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Abstract. Polygon equations generalize the prominent pentagon equation in very much
the same way as simplex equations generalize the famous Yang–Baxter equation. In par-
ticular, they appeared as “cocycle equations” in Street’s category theory associated with
oriented simplices. Whereas the (N − 1)-simplex equation can be regarded as a realization
of the higher Bruhat order B(N,N − 2), the N -gon equation is a realization of the higher
Tamari order T (N,N−2). The latter and its dual T̃ (N,N−2), associated with which is the
dual N -gon equation, have been shown to arise as suborders of B(N,N − 2) via a “three-
color decomposition”. There are two different reductions of T (N,N − 2) and T̃ (N,N − 2),
to T (N − 1, N − 3), respectively T̃ (N−1, N−3). In this work, we explore the corresponding
reductions of (dual) polygon equations, which lead to relations between solutions of neigh-
boring (dual) polygon equations. We also elaborate (dual) polygon equations in this respect
explicitly up to the octagon equation.
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1 Introduction

An infinite family of “polygon equations” has been introduced in [13], based on the combinatorial
structure of higher Tamari (partial) orders. They appeared earlier as cocycle equations (“higher
cocycloids”) in a category-theoretical framework based on oriented simplices (“orientals”) [57].
The 4-gon equation is the condition of associativity for a binary operation. The dual 4-gon equa-
tion expresses coassociativity of a comultiplication. The 5-gon or pentagon equation is the most
prominent member of this family and plays a profound role in mathematics and mathematical
physics.

Of particular relevance is the pentagon equation in the context of bi- and Hopf algebras. The
crucial and fairly simple observation here is the following. Given a unital associative algebra A
with identity element 1A, it carries a trivial (left) comultiplication1 ∆ℓ : A → A⊗A, a 7→ a⊗ 1A.
Non-trivial comultiplications are then obtained via ∆ := W∆ℓW

−1 if W ∈ A ⊗A is an invert-
ible solution of the pentagon equation2 W12W13W23 = W23W12 in the threefold tensor product
of A, where the indices determine at which two components of it W acts. In fact, each comul-
tiplication on a finite-dimensional algebra can be expressed in this way [48]. But also in the
rigorous framework of infinite-dimensional C∗-algebras such an expression for comultiplication
plays a profound role in surpassing technical problems in the duality theory of locally compact
groups and for establishing a rigorous setting for quantum groups. Here W appears as a unitary

1Of course, there is a corresponding result for the “right” trivial comultiplication ∆r : A → A⊗A, a 7→ 1A⊗a.
2A somewhat more general result can be found in [9] and involves a “mixed” or “entwining” pentagon equation.

Corresponding versions of polygon equations, involving several different maps, have been treated in full generality
in [13]. Also see [32], for example.
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linear operator under the name “multiplicative unitary” or (generalized) Kac–Takesaki operator
(see, in particular, [1, 38, 54, 60, 61, 62, 69]).

The pentagon equation, sometimes called “fusion equation”, shows up in conformal field
theory as a condition for the fusion matrix, which arises from operator product expansion of
chiral vertex operators, see [49] for example.

The pentagon equation plays a crucial role as an associativity constraint for the basic functor
of a monoidal category, notably because of Mac Lane’s coherence theorem [40] (also see [33]).
This in turn has roots in Tamari’s work on relaxing associativity and Stasheff’s work on homo-
topy associativity [55, 56].

One way to obtain topological invariants of manifolds is via triangulations, i.e., decomposi-
tions into simplices. To each simplex one assigns a mathematical object and builds from all of
them an object (e.g., a “state sum”) assigned to a triangulation. This has to be done in such
a way that the latter object is invariant under manipulations of triangulations called Pachner
moves or bistellar flips [50] (also see, e.g., [39]). In three dimensions, the simplices are tetrahe-
dra. A Pachner (2, 3)-move splits two adjacent tetrahedra into three and this requires that the
objects associated with the tetrahedra, constituting a triangulation, satisfy a pentagon relation.
Because of the pentagonal Biedenharn–Elliot identity [4], a Wigner 6-j symbol, or a general-
ization of it, is thus a choice for the object assigned to a tetrahedron [51, 63, 64].3 In [3], it
was shown that the Wheeler–DeWitt equation for three-dimensional general relativity reduces
to the pentagon relation. There is a comprehensive literature around the idea of representing
Pachner moves of a triangulation in three dimensions by a solution of the pentagon equation (or
a pentagon relation), see in particular [2, 8, 24, 34, 47, 59]. In four dimensions, the dual hexagon
equation plays a corresponding role [29] (also see Remark 6.2 below), in five dimensions it is the
dual heptagon equation [35, 36, 37].

In the latter context, it is also worth to mention that the higher Tamari orders, introduced
in [13] and underlying polygon equations, are equivalent [67] to higher Stasheff–Tamari or-
ders [16, 23] on the set of triangulations of a cyclic polytope.

A pentagonal relation is also satisfied by the Rogers [52] and quantum dilogarithms4 [18, 19].
Although it does not have the structure of the pentagon equation as considered in this work,
there are certain relations, see, e.g., Example 7.20 below.5

Comparatively little is known so far about higher polygon equations. An expression for the
dual hexagon equation appeared as a 4-cocycle condition in [57, 58].

Polygon equations play a role in the theory of completely solvable models of statistical me-
chanics. If solutions of the N -gon and the dual N -gon equation satisfy a certain compatibility
condition, a special solution of the (N − 1)-simplex equation is obtained, see [13, Section 5].
This includes and generalizes a relation between solutions of the pentagon equation, its dual, and
the 4-simplex (Bazhanov–Stroganov) equation [31]. There is also a relation between the pentagon
equation, its dual, and the 3-simplex (tetrahedron or Zamolodchikov) equation [31, 32, 41, 53],
for which a corresponding generalization to higher polygon and simplex equations is yet un-
known.

A class of solutions of odd polygon equations with maps acting on direct sums has recently
been obtained in [10].

In the present work, we explore polygon equations in the set-theoretic setting, i.e., we do
not assume any additional structure beyond sets and maps between (Cartesian products of)

3Essentially, (generalized) 6-j symbols arise as follows. If there is a direct sum decomposition Vi ⊗ Vj =⊕
ℓ H

ℓ
ij ⊗ Vℓ of vector spaces, the associator isomorphism (Vi ⊗ Vj)⊗ Vk → Vi ⊗ (Vj ⊗ Vk) of a monoidal category

induces maps
{

i j ℓ
k m n

}
: Hℓ

ij ⊗Hm
ℓk → Hm

in ⊗Hn
jk.

4Also the quantum dilogarithm can be understood as a 6-j symbol [24].
5Also Drinfeld associators of quasi-Hopf algebras (see, e.g., [17]) are subject to a certain pentagon equation,

but they are elements of a triple tensor product and therefore the corresponding pentagon equation is different
from the standard one.
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them. Using the combinatorics of higher Tamari orders, underlying polygon equations, we
derive relations between the sets of solutions of neighboring (dual) polygon equations. These
relations are proved for the whole infinite family of (dual) polygon equations. Additional results
are provided for (dual) polygon equations up to the octagon (8-gon) equation.

Section 2 briefly recalls the definition of higher Bruhat and higher Tamari orders. The reader
is referred to [13] for a detailed treatment. Section 3 presents the definition of simplex and
polygon equations in a slightly different way from [13]. Section 4 deals with reductions of polygon
equations and contains the most general results of this work. Sections 5 and 6 present the first few
examples of polygon equations and their duals, respectively. They extend results obtained in [13].

Section 7 deals with the special, but most important case of (dual) polygon equations for
a single map, acting between Cartesian products of a set U . Partly from the general results in
Section 4, but to some extent also independently and from results in Sections 5 and 6, we derive
relations between solutions of a (dual) N -gon and (dual) (N + 1)-gon equation, N > 2.

Section 8 contains some concluding remarks.

2 Basics of higher Bruhat and higher Tamari orders

For a non-empty finite subset M of N, and n ∈ N, 1 ≤ n ≤ |M | (where |M | is the cardinality
of M), let

(
M
n

)
denote the set of n-element subsets of M . The packet P (M) of M is the set

of (|M | − 1)-element subsets of M . We write
−→
P (M) for P (M) in lexicographic order, and

←−
P (M)

for P (M) in reverse lexicographic order.

Let N ∈ N, N > 1, and [N ] = {1, . . . , N}. A linear order (permutation) ρ of
(
[N ]
n

)
, n ∈ N,

n < N , is called admissible if, for each K ∈
(
[N ]
n+1

)
, the packet P (K) is contained in ρ in lex-

icographic or in reverse lexicographic order. Let A(N,n) denote the set of admissible linear
orders of

(
[N ]
n

)
. An equivalence relation is defined on A(N,n) by ρ ∼ ρ′ if and only if ρ

and ρ′ only differ by exchange of two neighboring elements, not both contained in some packet.
Then A(N,n)/∼, supplied with the partial order given via inversions of lexicographically ordered
packets,

−→
P (K) 7→

←−
P (K), is the higher Bruhat order B(N,n).

Next we consider the splitting of a packet, P (K) = Po(K) ∪ Pe(K), where Po(K) (Pe(K))
is the half-packet consisting of elements with odd (even) position in the lexicographically or-
dered P (K).

We say an element J ∈ Po(K) is blue in
−→
P (K) and red in

←−
P (K), an element J ∈ Pe(K) is

red in
−→
P (K) and blue in

←−
P (K). J ∈ P (K) is blue (red) in ρ ∈ A(N,n) if J is blue (red) with

respect to all K for which J ∈ P (K) and either
−→
P (K) or

←−
P (K) is a subsequence of ρ.

It can happen that J is blue in ρ ∈ A(N,n) with respect to some K and red with respect
to another K ′. In such a case we color it green. By ρ(b), ρ(r), ρ(g) we denote the blue, red,
respectively green subsequence of ρ.

It has been shown in [13] that there are projections B(N,n) → B(c)(N,n), [ρ] 7→
[
ρ(c)

]
,

c ∈ {b, r, g}, such that B(c)(N,n) inherits a partial order from B(N,n). T (N,n) := B(b)(N,n)
are the higher Tamari orders and T̃ (N,n) := B(r)(N,n) are called dual higher Tamari orders.
The inversion operation in case of T (N,n) is

−→
P o(K) 7→

←−
P e(K), K ∈

(
[N ]
n+1

)
. In case of T̃ (N,n),

it is
−→
P e(K) 7→

←−
P o(K).

Remark 2.1. Associating with K ∈
(
[N ]
n+1

)
an n-simplex, the packet P (K) corresponds to the

set of its faces, which are (n − 1)-simplices. The pasting scheme given by the above inversion
operation then supplies the faces with an orientation. This results in the orientals (oriented
simplices) introduced by Street in 1987 [57]. It had been conjectured in [12, 13] and proved in [67]
that the higher Tamari orders are equivalent to the higher Stasheff–Tamari orders in [16, 23].
All these works thus deal with essentially the same structure. In [11, 12] it has been realized in
terms of rooted tree-shaped solutions of the Kadomtsev–Petviashvili (KP) hierarchy.
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3 A brief account of simplex and polygon equations

Let N > 2. With J ∈
( [N ]
N−2

)
we associate a set UJ . For ρ ∈ A(N,N − 2), let Uρ be the

correspondingly ordered Cartesian product of the UJ , J ∈ ρ. With K ∈
( [N ]
N−1

)
= P ([N ]) we

associate a map

RK : U−→
P (K)

−→ U←−
P (K)

.

The (N − 1)-simplex equation

R−→
P ([N ])

= R←−
P ([N ])

(3.1)

may then be regarded as a realization of B(N,N − 2). The expressions on both sides are
compositions of maps RK , K ∈ P ([N ]), applied on the left-hand side in lexicographic, on
the right-hand side in reverse lexicographic order. Writing

−→
P ([N ]) = (K1, . . . ,KN ), we have

R−→
P ([N ])

= RKN
· · ·RK1 . Hence, as a composition, R−→

P ([N ])
is actually in reverse lexicographic

order, but the maps are applied in lexicographic order. We have to add the following rules in
order for (3.1) to make sense.

(1) Both sides of (3.1) act on Uα and map to Uω, where α (ω) is
( [N ]
N−2

)
in lexicographic (reverse

lexicographic) order.

(2) Each of the maps RK acts at consecutive positions in the respective multiple Cartesian
product of spaces.

(3) If J, J ′ ∈
( [N ]
N−2

)
are such that they do not both belong to P (K) for any K ∈

( [N ]
N−1

)
, then

· · · × UJ × UJ ′ × · · · ∼ · · · × UJ ′ × UJ × · · ·

imposes an equivalence relation on Cartesian products.

Starting with Uα, it may be necessary to use the third rule to arrange that RK1 , respec-
tively RKN

, can be applied, which means that the sets associated with elements of P (K1),
respectively P (KN ), have to be in lexicographic order and at neighboring positions in the re-
spective multiple Cartesian product of sets. After an application of some RK , it may again be
necessary to use the third rule to arrange a further application of a map RK′ , or to achieve
the final reverse lexicographic order Uω. That this works is a consequence of the underlying
structure of higher Bruhat orders [13, 42, 43].

We have to stress that (3.1) is not the form in which simplex equations usually appear in the
literature, see [13] for the relation and references.

With each K ∈
( [N ]
N−1

)
, now we associate a map

TK : U−→
P o(K)

−→ U←−
P e(K)

.

Writing K = (k1, . . . , kN−1), with ki < ki+1, i = 1, . . . , N − 2, we have

U−→
Po(K)

= UK\{kN−1} × UK\{kN−3} × · · · × UK\{k1+(N mod 2)},

U←−
Pe(K)

= UK\{k2−(N mod 2)} × · · · × UK\{kN−4} × UK\{kN−2}.

The N -gon equation

T−→
P o([N ])

= T←−
P e([N ])

(3.2)

may be regarded as a realization of T (N,N − 2). It is well defined if we require the following
rules.
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(1) Let α (ω) be again
( [N ]
N−2

)
in lexicographic (reverse lexicographic) order, and let α(b)

and ω(b) be the corresponding blue parts. Both sides of (3.2) act on Uα(b) and map
to Uω(b) .

(2) Each of the maps TK acts at consecutive positions in the respective multiple Cartesian
product of sets.

(3) If J, J ′ ∈
( [N ]
N−2

)
are such that they do not both belong to P (K) for any K ∈

( [N ]
N−1

)
, then

· · · × UJ × UJ ′ × · · · ∼ · · · × UJ ′ × UJ × · · · .

As in the case of simplex equations, to apply or work out a polygon equation, we have to
check at each step whether a map TK can be applied directly or whether we first have to use
the third rule above to achieve a reordering of the respective multiple Cartesian product. In any
case, we have to keep track of the numbering of the sets, even if they are identical as sets.

It is, therefore, convenient to realize the above equivalence relation by introducing explicitly
transposition maps (sometimes called flip or switch maps) in the equations, at the price of
ending up with a form of the equation that looks more complicated and apparently lost its
universal structure, but it is often better suited for applications. Instead of keeping track of
the numbering of sets, we then have to keep track of the first position on which a map acts in
a multiple Cartesian product. This has been done in [13]. For several polygon equations, we
will recall the resulting form in Section 5. In this form, we can best deal with the case of prime
interest, where all the sets UJ are the same and there is only a single map T .

If N is odd, (3.2) can be written as

T1̂T3̂ · · ·TN̂−2TN̂
= T

N̂−1TN̂−3 · · ·T2̂, (3.3)

where k̂ := [N ] \ {k} (complementary index notation).
If N is even, (3.2) can be correspondingly expressed as

T2̂T4̂ · · ·TN̂−2TN̂
= T

N̂−1TN̂−3 · · ·T1̂. (3.4)

With each K ∈
( [N ]
N−1

)
, N > 2, we also associate a map

T̃K : U−→
P e(K)

−→ U←−
P o(K)

.

The dual N -gon equation

T̃−→
P e([N ])

= T̃←−
P o([N ])

(3.5)

may be regarded as a realization of the dual Tamari order T̃ (N,N − 2). Both sides act on α(r),
which is equal to ω(b) totally reversed, and map to ω(r), which is equal to α(b) totally reversed.

For odd N , (3.5) is

T̃2̂T̃4̂ · · · T̃N̂−1 = T̃
N̂
T̃
N̂−2 · · · T̃3̂T̃1̂,

which is (3.3) reversed. For even N , we have

T̃1̂T̃3̂ · · · T̃N̂−1 = T̃
N̂
T̃
N̂−2 · · · T̃2̂, (3.6)

which is (3.4) reversed.
Simplex equations, and also (dual) polygon equations, are interrelated by a kind of integra-

bility feature, which crucially distinguishes them from similar equations. We refer to [13] for
the general structure, but in Section 5 we elaborate this feature for some examples of polygon
equations.

Remark 3.1. The dual (N +2)-gon equation is the N -cocycle condition in [57, 58]. In [57], the
reader finds an explanation in which sense these equations can be regarded as “cocycles”.
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4 Reductions of polygon equations

For any fixed k ∈ [N + 1], there is a projection prk : A(N + 1, n + 1) → A(N,n), obtained
by restricting ρ ∈ A(N + 1, n + 1) to the subsequence consisting only of elements K ∈

(
[N+1]
n+1

)
with k ∈ K. The set of all these subsequences is in bijection with A(N,n), simply by deleting k in
eachK and an obvious renumbering. Moreover, the projection is compatible with the equivalence
relation ∼ and induces a projection B(N + 1, n+ 1)→ B(N,n). See [13, Remark 2.5].

But only for k ∈ {1, N + 1}, the projection prk is compatible with the 3-color decomposi-
tion, see [13, Remark 2.17]. If k = 1, this yields projections T (N + 1, n + 1) → T (N,n) and
T̃ (N + 1, n+ 1)→ T̃ (N,n). For k = N +1, we have projections T (N +1, n+1)→ T̃ (N,n) and
T̃ (N + 1, n+ 1)→ T (N,n).

In particular, there are thus projections T (N+1, N−1)→ T (N,N−2) and T (N+1, N−1)→
T̃ (N,N−2), which then induce reductions of the (N+1)-gon to the N -gon equation, respectively
the dual N -gon equation. In the same way, the projections T̃ (N + 1, N − 1) → T̃ (N,N − 2)
and T̃ (N + 1, N − 1)→ T (N,N − 2) induce reductions of the dual (N + 1)-gon to the dual N -
gon equation, respectively the N -gon equation. Since we realize Tamari orders by sets and maps
between them, we have to make sure, however, that this procedure indeed leads to a realization of
the (dual) N -gon equation. This will be made precise in the following subsections. Throughout
we assume N > 2.

By a degenerate map (e.g., a solution of a polygon equation), we mean a map whose values
do not depend on (at least) one of its arguments.

4.1 Reductions induced by pr1

The reduction of the (N + 1)-gon equation induced by pr1 is essentially obtained by dropping
the map TK with 1 /∈ K. But we also have to arrange that the remaining maps TK with 1 ∈ K
are reduced to maps between (products of) spaces UJ with 1 ∈ J ∈ P (K).

Theorem 4.1. Let N ∈ N be odd, N > 2.

(1) Let TK , K ∈
([N+1]

N

)
, be maps solving the (N +1)-gon equation. For K with 1 ∈ K, let TK

not depend on the last component of its domain. Let TK′, K ′ = K \ {1}, be obtained
from TK by excluding UK′ from its domain. Then

{
TK′ |K ′ ∈

({2,...,N+1}
N−1

)}
solve the N -gon

equation.

(2) Each solution of the N -gon equation can be extended to a degenerate solution of the (N+1)-
gon equation.

Proof. (1) If N is odd, then K ′ = K \ {1} is the last element of
−→
P o(K). If

TK : U−→
P ′

o(K)
× UK\{1} → U←−P e(K)

does not depend on the last component of its domain, it induces a map

TK′ : U−→
P o(K′)

→ U←−
P e(K′)

,

with UJ := U{1}∪J for J ∈ P (K ′). Since T1̂ = T{2,3,...,N+1} : U−→P o({2,3,...,N+1}) → U←−P e({2,3,...,N+1})
maps to spaces that are, as a consequence of our assumption, disregarded by all other maps, it
can be dropped from the (N + 1)-gon equation

T2̂T4̂ · · ·TN̂−1TN̂+1
= T

N̂
T
N̂−2 · · ·T1̂,

which thus reduces to

T2̂T4̂ · · ·TN̂−1TN̂+1
= T

N̂
T
N̂−2 · · ·T3̂,
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where we can now regard the indices as complementary in [N + 1] \ {1}. By a shift in the
numbering, this is turned into the standard form of the odd N -gon equation,

T1̂T3̂ · · ·TN̂−2TN̂
= T

N̂−1TN̂−3 · · ·T2̂,

where the indices are complementary in [N ].
(2) Applying a shift in the numbering of maps, constituting a solution of the N -gon equa-

tion, it is given by
{
TK′ |K ′ ∈

({2,...,N+1}
N−1

)}
. Associating K = {1} ∪ K ′ with K ′, we trivially

extend the map TK′ to a map TK of the form given above, by introducing a set UK\{1}.
Choosing furthermore a map T{2,3,...,N+1} : U−→P o({2,3,...,N+1}) → U←−P e({2,3,...,N+1}), with sets UJ ,
J ∈ P ({2, 3, . . . , N + 1}), we obtain a solution of the (N + 1)-gon equation. This essentially
reverses the steps taken in the proof of (1). ■

Theorem 4.2. Let N ∈ N be even, N > 2. Let TK , K ∈
([N+1]

N

)
, be maps solving the (N + 1)-

gon equation. For K with 1 ∈ K let TK′, K ′ = K \ {1}, be obtained from TK by deleting the
first component of its codomain. Then

{
TK′ |K ′ ∈

({2,...,N+1}
N−1

)}
solve the N -gon equation.

Proof. Let N be even and K such that 1 ∈ K. The packet P (K) has N elements and its last
member in the lexicographic order is K \ {1}. Hence, K \ {1} is the first element of

←−
P e(K).

Then

TK : U−→
P o(K)

→ UK\{1} × U←−P ′
e(K)

,

where
←−
P ′e(K) is

←−
P e(K) without the element K ′ := K \{1}. By disregarding the first component

of its codomain, each TK , 1 ∈ K, induces a map

TK′ : U−→
P o(K′)

→ U←−
P e(K′)

, K ′ ∈
(
{2, . . . N + 1}

N − 1

)
,

where, for J ∈ P (K ′), we set again UJ := U{1}∪J . Since the domain of the remaining map T1̂

only involves spaces that are excluded from the range of all other maps TK , it splits off from
the (N + 1)-gon equation

T1̂T3̂ · · ·TN̂−1TN̂+1
= T

N̂
T
N̂−2 · · ·T2̂,

which thus reduces to

T3̂ · · ·TN̂−1TN̂+1
= T

N̂
T
N̂−2 · · ·T2̂,

where the complementary indices now refer to [N + 1] \ {1} = {2, . . . , N + 1}. By renaming Tk̂
to T

k̂−1 in the last equation, it reads

T2̂ · · ·TN̂−2TN̂
= T

N̂−1TN̂−3 · · ·T1̂,

where now the indices are complementary in [N ], so that we have the standard form of the
(even) N -gon equation. ■

Remark 4.3. The last result means that, if
{
TK |K ∈

([N+1]
N

)}
is a solution of an odd (N+1)-gon

equation, then each map TK with 1 ∈ K has the form

TK = SK′ × TK′ , K ′ := K \ {1},

with a map SK′ : U−→
P o(K)

→ UK′ , and
{
TK′ |K ′ ∈

({2,3,...,N+1}
N−1

)}
solve the even N -gon equation.

Each solution of the odd (N + 1)-gon equation is thus an extension, of the above form, of
a solution of the (even) N -gon equation.
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Example 4.4. The pentagon equation T1̂T3̂T5̂ = T4̂T2̂ involves the maps T1̂ : U234 × U245 →
U345 × U235, T2̂ : U134 × U145 → U345 × U135, T3̂ : U124 × U145 → U245 × U125, T4̂ : U123 × U135 →
U235 × U125, T5̂ : U123 × U134 → U234 × U124. We thus have

T4̂T2̂ : U123 × U134 × U145 → (U345 × U235)× U125

and

T3̂T5̂ : U123 × U134 × U145 → (U234 × U245)× U125.

Recalling that T1̂ does not involve any of the spaces U1ij , 1 < i < j ≤ 5, the pentagon equation
implies that the maps, obtained from {Tk̂} by deleting the first component of their codomain,
satisfy the tetragon equation (with indices shifted by 1).

Let us now turn to the dual (N+1)-gon equation and consider the subset of maps T̃K : U−→
P e(K)

→ U←−
P o(K)

with 1 ∈ K.

Theorem 4.5. Let N ∈ N be even, N > 2.

(1) Let T̃K , K ∈
([N+1]

N

)
, be maps solving the dual (N + 1)-gon equation. For K with 1 ∈ K,

let T̃K not depend on the last component of its domain. Let T̃K′, K ′ = K \{1}, be obtained
from T̃K by excluding the last component of its domain. Then

{
T̃K′ |K ′ ∈

({2,...,N+1}
N−1

)}
solve

the dual N -gon equation.

(2) Each solution of the dual N -gon equation can be extended to a degenerate solution of the
dual (N + 1)-gon equation.

Proof. (1) If N is even, then K ′ = K \ {1} is the last element of
−→
P e(K), so that

T̃K : U−→
P ′

e(K)
× UK\{1} → U←−P o(K)

,

where
−→
P ′e(K) is

−→
P e(K) without the last element. If T̃K does not depend on the last component

of its domain, it induces a map

T̃K′ : U−→
P e(K′)

→ U←−
P o(K′)

, K ′ ∈
(
{2, . . . , N + 1}

N − 1

)
,

where we set UJ := U{1}∪J . With the same argument as in the proof of Theorem 4.1, the
dual (N + 1)-gon equation

T̃2̂T̃4̂ · · · T̃N̂
= T̃

N̂+1
T̃
N̂−1 · · · T̃3̂T̃1̂

reduces to

T̃2̂T̃4̂ · · · T̃N̂
= T̃

N̂+1
T̃
N̂−1 · · · T̃3̂,

where now the complementary indices refer to [N + 1] \ {1}. A shift in the numbering achieves
the standard form (3.6) of the dual even N -gon equation.

(2) The proof is analogous to that of part (2) of Theorem 4.1. ■

Theorem 4.6. Let N ∈ N be odd, N > 2. Let T̃K , K ∈
([N+1]

N

)
, be maps solving the dual (N+1)-

gon equation. For K with 1 ∈ K let T̃K′, K ′ = K \ {1}, be obtained from T̃K by excluding the
first component of its codomain. Then

{
T̃K′ |K ′ ∈

({2,...,N+1}
N−1

)}
solve the dual N -gon equation.
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Proof. If N is odd and 1 ∈ K, then K ′ is the first element of
←−
P o(K), so that

T̃K : U−→
P e(K)

→ UK\{1} × U←−P ′
o(K)

,

where
←−
P ′o(K) is

←−
P o(K) without the first element. Now each T̃K , 1 ∈ K, induces a map

T̃K′ : U−→
P e(K′)

→ U←−
P o(K′)

, K ′ ∈
(
{2, . . . , N + 1}

N − 1

)
.

The dual (N+1)-gon equation then reduces to the dual odd N -gon equation, using an argument
as in the proofs of the preceding theorems. ■

4.2 Reductions induced by prN+1

The projection T (N + 1, N − 1) → T̃ (N,N − 2) induces a reduction of the (N + 1)-gon to the
dual N -gon equation. It is essentially obtained by dropping the map TK with N + 1 /∈ K. But
we have to arrange that the remaining maps TK , N + 1 ∈ K, are reduced to maps between
(products of) spaces UJ with N + 1 ∈ J ∈ P (K).

Theorem 4.7. Let N ∈ N, N > 2.

(1) Let TK , K ∈
([N+1]

N

)
, be maps solving the (N + 1)-gon equation. For K with N + 1 ∈ K,

let TK not depend on the first component of its domain. Set K ′ = K \{N +1} and let T̃K′

be given by TK with the first component of its domain excluded. Then
{
T̃K′ |K ′ ∈

( [N ]
N−1

)}
solve the dual N -gon equation.

(2) Each solution of the dual N -gon equation can be extended to a degenerate solution of
the (N + 1)-gon equation.

Proof. (1) Let K be such that N+1 ∈ K. Then K ′ := K \{N+1} is the first element of P (K)
in lexicographic order, and thus also of Po(K). Hence, we have maps

TK : UK\{N+1} × U−→P ′
o(K)

→ U←−
P e(K)

, K ∈
(
[N + 1]

N

)
, N + 1 ∈ K,

where P ′o(K) is Po(K) without its first element (in lexicographic order). If these maps do not
depend on the first component of their domain, they project to maps

T̃K′ : U−→
P e(K′)

→ U←−
P o(K′)

, K ′ ∈
(

[N ]

N − 1

)
,

where we set UJ := UJ∪{N+1} for J ∈ P (K ′). Under this assumption,

T
N̂+1

: U−→
P o({1,2,...,N})

→ U←−
P e({1,2,...,N})

maps to spaces that are disregarded by all other TK appearing in the (N + 1)-gon equation.
For odd N , the (N + 1)-gon equation

T2̂T4̂ · · ·TN̂−1TN̂+1
= T

N̂
T
N̂−2 · · ·T1̂

thus reduces to

T̃2̂T̃4̂ · · · T̃N̂−1 = T̃
N̂
T̃
N̂−2 · · · T̃3̂T̃1̂,

where now the indices are complementary in [N + 1] \ {N + 1} = [N ]. This is the dual N -gon
equation for odd N .
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For even N , the (N + 1)-gon equation

T1̂T3̂ · · ·TN̂−1TN̂+1
= T

N̂
T
N̂−2 · · ·T2̂

reduces to

T̃1̂T̃3̂ · · · T̃N̂−1 = T̃
N̂
T̃
N̂−2 · · · T̃2̂,

where again indices are now complementary in [N ]. This is the dual N -gon equation for even N .

(2) The proof is analogous to that in preceding theorems. ■

Let us now turn to the corresponding reduction of the dual (N+1)-gon equation and consider
the maps T̃K : U−→

P e(K)
→ U←−

P o(K)
with N + 1 ∈ K.

Theorem 4.8. Let N ∈ N, N > 2. Let T̃K , K ∈
([N+1]

N

)
, be maps solving the dual (N + 1)-gon

equation. For K with N + 1 ∈ K, set K ′ = K \ {N + 1} and let TK′ be given by T̃K with the
last component of its codomain excluded. Then

{
TK′ |K ′ ∈

( [N ]
N−1

)}
solve the N -gon equation.

Proof. SinceK ′ = K\{N+1} is the first element of
−→
P (K), and thus the last element of

←−
P o(K),

T̃K : U−→
P e(K)

→ U←−
P ′

o(K)
× UK\{N+1},

where
←−
P ′o(K) is

←−
P o(K) without the last element. Hence, T̃K induces a map

TK′ : U−→
P o(K′)

→ U←−
P e(K′)

,

where we set again UJ := UJ∪{N+1} for J ∈ P (K ′). With the kind of argument used in the
proofs of preceding theorems, the dual (N +1)-gon equation reduces to the N -gon equation. ■

Remark 4.9. The last result means that, if
{
T̃K |K ∈

([N+1]
N

)}
is a solution of a dual (N+1)-gon

equation, then each map T̃K with N + 1 ∈ K has the form

T̃K = TK′ × SK′ , K ′ := K \ {N + 1},

with a map SK′ : U−→
P e(K)

→ UK′ , and {TK′ |K ′ ∈
( [N ]
N−1

)
} solve the N -gon equation. Each solution

of the dual (N +1)-gon equation is thus an extension, of the above form, of a solution of the N -
gon equation.

5 Examples of polygon equations

In this section, we elaborate polygon equations up to the 8-gon equation.

5.1 Trigon equation

This is the equation

T23T12 = T13 (5.1)

for maps Tij : Ui → Uj , i < j. On the left-hand side of (5.1), we mean the composition of two
maps. If the sets are the same, Ui = U , i = 1, 2, 3, and if there is only a single map T , then the
trigon equation means that T is idempotent.
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T123 T234

T134 T124

L34L23L12

L34L13 L24L12

L14

Figure 1. From local trigon equations to the tetragon equation. Here, and correspondingly in following

figures, we suppress the parameters of the maps L.

5.2 Tetragon equation

For i, j = 1, 2, 3, 4, i < j, let a map Lij : Ui → Uj carry a parameter from a set Uij . Let us
further assume that each of the local trigon equations

Ljk(ujk)Lij(uij) = Lik(Tijk(uij , ujk)), i < j < k,

uniquely determines a map

Tijk : Uij × Ujk −→ Uik.

Using associativity of compositions, there is a consistency condition, see Figure 1,6 which
requires that the maps Tijk have to satisfy the tetragon equation

T134T123 = T124T234.

Both sides of this equation act on the lexicographically ordered Cartesian product U12×U23×U34
and map to U14.

Let us introduce a boldface “position index” that indicates the first of two neighboring sets
on which the respective map acts in a Cartesian product of more than two sets,

T134T123,1 = T124T234,2.

These additional indices are redundant, as long as we keep the combinatorial indices and keep
track of the numbered sets.

Using complementary index notation, where k̂ stands for the complement of k in {1, 2, 3, 4},
the tetragon equation reads T2̂T4̂,1 = T3̂T1̂,2.

Writing

Tijk(aij , ajk) =: aij •ijk ajk,

with aij ∈ Uij , the equation takes the form

(a12 •123 a23) •134 a34 = a12 •124 (a23 •234 a34),

which is a mixed associativity condition for the (in general different) binary operations •123,
•124, •134 and •234.7

In the simplest case, where all the basic sets are equal and we are dealing with a single map T ,
we may drop the combinatorial indices, but retain the boldface “position” indices. The tetragon
equation is then TT1 = TT2. Writing T (a, b) = a · b, it becomes the associativity relation for
the binary operation ·.

6Such a diagram already appeared in the 1965 PhD Thesis of James Wirth, see [68], where the maps are,
however, of a different nature, so that the step to higher polygon equations does not work.

7Examples of such associativity relations for different binary operations are provided, for example, by nonsym-
metric Poisson algebras (in a setting of vector spaces, with × replaced by the corresponding tensor product) [44].
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T1234 T1345

T1245

T2345

~

T1235

L145L134L123

L145L124L234

L125L245L234

L125L235L345

L135L345L123

L135L123L345

((a · b) · c) · d

(a · (b · c)) · d

(a · b) · (c · d)

a · (b · (c · d))

a · ((b · c) · d)

Figure 2. From local tetragon equations to the pentagon equation. Here ∼ stands for an equivalence,

which corresponds to an application of a transposition map P. Essentially, the left diagram is the

pentagonal Tamari lattice, in its original form, as displayed in the second figure. Here the action of

a map T corresponds to a right associativity map (a · b) · c 7→ a · (b · c). If this is an invertible map

in a category with a binary operation ·, the pentagon relation means that it is a coherent associativity

isomorphism in the sense of [40].

5.3 Pentagon equation

For i, j, k = 1, . . . , 5, i < j < k, let a map

Lijk : Uij × Ujk −→ Uik

depend on a parameter from a set Uijk. Let us assume that each of the local tetragon equations

Likl(uikl)Lijk,1(uijk) = Lijl(vijl)Ljkl,2(vjkl), 1 ≤ i < j < k < l ≤ 5,

uniquely determines a map

Tijkl : Uijk × Uikl → Ujkl × Uijl

via (uijk, uikl) 7→ (vjkl, vijl). Then it follows that the maps Tijkl, 1 ≤ i < j < k < l ≤ 5, have to
satisfy the pentagon equation, see Figure 2.

Using complementary index notation, the pentagon equation is

T1̂T3̂T5̂ = T4̂T2̂.

Both sides of this equation act on U123 × U134 × U145 and map to U345 × U235 × U125.
Representing the equivalence relation ∼ in the diagram in Figure 2 by a transposition map,

P(a, b) = (b, a), and reading off on which neighboring positions in a multiple Cartesian product
a map acts, we get

T1̂,1T3̂,2T5̂,1 = T4̂,2P1T2̂,2.

In case of identical basic sets, then renamed to U , and a single map T , the last equation takes
the form

T1T2T1 = T2P1T2, (5.2)
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where the combinatorial indices have been dropped. Now all the information needed is provided
by the “position” indices. The latter is our abbreviation of the following more familiar form of
the pentagon equation

T12T23T12 = T23P12T23.

Writing

T (a, b) = (a ∗ b, a · b), (5.3)

the last restricted form of the pentagon equation is equivalent to the conditions (cf. [30, 31])

(a ∗ b) ∗ ((a · b) ∗ c) = b ∗ c, (a ∗ b) · ((a · b) ∗ c) = a ∗ (b · c),
(a · b) · c = a · (b · c), (5.4)

for all a, b, c ∈ U . Set-theoretic solutions have been obtained in [1, 5, 6, 7, 22, 25, 26, 27, 28, 31,
32, 45, 46, 70].

Example 5.1.

(1) If a ∗ b = b for all a, b ∈ U , (5.4) reduces to the associativity condition for ·. If (U , ·) is
a group and if T is invertible, then this is the only solution [7, 31]. It underlies one of the
Kac–Takesaki operators on a group (see, e.g., [62]). If U is a subset of a group (G, ·), not
containing the identity element, there are more solutions [31].

(2) If a · b = a, the above system reduces to (a ∗ b) ∗ (a ∗ c) = b ∗ c. In a group, a solution
is given by a ∗ b = a−1b. This underlies another Kac–Takesaki operator on a group (see,
e.g., [5, 62]).

In terms of the composition T̂ := TP, (5.2) takes the form

T̂12T̂13T̂23 = T̂23T̂12. (5.5)

Remark 5.2. If T solves (5.2), then Ť := PT satisfies the – relative to (5.5) – reversed pentagon
equation

Ť12Ť23 = Ť23Ť13Ť12. (5.6)

If an invertible map T̂ satisfies (5.5), then its inverse T̂−1 satisfies the above reversed equation.

Remark 5.3. If T̂ is involutive, then it satisfies both, (5.5) and (5.6). Such solutions have been
explored in [7].

5.3.1 An example related to incidence geometry

Let V be a vector space and L(a) : V × V → V, a ∈ U , be such that the “local” tetragon equa-
tion L(b)L(a)1 = L(b′)L(a′)2 determines a unique map T : U × U → U × U via (a, b) 7→ (a′, b′).
Then this map satisfies the pentagon equation (5.2). Writing x◦ay := L(a)(x, y), we can express
the above equation as the parameter-dependent associativity condition (x◦ay)◦bz = x◦b′ (y◦a′ z).

An example is given by V = Rn, U = (0, 1) ⊂ R, and x ◦a y := ax+(1− a)y. Then we obtain
the solution

T (a, b) =

(
(1− a)b

1− ab
, ab

)
(5.7)
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B

A

CBC

ABC

AB

Figure 3. A (62, 43) configuration.

of the pentagon equation (also see [26]). It also shows up as a map of “polarizations” resulting
from the evolution of tree-shaped matrix KP solitons [14].

The above binary operation can be interpreted as the collinearity of three points A,B,A◦aB:
A◦aB = aA+(1−a)B. The generalized associativity condition can then be viewed as a (62, 43)
configuration [21], which consists of 6 points and 4 lines, where each point is incident with
exactly two lines, each line with exactly 3 points. See Figure 3. A Desargues configuration (103)
consists of 10 points and 10 lines, each point (line) incident with 3 lines (points). It contains 5
configurations of type (62, 43), which thus constitute a pentagon. Also see [15] for related
considerations.

5.4 Hexagon equation

For i, j, k, l = 1, . . . , 6, i < j < k < l, let a map

Lijkl : Uijk × Uikl −→ Ujkl × Uijl

depend on a parameter from a set Uijkl. We assume that each of the local pentagon equations

Ljklm(ujklm)Lijlm(uijlm)Lijkl(uijkl) = Lijkm(vijkm)Liklm(viklm),

1 ≤ i < j < k < l < m ≤ 6,

uniquely determines a map

Tijklm : Uijkl × Uijlm × Ujklm → Uiklm × Uijkm

via (uijkl, uijlm, ujklm) 7→ (viklm, vijkm).

Then the maps Tijklm, 1 ≤ i < j < k < l < m ≤ 6, have to satisfy the hexagon equation. See
Figure 4. Using complementary index notation, the hexagon equation reads

T2̂T4̂T6̂ = T5̂T3̂T1̂.

Both sides act on U1234×U1245×U1256×U2345×U2356×U3456 and map to U1456×U1346×U1236.
Employing transposition maps, according to the equivalences ∼ appearing in Figure 4, and

introducing position indices, the hexagon equation takes the form

T2̂,1P3T4̂,2T6̂,1P3 = T5̂,2P1T3̂,2T1̂,4.

If all basic sets are equal and we are dealing with a single map T , we may drop the combi-
natorial indices and only retain the (boldface) position indices:

T1P3T2T1P3 = T2P1T2T4. (5.8)
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~

T23456

T12345

T12356

~

T13456

T12456

~

T12346

L3456L2356L2345L1256L1245L1234

L3456L2356L1256L2345L1245L1234

L3456L2356L1256L1235L1345

L3456L1236L1356L1345

L1236L3456L1356L1345

L1236L1346L1456

L2346L2456L1256L1245L1234

L2346L1246L1456L1234

L2346L1246L1234L1456

Figure 4. From local pentagon equations to the hexagon equation.

Remark 5.4. According to our knowledge, without introduction of an auxiliary structure as
discussed in [13], the hexagon equation (5.8), and correspondingly all higher even polygon
equations, cannot be rewritten without the explicit appearance of transpositions. This is in
contrast to the case of the pentagon equation (see (5.5)) and higher odd polygon equations.

Expressing T in terms of two ternary operations,

T (a, b, c) = (⟨a, b, c⟩, [a, b, c]), (5.9)

the hexagon equation, acting on (a, b, c, d, e, f) ∈ U6, is equivalent to the following conditions,

⟨⟨a, b, d⟩, ⟨[a, b, d], c, e⟩, f⟩ = ⟨b, c, ⟨d, e, f⟩⟩,
[⟨a, b, d⟩, ⟨[a, b, d], c, e⟩, f ] = ⟨a, [b, c, ⟨d, e, f⟩], [d, e, f ]⟩,
[[a, b, d], c, e] = [a, [b, c, ⟨d, e, f⟩], [d, e, f ]]. (5.10)

5.5 Heptagon equation

Let maps

Lijklm : Uijkl × Uijlm × Ujklm → Uiklm × Uijkm,

where 1 ≤ i < j < k < l < m ≤ 7, be subject to local hexagon equations

Liklmn(uiklmn)Lijkmn(uijkmn)Lijklm(uijklm)

= Lijkln(vijkln)Lijlmn(vijlmn)Ljklmn(vjklmn),
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where 1 ≤ i < j < k < l < m < n ≤ 7. If these equations uniquely determine maps

Tijklmn : Uijklm × Uijkmn × Uiklmn → Ujklmn × Uijlmn × Uijkln

via (uijklm, uijkmn, uiklmn) 7→ (vjklmn, vijlmn, vijkln), elaborating

L14567L13467L12367L13456L12356L12345 = L2̂3L2̂5L4̂5L2̂7L4̂7L6̂7

in two different ways, using local hexagon equations, we find that the maps Tijklmn have to
satisfy the heptagon equation, which is

T1̂T3̂T5̂T7̂ = T6̂T4̂T2̂,

in complementary index notation.
Introducing position indices and transposition maps, we can express it as

T1̂,1T3̂,3P5P2T5̂,3T7̂,1P3 = P3T6̂,4P3P2P1T4̂,3P2P3T2̂,4.

Both sides act on U12345×U12356×U12367×U13456×U13467×U14567 and map to U34567×U23567×
U23457 × U12567 × U12457 × U12347 (which can be read off from [13, Figure 18]).

If all basic sets are equal and there is only a single map T , all the information we need is in
the position indices, so that the combinatorial indices can be dropped,

T1T3P5P2T3T1P3 = P3T4P3P2P1T3P2P3T4.

Expressing T in terms of three ternary operations,8

T (a, b, c) = ({a, b, c}, ⟨a, b, c⟩, [a, b, c]), (5.11)

the heptagon equation, evaluated on (a, b, c, d, e, f)∈U6, is equivalent to (5.10), supplemented by

{{a, b, d}, {[a, b, d], c, e}, {⟨a, b, d⟩, ⟨[a, b, d], c, e⟩, f}} = {d, e, f},
⟨{a, b, d}, {[a, b, d], c, e}, {⟨a, b, d⟩, ⟨[a, b, d], c, e⟩, f}⟩ = {b, c, ⟨d, e, f⟩},
[{a, b, d}, {[a, b, d], c, e}, {⟨a, b, d⟩, ⟨[a, b, d], c, e⟩, f}] = {a, [b, c, ⟨d, e, f⟩], [d, e, f ]}. (5.12)

5.6 Octagon equation

We consider maps

Tijklmpq : Uijklmp × Uijklpq × Uijlmpq × Ujklmpq → Uiklmpq × Uijkmpq × Uijklmp,

where i < j < k < l < m < p < q. The octagon equation is

T2̂T4̂T6̂T8̂ = T7̂T5̂T3̂T1̂.

It arises as the consistency condition of a system of local heptagon equations.
Using position indices and transposition maps, it can be written as

T2̂,1P4P5P6T4̂,3P6P5P2T6̂,3P6T8̂,1P4P5P6P3
= P3T7̂,4P3P2P1T5̂,3P6P2P3T3̂,4T1̂,7.

The two sides act on U7̂8 × U5̂8 × U5̂6 × U3̂8 × U3̂6 × U3̂4 × U1̂8 × U1̂6 × U1̂4 × U1̂2 and map to
U2̂3 × U2̂5 × U2̂7 × U4̂5 × U4̂7 × U6̂7, which can be read off from [13, Figure 19].

8It should be clear from the context when { , , } denotes a ternary operation and not a set.
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If all basic sets are equal and we are dealing with a single map T , this reduces to

T1P4P5P6T3P6P5P2T3P6T1P4P5P6P3 = P3T4P3P2P1T3P6P2P3T4T7.

Writing

T (a, b, c, d) = ({a, b, c, d}, ⟨a, b, c, d⟩, [a, b, c, d]),

with three quaternary operations U4→U , the octagon equation, acting on (a, b, c, d, e, f, g, h, k, l)
results in the following six conditions,

{{a, b, d, g}, {[a, b, d, g], c, e, h}, {⟨a, b, d, g⟩, ⟨[a, b, d, g], c, e, h⟩, f, k}, l}
= {d, e, f, {g, h, k, l}},

⟨{a, b, d, g}, {[a, b, d, g], c, e, h}, {⟨a, b, d, g⟩, ⟨[a, b, d, g], c, e, h⟩, f, k}, l⟩
= {b, c, ⟨d, e, f, {g, h, k, l}⟩, ⟨g, h, k, l⟩},

[{a, b, d, g}, {[a, b, d, g], c, e, h}, {⟨a, b, d, g⟩, ⟨[a, b, d, g], c, e, h⟩, f, k}, l]
= {a, [b, c, ⟨d, e, f, {g, h, k, l}⟩, ⟨g, h, k, l⟩], [d, e, f, {g, h, k, l}], [g, h, k, l]},

⟨⟨a, b, d, g⟩, ⟨[a, b, d, g], c, e, h⟩, f, k⟩ = ⟨b, c, ⟨d, e, f, {g, h, k, l}⟩, [g, h, k, l]⟩,
[⟨a, b, d, g⟩, ⟨[a, b, d, g], c, e, h⟩, f, k]

= ⟨a, [b, c, ⟨d, e, f, {g, h, k, l}⟩, ⟨g, h, k, l⟩], [d, e, f, {g, h, k, l}], [g, h, k, l]⟩,
[a, [b, c, ⟨d, e, f, {g, h, k, l}⟩, ⟨g, h, k, l⟩], [d, e, f, {g, h, k, l}], [g, h, k, l]]

= [[a, b, d, g], c, e, h], (5.13)

for all a, b, c, d, e, f, g, h, k, l ∈ U .

6 Examples of dual polygon equations

In this section, we elaborate dual polygon equations up to the dual 8-gon equation.

6.1 Dual trigon equation

This is the equation

T12T23 = T13

for maps T̃ij : Uj → Ui, i < j.

6.2 Dual tetragon equation

For i, j = 1, 2, 3, 4, i < j, let Lij : Ui → Uj carry a parameter from a set Uij . Let each of the
local trigon equations

Lik(uik) = Ljk(vjk)Lij(vij), i < j < k,

uniquely determine a map

T̃ijk : Uik −→ Uij × Ujk, uik 7→ (vij , vjk).

Then the maps T̃ijk have to satisfy a consistency condition, which is obtained by reversing the
arrows in Figure 1. This means that the maps T̃ijk have to satisfy the dual tetragon equation,

T̃123,2T̃134 = T̃234,1T̃124, (6.1)

which acts on U14.
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If all basic sets are equal and there is only a single map T̃ , (6.1) reduces to

T̃2T̃ = T̃1T̃ . (6.2)

Writing T̃ = (T̃1, T̃2), this amounts to idempotency and commutativity of the maps T̃i : U → U ,
i = 1, 2.

Remark 6.1. In a framework of vector spaces, with the Cartesian product replaced by the
corresponding tensor product, and linear maps, (6.2) means that T̃ is coassociative.

6.3 Dual pentagon equation

Using complementary index notation, the dual pentagon equation is

T̃5̂T̃3̂T̃1̂ = T̃2̂T̃4̂,

for maps

T̃ijkl : Uijl × Ujkl → Uikl × Uijk, 1 ≤ i < j < k < l ≤ 5.

Letting it act on U125 × U235 × U345, this equation takes the form

T̃5̂,2T̃3̂,1T̃1̂,2 = T̃2̂,1P2T̃4̂,1.

If all the basic sets are the same and there is only a single map T̃ , this is simply

T̃2T̃1T̃2 = T̃1P2T̃1.

Writing T̃ (a, b) =: (a · b, a ∗ b), the last equation is equivalent to

a · (b · c) = (a · b) · c, (a ∗ (b · c)) · (b ∗ c) = (a · b) ∗ c,
(a ∗ (b · c)) ∗ (b ∗ c) = a ∗ b, (6.3)

for all a, b, c ∈ U .

6.4 Dual hexagon equation

This is the equation

T̃6̂T̃4̂T̃2̂ = T̃1̂T̃3̂T̃5̂

for maps

T̃ijklm : Uijkm × Uiklm → Ujklm × Uijlm × Uijkl, 1 ≤ i < j < k < l < m ≤ 6.

Introducing position indices and transposition maps, it takes the form

T̃6̂,1T̃4̂,2P3T̃2̂,1 = P3T̃1̂,4T̃3̂,2P1T̃5̂,2.

If all the basic sets are the same and there is only a single map T̃ , this is

T̃1T̃2P3T̃1 = P3T̃4T̃2P1T̃2, (6.4)

which already appeared as a 4-cocycle condition in [58]. Writing

T̃ (a, b) =: (a ∗ b, a · b, a ⋄ b),

(6.4) imposes (5.4) on the first two binary operations, and requires in addition

(a ⋄ (b · c)) ∗ (b ⋄ c) = (a ∗ b) ⋄ ((a · b) ∗ c), (a ⋄ (b · c)) · (b ⋄ c) = (a · b) ⋄ c,
(a ⋄ (b · c)) ⋄ (b ⋄ c) = a ⋄ b, (6.5)

for all a, b, c ∈ U .
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Remark 6.2. In [29] (see (3.8) therein), the dual hexagon equation appeared, as a realization
of a Pachner move of type (3,3) in four dimensions, in the form

(QP)1Q2P1Q2 = P3(QP)4Q2P3Q1.

Indeed, setting Q = T̃P, this reads

T̃1T̃2P2P1T̃2P2 = P3T̃4T̃2P2P3T̃1P1.

Writing it as

T̃1T̃2P3(P3P2P1)T̃2P2 = P3T̃4T̃2P1(P1P2P3)T̃1P1,

and using the identities P3P2P1T̃2 = T̃1P2P1, P1P2P3T̃1 = T̃2P1P2, we obtain

T̃1T̃2P3T̃1P2P1P2 = P3T̃4T̃2P1T̃2P1P2P1,

which, by use of the braid equation P2P1P2 = P1P2P1, is equivalent to (6.4).

6.5 Dual heptagon equation

The dual heptagon equation is

P3T̃7̂,4T̃5̂,2P4P1T̃3̂,2T̃1̂,4 = T̃2̂,1P3P4T̃4̂,2P5P4P3T̃6̂,1P3, (6.6)

with maps T̃ijklmp : Uijklp × Uijlmp × Ujklmp → Uiklmp × Uijkmp × Uijklm, i < j < k < l <
m < p. Both sides act on U12347 × U12457 × U12567 × U23457 × U23567 × U34567 and map to
U14567 × U13467 × U13456 × U12367 × U12356 × U12345.

If all basic sets are the same and there is only a single map T̃ , writing

T̃ (a, b, c) = ({a, b, c}, ⟨a, b, c⟩, [a, b, c]),

(6.6) is equivalent to the following conditions for the three ternary operations,

{b, c, {d, e, f}} = {{a, b, d}, {⟨a, b, d⟩, c, e}, f},
{a, ⟨b, c, {d, e, f}⟩, ⟨d, e, f⟩} = ⟨{a, b, d}, {⟨a, b, d⟩, c, e}, f⟩,
⟨a, ⟨b, c, {d, e, f}⟩, ⟨d, e, f⟩⟩ = ⟨⟨a, b, d⟩, c, e⟩,
{[a, ⟨b, c, {d, e, f}⟩, ⟨d, e, f⟩], [b, c, {d, e, f}], [d, e, f ]} = [{a, b, d}, {⟨a, b, d⟩, c, e}, f ],
⟨[a, ⟨b, c, {d, e, f}⟩, ⟨d, e, f⟩], [b, c, {d, e, f}], [d, e, f ]⟩ = [⟨a, b, d⟩, c, e],
[[a, ⟨b, c, {d, e, f}⟩, ⟨d, e, f⟩], [b, c, {d, e, f}], [d, e, f ]] = [a, b, d], (6.7)

for all a, b, c, d, e, f ∈ U .

6.6 Dual octagon equation

The dual octagon equation is

P4P7P5P6T̃8̂,7P3T̃6̂,4P6P3P2T̃4̂,3P1P2P3T̃2̂,4 = T̃1̂,1T̃3̂,3P5P6P2T̃5̂,3P6P5P4T̃7̂,1P3,

for maps T̃ijklmpq : Uijklmp × Uijkmpq × Uiklmpq → Ujklmpq × Uijlmpq × Uijklpq × Uijklmp, where
i < j < k < l < m < p < q. Both sides of the equation act on U6̂7×U4̂7×U4̂5×U2̂7×U2̂5×U2̂3.

If all basic sets are the same and there is only a single map T̃ , writing

T̃ (a, b, c) = ({a, b, c}, ⟨a, b, c⟩, [a, b, c], |a, b, c|),
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with four ternary operations U3 → U , the dual octagon equation, acting on (a, b, c, d, e, f) results
in (5.10), (5.12), and the following conditions,

{|a, [b, c, ⟨d, e, f⟩], [d, e, f ]|, |b, c, ⟨d, e, f⟩|, |d, e, f |}
= |{a, b, d}, {[a, b, d], c, e}, {⟨a, b, d⟩, ⟨[a, b, d], c, e}⟩, f |,

⟨|a, [b, c, ⟨d, e, f⟩], [d, e, f ]|, |b, c, ⟨d, e, f⟩|, |d, e, f |⟩ = |⟨a, b, d⟩, ⟨[a, b.d], c, e, ⟩, f |,
[|a, [b, c, ⟨d, e, f⟩], [d, e, f ]|, |b, c, ⟨d, e, f⟩|, |d, e, f |] = |[a, b, d], c, e|,
||a, [b, c, ⟨d, e, f⟩], [d, e, f ]|, |b, c, ⟨d, e, f⟩|, |d, e, f || = |a, b, d|. (6.8)

7 Relations between solutions of neighboring polygon equations

By a (dual) polygon map we mean a solution of a (dual) polygon equation. In this section,
the case when all the basic sets appearing in a multiple Cartesian product, on which a (dual)
polygon map acts, are the same set U is considered.

First, we formulate a few special cases of theorems in Section 4. Though they are rather
corollaries, because of their relevance they also deserve to be called theorems. Let N ∈ N,
N > 2.

Theorem 7.1. Let T̃ (N+1) be a dual (N +1)-gon map and T that map with the last component
of its codomain cut off. Then T is an N -gon map.

Theorem 7.2. For even N , let T (N+1) be an (N + 1)-gon map and T that map with the first
component of its codomain cut off. Then T is an N -gon map.

Theorem 7.3. For odd N , let T̃ (N+1) be a dual (N +1)-gon map and T̃ that map with the first
component of its codomain cut off. Then T̃ is a dual N -gon map.

Further theorems derived from those in Section 4 will be formulated in the following subsec-
tions, where we also provide examples for these results and derive more powerful results for the
(dual) polygon equations up to the (dual) octagon equation.

7.1 Degenerate dual (N + 1)-gon maps from (dual) N -gon maps

For any (not necessarily trigon or dual trigon) map T : U → U , T (4)(a, b) := T (a) and also
T (4)(a, b) := T (b) are (degenerate) tetragon maps. Furthermore, we have the following.

Proposition 7.4. Let T̃ (4) be a dual tetragon map. Then T (5)(a, b) := T̃ (4)(b) is a pentagon
map and T̃ (5)(a, b) := T̃ (4)(a) is a dual pentagon map.

Proof. This is quickly verified. ■

Proposition 7.5. Let T (5) be a pentagon map. Then T (6)(a, b, c) := T (5)(a, b) is a hexagon
map.

Proof. If ⟨a, b, c⟩ = a ∗ b and [a, b, c] = a · b, (5.10) becomes (5.4). ■

Proposition 7.6. Let T̃ (5) be a dual pentagon map. Then T (6)(a, b, c) := T̃ (5)(b, c) is a hexagon
map.

Proof. If ⟨a, b, c⟩ = b · c and [a, b, c] = b ∗ c, then (5.10) becomes (6.3). ■

Proposition 7.7. Let T̃ (6) be a dual hexagon map. Then T (7)(a, b, c) := T̃ (6)(b, c) is a heptagon
map.
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Proof. Writing T (7)(a, b, c) = (b ∗ c, b · c, b ⋄ c), the first two of equations (5.12) become the first
two of (5.4). The last two of (5.10) become the last two of (6.5). The first of equations (5.10)
becomes the third of (5.4), the third of (5.12) the first of (6.5). ■

Proposition 7.8. Let T̃ (6) be a dual hexagon map. Then T̃ (7)(a, b, c) := T̃ (6)(a, b) is a dual
heptagon map.

Proof. Writing T̃ (7)(a, b, c) = (a ∗ b, a · b, a ⋄ b), (6.7) becomes (5.4) and (6.5). ■

Proposition 7.9. Let T (7) be a heptagon map. Then T (8)(a, b, c, d) := T (7)(a, b, c) is an octagon
map.

Proof. If T does not depend on the last argument, setting

{a, b, c, d} =: {a, b, c}, ⟨a, b, c, d⟩ =: ⟨a, b, c⟩, [a, b, c, d] =: [a, b, c],

the first three of conditions (5.13) reduce to (5.12) and the last three to (5.10). The resulting
six conditions are those for T (7) to be a heptagon map. ■

These results suggest that, more generally, the following statements hold, which determine
extensions of each solution of an odd N -gon equation, or each solution of a dual N -gon equation,
to a degenerate solution of a (dual) (N + 1)-gon equation. Indeed, these general results follow
from theorems in Section 4.

Theorem 7.10. For n ∈ N, n > 1, let T (2n−1) be a (2n− 1)-gon map. Then

T (2n)(a1, . . . , an) := T (2n−1)(a1, . . . , an−1)

is a 2n-gon map.

Proof. This a special case of Theorem 4.1 (2). See the proof there. ■

Theorem 7.11. For n ∈ N, n > 1, let T̃ (2n−1) be a dual (2n− 1)-gon map. Then

T (2n)(a1, . . . , an) := T̃ (2n−1)(a2, . . . , an)

is a 2n-gon map.

Proof. This a special case of Theorem 4.7 (2). ■

Theorem 7.12. For n ∈ N, n > 1, let T̃ (2n) be a dual 2n-gon map. Then

T (2n+1)(a1, . . . , an) := T̃ (2n)(a2, . . . , an)

is a (2n+ 1)-gon map.

Proof. This a special case of Theorem 4.7 (2). ■

Theorem 7.13. For n ∈ N, n > 1, let T̃ (2n) be a dual 2n-gon map. Then

T̃ (2n+1)(a1, . . . , an) := T̃ (2n)(a1, . . . , an−1)

is a dual (2n+ 1)-gon map.

Proof. This a special case of Theorem 4.5 (2). ■
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7.2 Further relations between neighboring polygon maps

Proposition 7.14. Let T
(3)
i , i = 1, 2, be trigon maps. Then

T̃ (4)(a) =
(
T
(3)
1 (a), T

(3)
2 (a)

)
is a dual tetragon map if and only if the two trigon maps commute.

Proof. This is easily verified. Also see Section 6.2. ■

Proposition 7.15. For a map T (5) : U × U → U × U , let us write

T (5)(a, b) =:
(
a ∗ b, T (4)(a, b)

)
,

with a binary operation ∗ and a map T (4) : U ×U → U . The following conditions are equivalent:

(1) T (5) is a pentagon map.

(2) T (4) is a tetragon map and, with a · b := T (4)(a, b), the binary operations · and ∗ satisfy

(a ∗ b) ∗ ((a · b) ∗ c) = b ∗ c, (a ∗ b) · ((a · b) ∗ c) = a ∗ (b · c),

for all a, b, c ∈ U .

Proof. (5.4) shows that the conditions for T (5) to be a pentagon map are equivalent to T (4)

being a tetragon map (which means associativity of ·) and the two compatibility conditions for
the two binary operations. ■

Corollary 7.16. Let T (4) be a tetragon map. Then

T (5)(a, b) =
(
b, T (4)(a, b)

)
is a pentagon map.

Proof. Setting a∗b = b solves the two compatibility equations in condition (2) of the preceding
proposition. ■

Corollary 7.17. Let T (4) be a tetragon map and u a fixed element of U . Then

T (5)(a, b) =
(
u, T (4)(a, b)

)
is a pentagon map if and only if T (4)(u, u) = u.

Proof. Setting a ∗ b = u for all a, b ∈ U , solves the first of the two compatibility equations in
condition (2) of the preceding proposition and reduces the second to u · u = u. ■

Proposition 7.18. Let T (4) be a tetragon map.

(1) The map

T̃ (5)(a, b) =
(
T (4)(a, b), a

)
is a dual pentagon map.

(2) If u is a fixed element of U , then

T̃ (5)(a, b) =
(
T (4)(a, b), u

)
is a dual pentagon map if and only if T (4)(u, u) = u.
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Proof. This is easily verified. ■

Proposition 7.19. For a map T̃ (6) : U × U → U × U × U , let us write

T̃ (6)(a, b) =:
(
T (5)(a, b), a ⋄ b

)
,

with a map T (5) : U × U → U × U and a binary operation ⋄. The following conditions are
equivalent:

(1) T̃ (6) is a dual hexagon map.

(2) T (5) is a pentagon map and, expressed as in (5.3) (so that (5.4) holds), it satisfies (6.5).

Proof. This is easily verified. ■

Example 7.20. Let · be commutative and a ⋄ b := b ∗ a. Then, as a consequence of (5.4), the
additional dual hexagon map conditions (6.5) are reduced to the single condition

((a · b) ∗ c) ∗ (a ∗ b) = ((b · c) ∗ a) ∗ (c ∗ b).

This holds, for example, if U = (0, 1) ⊂ R and a ∗ b := (1 − a)b/(1 − ab). Hence, using the
pentagon map (5.7), the map

(a, b) 7−→
(
(1− a)b

1− ab
, ab,

a(1− b)

1− ab

)
solves the dual hexagon equation, also see [29]. This map actually shows up in an identity for
the Rogers dilogarithm function L(a) [52]. S(a) = eλL(a), with an arbitrary constant λ ̸= 0,
satisfies the pentagon relation9

S(b)S(a) = S

(
a(1− b)

1− ab

)
S(ab)S

(
(1− a)b

1− ab

)
.

Kashaev called a solution T̂ : I → End(U⊗U), where I is the open unit interval (0, 1) ⊂ R and U
a vector space, a matrix or operator dilogarithm if it satisfies the local pentagon equation [26, 27]

T̂23(a)T̂12(b) = T̂12

(
a(1− b)

1− ab

)
T̂13(ab)T̂23

(
(1− a)b

1− ab

)
.

Corollary 7.21. If T (5) is a pentagon map, then

T̃ (6)(a, b) :=
(
T (5)(a, b), a

)
is a dual hexagon map.

Proof. Setting a ⋄ b := a solves the three equations (6.5). ■

Corollary 7.22. Let T (5) be a pentagon map and u ∈ U a fixed element. Then

T̃ (6)(a, b) :=
(
T (5)(a, b), u

)
is a dual hexagon map if and only if T (5)(u, u) = (u, u).

Proof. Setting a ⋄ b := u reduces the three equations (6.5) to u ∗ u = u and u · u = u. ■
9If we order the parameters as (a0, . . . , a4) := (a, 1− ab, b, (1− b)/(1− ab), (1− a)/(1− ab)), they are given by

the recursion relation an−1an+1 = 1− an (a special Y -system), which has Z5 symmetry an+5 = an [18, 20, 66].



24 Folkert Müller-Hoissen

Proposition 7.23. Let T̃ (5) be a dual pentagon map.

(1) The map

T̃ (6)(a, b) =
(
b, T̃ (5)(a, b)

)
is a dual hexagon map.

(2) If u is a fixed element of U , then

T̃ (6)(a, b) =
(
u, T̃ (5)(a, b)

)
is a dual hexagon map if and only if T̃ (5)(u, u) = (u, u).

Proof. This is also easily verified using results of Section 6. ■

Proposition 7.24. For a map T (7) : U × U × U → U × U × U , let us write

T (7)(a, b, c) =: ({a, b, c}, T (6)(a, b, c)),

with a ternary operation { , , } and a map T (6) : U × U × U → U × U . The following conditions
are equivalent:

(1) T (7) is a heptagon map.

(2) T (6) is a hexagon map and, expressed as in (5.9) (so that (5.10) holds), it satisfies the
compatibility conditions (5.12) with the above ternary operation.

Proof. This is an immediate consequence of the last part of Section 5.5. ■

Corollary 7.25. If T (6) is a hexagon map, then

T (7)(a, b, c) :=
(
c, T (6)(a, b, c)

)
is a heptagon map.

Proof. Using {a, b, c} = c in (5.12) results in identities. ■

Corollary 7.26. Let T (6) be a hexagon map and u ∈ U a fixed element. Then

T (7)(a, b, c) :=
(
u, T (6)(a, b, c)

)
is a heptagon map if and only if T (6)(u, u, u) = (u, u).

Proof. Using {a, b, c} = u in (5.12) results in ⟨u, u, u⟩ = u = [u, u, u]. ■

Proposition 7.27. Let T (6) be a hexagon map.

(1) The map

T̃ (7)(a, b, c) =
(
T (6)(a, b, c), a

)
is a dual heptagon map.

(2) If u is a fixed element of U , then

T̃ (7)(a, b, c) =
(
T (6)(a, b, c), u

)
is a dual heptagon map if and only if T (6)(u, u, u) = (u, u).



On the Structure of Set-Theoretic Polygon Equations 25

Proof. (1) Setting [a, b, c] = a, the last three equations of (6.7) become identities and the first
three are equivalent to (5.10) by a renaming of the ternary operations.

(2) With [a, b, c] = u, the last three of equations (6.7) become T (6)(u, u, u) = (u, u). ■

Proposition 7.28. For a map T̃ (8) : U × U × U → U × U × U × U , let us write

T̃ (8)(a, b, c) =:
(
T (7)(a, b, c), |a, b, c|

)
,

with a map T (7) : U×U×U → U×U×U and a ternary operation | , , |. The following conditions
are equivalent:

(1) T̃ (8) is a dual hexagon map.

(2) T (7) is a heptagon map and, expressed as in (5.11), it satisfies (6.8).

Proof. This immediately follows from results in Section 6.6. ■

Corollary 7.29. If T (7) is a heptagon map, then

T̃ (8)(a, b, c) :=
(
T (7)(a, b, c), a

)
is a dual octagon map.

Proof. Setting |a, b, c| = a turns the four equations (6.8) into identities. ■

Corollary 7.30. Let T (7) be a heptagon map and u ∈ U a fixed element. Then

T̃ (8)(a, b, c) :=
(
T (7)(a, b, c), u

)
is a dual octagon map if and only if T (7)(u, u, u) = (u, u, u).

Proof. Setting |a, b, c| = u turns the four equations (6.8) into {u, u, u} = u, ⟨u, u, u⟩ = u
and [u, u, u] = u. ■

Proposition 7.31. Let T̃ (7) be a dual heptagon map.

(1) The map

T̃ (8)(a, b, c) =
(
c, T̃ (7)(a, b, c)

)
is a dual octagon map.

(2) If u is a fixed element of U , then

T̃ (8)(a, b, c) =
(
u, T̃ (7)(a, b, c)

)
is a dual octagon map if and only if T̃ (7)(u, u, u) = (u, u, u).

Proof. This can be verified using results of Section 6. ■

Preceding results suggest the following conjectures.

Conjecture 7.32. Let T (2n) be a 2n-gon map, n ∈ N, n ≥ 2. Then

T (2n+1)(a1, . . . , an) :=
(
an, T

(2n)(a1, . . . , an)
)

is a (2n+ 1)-gon map.
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Conjecture 7.33. Let T (2n) be a 2n-gon map, n ∈ N, and u ∈ U a fixed element. Then

T (2n+1)(a1, . . . , an) :=
(
u, T (2n)(a1, . . . , an)

)
is a (2n+ 1)-gon map if and only if T (2n)(u, . . . , u) = (u, . . . , u).

Conjecture 7.34. Let T (2n+1) be a (2n+ 1)-gon map, n ∈ N. Then

T̃ (2n+2)(a1, . . . , an) :=
(
T (2n+1)(a1, . . . , an), a1

)
is a dual (2n+ 2)-gon map.

Conjecture 7.35. Let T (2n+1) be a (2n+1)-gon map, n ∈ N, and u ∈ U a fixed element. Then

T̃ (2n+2)(a1, . . . , an) :=
(
T (2n+1)(a1, . . . , an), u

)
is a dual (2n+ 2)-gon map if and only if T (2n+1)(u, . . . , u) = (u, . . . , u).

Conjecture 7.36. Let T̃ (2n+1) be a dual (2n+ 1)-gon map, n ∈ N. Then

T̃ (2n+2)(a1, . . . , an) :=
(
an, T̃

(2n+1)(a1, . . . , an)
)

is a dual (2n+ 2)-gon map.

Conjecture 7.37. Let T̃ (2n+1) be a dual (2n+ 1)-gon map, n ∈ N, and u ∈ U a fixed element.
Then

T̃ (2n+2)(a1, . . . , an) :=
(
u, T̃ (2n+1)(a1, . . . , an)

)
is a dual (2n+ 2)-gon map if and only if T̃ (2n+1)(u, . . . , u) = (u, . . . , u).

8 Conclusions

The main results of this work concern the structure of solutions of polygon equations. More
precisely, we have shown that a solution of a (dual) N -gon equation is related in very simple
ways to solutions of the (dual) (N + 1)-gon and (dual) (N − 1)-gon equation. Each solution of
a (dual) polygon equation extends to solutions of the higher equations.

For a chosen polygon equation, the most important case is when all basic sets are equal and
there is only a single polygon map. Expressing polygon equations with the help of transposition
maps, we can quite easily verify the above mentioned features for the simplest equations of the
family. But for general proofs, we had to return to the underlying framework of higher Tamari
orders, as developed in [13].

Our results reveal a beautiful structure of the family of polygon equations. Other nice
aspects are the integrability feature [13], recalled in some examples in Section 5, and relations
with polyhedra [13].

In this work, we concentrated on the set-theoretic setting. Many results directly pass over
to the framework of vector spaces, tensor products, and linear maps, where the dual tetragon
equation becomes the coassociativity condition and the pentagon equation plays one of its most
important roles, as mentioned in the introduction. A further exploration of polygon equations,
beyond the pentagon equation, in this framework, will be left for a separate work.

Also, concerning set-theoretic solutions, we have only set the stage. It is to be expected that
more concrete solutions can be obtained by applying methods that have already been exploited
in the case of the pentagon equation. Whereas the (dual) pentagon and dual hexagon equation
can be expressed in terms of binary operations, the hexagon and higher polygon equations
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involve n-ary operations with n > 2. There is a vast literature about such generalizations of
products, and this should be helpful in finding solutions of N -gon equations with N > 5. In
particular, there are corresponding generalizations of co-, bi- and Hopf algebras, for which higher
polygon equations may play a role. Also see [58] (“cocycloids”).

The question pops up whether there are higher order counterparts of the important relation
between solutions of the pentagon equation and bi- or Hopf algebras, mentioned in the introduc-
tion. Since the transposition P solves the pentagon equation and also its dual, Corollaries 7.22
and 7.23 show that P ⊗ u and u⊗ P, where u is a fixed element, are both dual hexagon maps.
If U is an algebra A, choosing u = 1A, these are algebra homomorphisms. They can be regarded
as counterparts of the trivial comultiplications ∆ℓ and ∆r mentioned in the introduction. It
should be obvious how this extends to higher dual polygon equations, since a special solution of
the odd N -gon equation is a combination of P’s that achieves a total inversion. For example,
since Pinv := P1P2P1 solves the heptagon equation and its dual, it follows that Pinv ⊗ 1A, as
well as 1A⊗Pinv, solve the dual octagon equation. A similarity transformation, analogous to the
construction of non-trivial comultiplications from a trivial one, as mentioned in the introduction,
leads to a new algebra homomorphism. But under what conditions does it satisfy the respective
(dual) even polygon equation?

As already mentioned in the introduction, solutions of simplex equations can be obtained from
solutions of a polygon equation and its dual [13, 31, 32, 41, 53]. But an additional compatibility
condition has to be solved, which needs further exploration. We plan to study this in a separate
work.

We have seen in Section 7.2 that a solution of the dual hexagon equation shows up in a pentag-
onal relation for the (exponentiated) Rogers dilogarithm. Also higher (dual) polygon equations
may play a role in this context [65]. Surely there is much more to be revealed.
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École Norm. Sup. (4) 26 (1993), 425–488.

[2] Baratin A., Freidel L., A 2-categorical state sum model, J. Math. Phys. 56 (2015), 011705, 18 pages,
arXiv:1409.3526.

[3] Barrett J.W., Crane L., An algebraic interpretation of the Wheeler–DeWitt equation, Classical Quantum
Gravity 14 (1997), 2113–2121, arXiv:gr-qc/9609030.

[4] Biedenharn L.C., Louck J.D., Angular momentum in quantum physics. Theory and application, Encycl.
Math. Appl., Vol. 8, Addison-Wesley Publishing Co., Reading, MA, 1981.

[5] Catino F., Mazzotta M., Miccoli M.M., Set-theoretical solutions of the pentagon equation on groups, Comm.
Algebra 48 (2020), 83–92, arXiv:1902.04310.

[6] Catino F., Mazzotta M., Stefanelli P., Set-theoretical solutions of the Yang–Baxter and pentagon equations
on semigroups, Semigroup Forum 101 (2020), 259–284, arXiv:1910.05393.

[7] Colazzo I., Jespers E., Kubat L., Set-theoretic solutions of the pentagon equation, Commun. Math. Phys.
380 (2020), 1003–1024, arXiv:2004.04028.

[8] Crane L., Frenkel I.B., Four-dimensional topological quantum field theory, Hopf categories, and the canonical
bases, J. Math. Phys. 35 (1994), 5136–5154, arXiv:hep-th/9405183,.

[9] Davydov A.A., Pentagon equation and matrix bialgebras, Comm. Algebra 29 (2001), 2627–2650,
arXiv:math.QA/0001095.

https://doi.org/10.24033/asens.1677
https://doi.org/10.24033/asens.1677
https://doi.org/10.1063/1.4906369
https://arxiv.org/abs/1409.3526
https://doi.org/10.1088/0264-9381/14/8/011
https://doi.org/10.1088/0264-9381/14/8/011
https://arxiv.org/abs/gr-qc/9609030
https://doi.org/10.1017/CBO9780511759888
https://doi.org/10.1080/00927872.2019.1632331
https://doi.org/10.1080/00927872.2019.1632331
https://arxiv.org/abs/1902.04310
https://doi.org/10.1007/s00233-020-10100-x
https://arxiv.org/abs/1910.05393
https://doi.org/10.1007/s00220-020-03862-6
https://arxiv.org/abs/2004.04028
https://doi.org/10.1063/1.530746
https://arxiv.org/abs/hep-th/9405183
https://doi.org/10.1081/AGB-100002412
https://arxiv.org/abs/math.QA/0001095


28 Folkert Müller-Hoissen

[10] Dimakis A., Korepanov I.G., Grassmannian-parameterized solutions to direct-sum polygon and simplex
equations, J. Math. Phys. 62 (2021), 051701, 17 pages, arXiv:2009.02352.

[11] Dimakis A., Müller-Hoissen F., KP line solitons and Tamari lattices, J. Phys. A 44 (2011), 025203, 49 pages,
arXiv:1009.1886.

[12] Dimakis A., Müller-Hoissen F., KP solitons, higher Bruhat and Tamari orders, in Associahedra, Tamari
Lattices and Related Structures, Progr. Math., Vol. 299, Birkhäuser, Basel, 2012, 391–423, arXiv:1110.3507.
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