−1), x

′
π′(2i)

)
, (3.10)

where Hi,j(t;xi, xj) was given in (3.9).

We would like to show that both sides have a limit as ϵ → 0. To proceed, we decompose in
even and odd parts

e
∑

m≥0 t2m+1x2m+1

hi(x) = h+i (x) + xh−i (x) with h±i even.

Then, we restrict the integration over x1, . . . , xN , x′1, . . . , x
′
N ≥ 0 by taking the even part of the

integrand in each variable and multiplying by 4, namely replacing Hi,j(t;x, y) with

H+
i,j(t;x, y) =

(
x2 + y2

)
h+i (x)h

+
j (y)

x2 − y2
−

2x2y2h−i (x)h
−
j (y)

x2 − y2
.

Since the domain of integration D∞,ϵ is symmetric under xi ↔ xj and x′i ↔ x′j , we can also
replace each factor of Hi,j(t;x, y) in the integral with

H̃i,j(t;x, y) =
1

2

(
H+

i,j(t;x, y) +H+
i,j(t; y, x)

)
(3.11)

=
x2 + y2

2(x+ y)

h+i (x)h
+
j (y)− h+i (y)h

+
j (x)

x− y
− x2y2

x+ y

h−i (x)h
−
j (y)− h−i (y)h

−
j (y)

x− y
.

If f , g are continuously differentiable functions, we can rewrite

f(x)g(y)− f(y)g(x)

x− y
=

f(x)− f(y)

x− y
g(y)− f(y)

g(x)− g(y)

x− y

=

� 1

0
dt(g(y)f ′((1− t)x+ ty)− f(y)g′((1− t)x+ ty)). (3.12)

The two products of H’s in (3.10) are therefore replaced by two products of H̃’s, and we expand
them with (3.11)–(3.12) to get 8N terms integrated over R2N

>0 ∩ D2N
∞,ϵ. For integration of each

of the term, we can use dominated convergence to let ϵ → 0 in both sides of (3.10) because
0 < x2+y2

x+y ≤ x+ y and 0 ≤ x2y2

x+y ≤ 1
16(x+ y)3 on R≥0, h

±
i as well as its first order derivative are

bounded by a polynomial, and ρ has finite moments of all orders.
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Now let us compare to the Pfaffian of the integrated kernel

Pf

( 
R2

Hi,j(t;x, y)ρ(x)ρ(y)dxdy

)
= Pf

(
lim
ϵ→0

�
R2

Hi,j(t;x, y)1
2
∞,ϵ(x, y)ρ(x)ρ(y) dxdy

)
= Pf

(
lim
ϵ→0

�
R2
>0

H̃i,j(t;x, y)1
2
∞,ϵ(x, y)ρ(x)ρ(y) dxdy

)
.

Expanding the Pfaffian, the only difference with the right-hand side of (3.10) as we handled it
is that the (π, π′)-term is now integrated against of the indicator

N∏
i=1

12∞,ϵ

(
xπ(2i−1), xπ(2i)

)
12∞,ϵ

(
x′π′(2i−1), x

′
π′(2i)

)
instead of 12N (x,y). As the difference between the two indicators converge pointwise to 0 as
ϵ → 0, the domination argument used previously to handle each term shows that the limit ϵ → 0
exists and is equal to the ϵ → 0 limit of the right-hand side of (3.10). The same argument
applies for the left-hand side, and this yields the claimed identity. ■

Finally, Corollary 1.2 follows from Lemma 3.3 by setting hj(x) =
√
2e−(λj−λmin)

x2

2 and ρ(x) =

e−
1
2
λminx

2+V0(x) and observing then

ZN (t) =

√
∆(λ,λ)

2
N2

2 (2π)
N
2
∏N−1

n=1 n!
TN (t)

by comparison with Theorem 1.1.

Remark 3.4. All the manipulations until (and including) Lemma 3.1 are standard. If we were
ignoring the regularisation issues, the BKP tau-function TN (t) of (3.3) would be associated with
the group element

ĝ =

�
ΓN

N∏
i=1

ϕ(xi)hi(xi)ρ(xi) dxi, Γ = R (3.13)

in the notation of [10, Section 7.3]. This element does not naively satisfy the quadratic algebraic
condition [10, equation 7.3.63]: there are correction terms corresponding to the last two lines
of (3.8). There is no contradiction with [10, Theorem 7.3.10] (which can already be found in [6])
as the latter characterises the polynomial solutions of the BKP hierarchy, while our partition
function is not polynomial. Non-polynomial BKP tau-functions associated with (3.13) were
discussed in [10], but only for integration contours such that Γ ∩ (−Γ) = ∅, and this does not
apply to us. If one wanted to make sense of the quadratic algebraic condition on ĝ to formulate
a generalisation of [10, Theorem 7.3.10], one would need to describe carefully which completion
of the Clifford algebra and which notion of tensor product should be used. For instance, in our
case, we see from the proof that the quadratic algebraic condition only holds in a distributional
sense (after integration).

4 Comments

4.1 Kontsevich cubic model

The original matrix model of Kontsevich [14] is obtained from (1.2) by specialisation to potential

V0(x) =
ix3

6 and t = 0, and Kontsevich showed that ZN (0) is a KdV tau-function with respect

to the times s = (s1, s3, s5, . . . ) with s2k+1 = − 1
2k+1 TrΛ

−(2k+1). By a result of Alexandrov [1],
it is also a BKP tau-function in the times (2s1, 2s3, 2s5, . . . ).
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4.2 The Q-Schur approach and 2-BKP conjecture

The BKP hierarchy of Corollary 1.2 is independent of the KdV/BKP structure of the original
Kontsevich model since it rather governs the evolution under polynomial deformations of the
potential (parameters t), for fixed Λ (parameters s). We are mainly interested in expansions
around t = 0, where the BKP hierarchy amounts to quadratic relations between moments.
When V0 is even these relations simplify considerably as we have indicated at the end of Sec-
tion 1. We expect that for arbitrary V0, ZN (t) is a 2-BKP tau-function in the times t and s
defined by sk = 2

2k+1TrΛ
−(2k+1). Following the suggestion of an anonymous referee, we prove

this for V0 = 0, using properties of Schur Q-functions – for the specific case of the original Kont-
sevich matrix model, see also [15]. In particular, this retrieves in this special case the result of
Corollary 1.2.

Theorem 4.1. For V0 = 0, ZN (t) as a function of t and s = 1
2k+1TrΛ

−(2k+1) is a 2-BKP
tau-function.

Proof. The starting point is the Cauchy formula for Schur Q-functions

exp

(
2
∑
k≥0

(2k + 1)t2k+1p2k+1

)
=
∑
λ∈SP

1

2ℓ(λ)
Qλ(t)Qλ(p),

where the sum is over the set SP of strict integer partitions λ1 > λ2 > · · · > λℓ(λ) > 0, including
Q∅(t) = 1. Note that there are different conventions for the definition of Q-Schur functions in
the literature. The key step are two formulae, that can be found, e.g., in [16, equations (55)
and (56)]. Adapted in our notations, the first formula allows computing Gaussian averages of
Q-Schur functions:

�
HN

dPN (H)Q2λ

({
1

2k+1Tr
(
H2k+1

)}
k≥1

)
=

Qλ(s)Qλ(1, 0, 0, . . . )

Q2λ(1, 0, 0, . . . )
,

where 2λ = (2λ1, 2λ2, . . . , 2λℓ(λ)) and s = (s1, s3, s5, . . . ) with s2k+1 = 1
2k+1 TrΛ

−(2k+1). The
corresponding integral over Qλ vanishes if λ has any odd part. The second formula comes
from the analog of the hook-length formula for the specialisation to (1, 0, 0, . . . ) of the Q-Schur
functions

Qλ(1, 0, 0, . . . )

Q2λ(1, 0, 0, . . . )
=

ℓ(λ)∏
j=1

(2λj − 1)!!.

Combining both formulae yields for V0 = 0

ZN (t) =

�
HN

dPN (H) exp

(∑
k≥0

t2k+1Tr
(
H2k+1

))
=
∑
λ∈SP

1

2ℓ(λ)
Q2λ

(
1
2t
)Qλ(s)Qλ(1, 0, 0, . . . )

Q2λ(1, 0, 0, . . . )
. (4.1)

By comparison with [17, Lemma 5.5], we recognise a 2-BKP tau-function with

Cj,k = δj,2k(2k − 1)!!

in the times t and 2s. The factor of 2 in the times is necessary to compare with the BKP
hierarchy with the factors specified in (1.4) for the BKP equations, while it was absent in [17]
due to the normalisation chosen in their equation (3.22). ■
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4.3 Cartan–Plücker relations

It is known (see, e.g., [10, Theorem 7.1.1]) that a formal power series in t is a BKP tau-function
if and only if it can be expanded as∑

λ∈SP
κλQλ

(
1
2t
)
,

where the κλ satisfy Cartan–Plücker relations for isotropic Grassmannians. Stopping at (4.1),
we see that Corollary 1.2 is equivalent to the property that, for any potential V0(x) for which

e−
1
2
λminx

2+V0(x) has finite moments, the family

κλ =

�
HN

dPN (H)Qλ

({
1

2k+1Tr
(
H2k+1

)})
eTr(V0(H))

satisfies the Cartan–Plücker relations for isotropic Grassmannians. For general V0, this result
does not seem to be covered by previous work. For V0 = 0, it is covered alternatively by
Theorem 4.1 and corresponds to

κλ = Qλ
2
(s)

ℓ(λ)∏
i=1

(2λi − 1)!!.

4.4 Topological recursion

Apart from V0 = 0 and V0 cubic, the simplest even case is V0(x) = − cN
4 x4 for some parameter

c > 0, and its formal large N topological expansion has been studied during the last years [9, 21],
providing strong evidence [5] that the topological expansion of the cumulants obey the blobbed
topological recursion [4], which is the general solution of abstract loop equations [3]. In [11],
a recursive formula for meromorphic differentials which are generating series of the genus 1
cumulants was given, and a generalisation to higher genera was outlined.

On the other hand, BKP tau-functions of hypergeometric type with mild analytic assump-
tions are known to satisfy abstract loop equations, and thus (perhaps blobbed) topological recur-
sion [2]. In particular, this was applied to prove the conjecture of [8] that spin Hurwitz numbers
(weighted by the parity of a spin structure) satisfy topological recursion. Although ZN (t) is
not a hypergeometric tau-function of BKP in the sense of [19], one may ask if similar tech-
niques could not prove that the topological expansion of the correlators of ZN (t) are governed
by (blobbed or not) topological recursion. We hope to return to this question at a later occa-
sion.
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