Infinitesimal Modular Group: q-Deformed $\mathfrak{s l}_{2}$ and Witt Algebra

Alexander THOMAS
Universität Heidelberg, Berliner Str. 41-49, 69120 Heidelberg, Germany
E-mail: athomas@mathi.uni-heidelberg.de
URL: https://thomas-math.wixsite.com/maths/en

Received December 01, 2023, in final form June 03, 2024; Published online June 20, 2024
https://doi.org/10.3842/SIGMA.2024.053

Abstract

We describe new q-deformations of the 3-dimensional Heisenberg algebra, the simple Lie algebra $\mathfrak{s l}_{2}$ and the Witt algebra. They are constructed through a realization as differential operators. These operators are related to the modular group and q-deformed rational numbers defined by Morier-Genoud and Ovsienko and lead to q-deformed Möbius transformations acting on the hyperbolic plane.

Key words: quantum algebra; Lie algebra deformations; q-Virasoro; Burau representation
2020 Mathematics Subject Classification: 35A01; 65L10; 65L12; 65L20; 65L70

1 Introduction and results

The construction of q-deformed rational numbers by Morier-Genoud and Ovsienko [12] starts from the observation that rational numbers are generated by the image of zero under the action of the modular group $\mathrm{PSL}_{2}(\mathbb{Z})$. This group is generated by the translation $T(x)=x+1$ and the inversion $S(x)=-1 / x$. The only relations between these operations are $S^{2}=\mathrm{id}=(S T)^{3}$.

The q-deformed integers $[n]_{q}=1+q+q^{2}+\cdots+q^{n-1}=\frac{1-q^{n}}{1-q}$, where $q \in \mathbb{C}^{*}$, satisfy the relation $[n+1]_{q}=q[n]_{q}+1$. It is natural to introduce as q-analog to the translation T the transformation $T_{q}(x)=q x+1$. The map $S_{q}(x)=-1 /(q x)$ satisfies $S_{q}^{2}=\mathrm{id}=\left(S_{q} T_{q}\right)^{3}$. The q rational numbers are then defined by the image of zero under the action by T_{q} and S_{q} using for example the continued fraction representation of a rational number. Since these operations are Möbius transformations, we can represent them in matrix form as follows:

$$
T_{q}=\left(\begin{array}{ll}
q & 1 \\
0 & 1
\end{array}\right) \quad \text { and } \quad S_{q}=\left(\begin{array}{cc}
0 & -1 \\
q & 0
\end{array}\right) .
$$

This coincides with the reduced Burau representation of the braid group B_{3} with parameter $t=-q$ [4]. Indeed the standard generators of B_{3} are represented by $\sigma_{1}=T_{q}$ and $\sigma_{2}=$ $S_{q} T_{q} S_{q}=\left(\begin{array}{cc}1 & 0 \\ -q & q\end{array}\right)$. One easily checks the braid relation $\sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}$. The faithfulness of specializations of the Burau representation (where q is not a formal parameter, but a non-zero complex number) is an open question [3, Section 7]. It was studied for real values of q in [18]. In [14], a link to q-deformed rational numbers allows to partially solve the open question.

Using Taylor expansions of q-rational numbers, one can define q-real numbers [13] which are power series in q with integer coefficients. A natural question is how to do analysis with these q real numbers? Basic functions on real numbers are monomials and the exponential function, which are eigenfunctions of the vector fields associated to $\mathfrak{s l}_{2}(\mathbb{R})$ (acting on the completed line $\mathbb{R} \mathbb{P}^{1}$). The goal of our investigation is to q-deform these vector fields and to analyze their eigenfunctions.

Following a suggestion of Valentin Ovsienko, we can associate to T_{q} a differential operator $D_{-1}(q)$, which corresponds to the infinitesimal q-shift. For $q=1$, we have $D_{-1}(1)=\partial=\mathrm{d} / \mathrm{d} x$. This operator is given by

$$
D_{-1}:=(1+(q-1) x) \partial
$$

One can directly check that D_{-1} commutes with T_{q}, where T_{q} acts on the space of functions by precomposition. The starting point of the paper is the question whether there is a differential operator associated to S_{q}. This would allow to define in some sense a Lie algebra for the modular group $\mathrm{PSL}_{2}(\mathbb{Z})$, or an infinitesimal version of the Burau representation of B_{3}.

In the classical setting for $q=1$, there is an operator which anti-commutes with S :

$$
S \circ x \partial+x \partial \circ S=0
$$

where S acts on the space of functions by precomposition. We introduce the differential operator D_{0}, a q-deformed version of $x \partial$, given by

$$
D_{0}:=(1+(x-1) q) D_{-1}=(1+(x-1) q)(1+(q-1) x) \partial
$$

We will see that D_{0} anti-commutes with S_{q}. Together with $D_{1}:=S_{q} \circ D_{-1} \circ S_{q}$, a deformation of $x^{2} \partial$, we get three differential operators which are closed under the bracket (see Theorem 2.3):

Theorem 1.1. The operators D_{-1}, D_{0} and D_{1} form a Lie algebra with brackets

$$
\begin{aligned}
& {\left[D_{0}, D_{1}\right]=\left(q^{2}-q+1\right) D_{1}+(1-q) D_{0}, \quad\left[D_{0}, D_{-1}\right]=-\left(q^{2}-q+1\right) D_{-1}+(1-q) D_{0}} \\
& {\left[D_{-1}, D_{1}\right]=2 D_{0}+(1-q)\left(D_{1}-D_{-1}\right)}
\end{aligned}
$$

The theorem tells us that the module over $\mathbb{R}[q]$ generated by D_{-1}, D_{0} and D_{1} is a deformation of the Lie algebra $\mathfrak{s l}_{2}(\mathbb{R})$ which we recover for $q=1$. The Lie algebra $\mathfrak{s l}_{2}$ being simple, it does not allow for non-trivial deformations. Hence our deformation is isomorphic to $\mathfrak{s l}_{2}$ as a Lie algebra, but they are different as $\mathbb{Z}[q]$-modules. This is similar to quantum groups.

A fundamental role is played by the Möbius transformation

$$
g_{q}(x)=\frac{1+(x-1) q}{1+(q-1) x}
$$

which is a deformation of the identity. It is the eigenfunction of D_{0} with eigenvalue $q^{2}-q+1$ and normalization $g_{q}(0)=1-q$. We call it the q-rational transition map since it makes a passage between two different q-deformations of rational numbers studied in [2]. More precisely (see Theorem 2.7):

Theorem 1.2. The two q-deformations of rational numbers defined in [2, Definition 2.6] are linked via

$$
g_{q}\left(\left[\frac{r}{s}\right]_{q}^{\sharp}\right)=\left[\frac{r}{s}\right]_{q^{-1}}^{b} .
$$

This theorem comes from the interplay between g_{q}, T_{q} and S_{q} given by $g_{q} \circ T_{q}=T_{q^{-1}} \circ g_{q}$ and $g_{q} \circ S_{q}=S_{q^{-1}} \circ g_{q}$ (see Proposition 2.6). The q-rational transition map also satisfies a sort of duality between q and x :

$$
g_{q}(x) g_{x}(q)=1
$$

The map g_{q}, as well as its multiplicative inverse $g_{q}^{-1}=1 / g_{q}$, behave very well with the three operators D_{-1}, D_{0} and D_{1} (see Propositions 2.11 and 3.1):

Proposition 1.3. The q-rational transition map g_{q} and the differential operators D_{-1}, D_{0}, and D_{1} interact in the following way:

$$
\begin{align*}
& \text { (1) } D_{0}\left(g_{q}\right)=\left(q^{2}-q+1\right) g_{q}, D_{-1}\left(g_{q}\right)=q+(1-q) g_{q}, D_{1}\left(g_{q}\right)=(q-1) g_{q}+g_{q}^{2} \text {, } \tag{1}\\
& \text { (2) } g_{q} D_{0}=(1-q) D_{0}+\left(q^{2}-q+1\right) D_{1}, g_{q} D_{-1}=D_{0}+(1-q) D_{1}, \\
& \text { (3) } q g_{q}^{-1} D_{0}=(q-1) D_{0}+\left(q^{2}-q+1\right) D_{-1}, q g_{q}^{-1} D_{1}=D_{0}+(q-1) D_{-1} .
\end{align*}
$$

These relations allow a deformation of the Witt algebra, the complexification of the Lie algebra of polynomial vector fields on the circle. The Witt algebra is described by a vector space basis $\left(\ell_{n}\right)_{n \in \mathbb{Z}}$ with bracket given by

$$
\left[\ell_{n}, \ell_{m}\right]=(m-n) \ell_{n+m}
$$

This algebra can be realized as differential operators (or equivalently as vector fields) via $\ell_{n}=x^{n-1} \partial$. Putting for $n>1$:

$$
D_{n}=g_{q}^{n-1} D_{1} \quad \text { and } \quad D_{-n}=\left(q g_{q}^{-1}\right)^{n-1} D_{-1}
$$

we get a deformation of the Witt algebra (see Theorem 3.2):
Theorem 1.4. The $\left(D_{n}\right)_{n \in \mathbb{Z}}$ form a Lie algebra with bracket given by (where $n, r>0$):

$$
\begin{aligned}
& {\left[D_{0}, D_{n}\right]=n\left(q^{2}-q+1\right) D_{n}+\left(q^{2}-q+1\right) \sum_{k=1}^{n-1}(1-q)^{k} D_{n-k}+(1-q)^{n} D_{0}} \\
& {\left[D_{n}, D_{n+r}\right]=r D_{2 n+r}+(q-1) r D_{2 n+r-1},} \\
& {\left[D_{-n}, D_{n}\right]=2 n q^{n-1} D_{0}+(2 n-1) q^{n-1}(q-1)\left(D_{-1}-D_{1}\right),} \\
& {\left[D_{n+r}, D_{-n}\right]=(q-1) q^{n-1}(2 n+r-1) D_{r+1}-\left(q^{2}+(2 n+r-2) q+1\right) q^{n-1} D_{r},} \\
& \quad-q^{n-1}\left(q^{2}-q+1\right) \sum_{k=1}^{r-1}(1-q)^{k} D_{r-k}-(1-q)^{r} q^{n-1} D_{0} .
\end{aligned}
$$

The remaining brackets $\left[D_{0}, D_{-n}\right],\left[D_{-n}, D_{-n-r}\right]$ and $\left[D_{n}, D_{-n-r}\right]$ obey similar formulas.
Integrating the vector fields associated to D_{-1}, D_{0} and D_{1} on the hyperbolic plane, we get Möbius transformations. We speculate about a q-deformed hyperbolic plane on which these transformations naturally act. The boundary of this deformed hyperbolic plane should be the q-deformed real numbers. Other interesting open questions include the link between our q deformed $\mathfrak{s l}_{2}$ and the quantum group $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$, or the existence of a central extension of our deformed Witt algebra, which would give a deformed Virasoro algebra.

Deformations of rational numbers were introduced in [12], extended to real numbers in [13] and to Gaussian integers in [17]. Many different deformations of the Witt algebra or its central extension, the Virasoro algebra, have been introduced in the past: first in [6] and then in [5] deforming the matrix Lie bracket to $[A, B]_{q}=q A B-q^{-1} B A$. This also deforms the Jacobi identity. A similar construction was done in [9] viewing the Witt algebra as space of derivations of $\mathbb{C}\left[x^{ \pm 1}\right]$ and using the q-differential $\partial_{q}(f)=\frac{f(q x)-f(x)}{q x-x}$. This was generalized in [8] to more general σ-derivatives. Deforming the cocycle gives a q-Virasoro algebra in [10], developed into a theory of q-deformed pseudo-differential operators in [11]. A deformation as Lie algebra in terms of an operator product expansion is given in [19]. A similar proposal can be found in [7, equation (1.3)], using a q-deformed Miura transformation. In [15, equation (38)], the deformation

$$
\left[T_{m}(q), T_{n}(q)\right]=\left([-n]_{q}-[-m]_{q}\right)\left(T_{n+m}\left(q^{2}\right)-T_{n+m}(q)\right)
$$

is studied. Yet another proposal from [16, formula (3.18)] gives operators $D_{n}(q)$ for $n \in \mathbb{Z}$ with commutator $\left[D_{n}(q), D_{m}(q)\right]=\left(q-q^{-1}\right)[n-m]_{q} D_{n+m}\left(q^{2}\right)$ (removing the central extension). Finally, in [1], a two-dimensional deformation using elliptic algebras is studied. All these approaches are different from ours.

Structure of the paper. In Section 2, we introduce and study the deformation of $\mathfrak{s l}_{2}$, the Heisenberg algebra and the q-rational transition map. This is broadened in Section 3 to a deformed Witt algebra. In the final Section 4, we study the Möbius transformations associated to these deformations.

2 Deformed $\mathfrak{s l}_{2}$ and Heisenberg algebra

The group SL_{2} acts naturally on the projective line \mathbb{P}^{1}. We will work over \mathbb{R} or \mathbb{C}. Differentiating this action at the identity gives a realization of the Lie algebra $\mathfrak{s l}_{2}$ as vector fields on \mathbb{P}^{1}. Using the two standard charts of \mathbb{P}^{1} with transition function $x \mapsto 1 / x$, the image of $\mathfrak{s l}_{2} \rightarrow \operatorname{Vect}\left(\mathbb{P}^{1}\right)$ is generated by $\partial, x \partial$ and $x^{2} \partial$ written in the first chart, where we use the notation $\partial=\mathrm{d} / \mathrm{d} x$. One readily checks that these expressions are well-defined over the second chart.

We construct a deformation of these three differential operators. They come as a realization of a Lie algebra which itself deforms $\mathfrak{s l}_{2}$. Together with a q-deformed identity map, we deform the 3-dimensional Heisenberg algebra.

2.1 Deformed $\mathfrak{s l}_{2}$

On \mathbb{P}^{1}, consider the Möbius transformations

$$
T_{q}(x)=q x+1 \quad \text { and } \quad S_{q}(x)=-\frac{1}{q x}
$$

where $q \in \mathbb{C}^{*}$ is fixed or seen as a formal parameter. They deform the translation $x \mapsto x+1$ and the inversion $x \mapsto-1 / x$. These transformations act on the space of functions on \mathbb{P}^{1} by precomposition.

Consider the differential operator D_{-1} on \mathbb{P}^{1} which is defined in the first chart by

$$
D_{-1}:=(1+(q-1) x) \partial
$$

Proposition 2.1. The operators D_{-1} and T_{q} commute, where T_{q} acts on the space of functions by precomposition.

Proof. For a function $f(x)$, we have on the one side

$$
D_{-1} \circ T_{q}(f(x))=D_{-1}(f(q x+1))=(1+(q-1) x) q f^{\prime}(q x+1)
$$

On the other side,

$$
T_{q} \circ D_{-1}(f(x))=T_{q}\left((1+(q-1) x) f^{\prime}(x)\right)=(1+(q-1)(q x+1)) f^{\prime}(q x+1)
$$

Both expressions coincide.
The unique eigenfunction E_{q} of D_{-1} with eigenvalue 1 and normalization $E_{q}(0)=1$ is a q-deformation of the exponential function, called the Tsallis exponential [20]. This was first observed by Valentin Ovsienko and Emmanuel Pedon. ${ }^{1}$ To find E_{q}, one has to solve $f=D_{-1} f=(1+(q-1) x) f^{\prime}$, i.e., $(\ln f)^{\prime}=\frac{1}{1+(q-1) x}$. The solution is given by

$$
E_{q}(x)=(1+(q-1) x)^{\frac{1}{q-1}}
$$

[^0]It satisfies $E_{q}(q x+1)=E_{q}(1) E_{q}(x)$ since $E_{q}(q x+1)=T_{q} E_{q}$ is also an eigenfunction of D_{-1} with eigenvalue 1.

The main new operator we introduce is the following:

$$
D_{0}:=(1+(x-1) q) D_{-1}=(1+(x-1) q)(1+(q-1) x) \partial
$$

Proposition 2.2. The operators D_{0} and S_{q} anti-commute, where S_{q} acts on the space of functions by precomposition.

The proof is a direct verification, similar to the proof of Proposition 2.1. An equivalent statement is $S_{q} \circ D_{0} \circ S_{q}=-D_{0}$.

Proof. For a function $f(x)$, we have on the one side

$$
D_{0} \circ S_{q}(f(x))=D_{0} f\left(-\frac{1}{q x}\right)=(1+(x-1) q)(1+(q-1) x) f^{\prime}\left(-\frac{1}{q x}\right) \frac{1}{q x^{2}}
$$

On the other hand,

$$
\begin{aligned}
S_{q} \circ D_{0}(f(x)) & =S_{q}\left((1+(x-1) q)(1+(q-1) x) f^{\prime}(x)\right) \\
& =\left(1+q\left(-\frac{1}{q x}-1\right)\right)\left(1-\frac{1}{q x}(q-1)\right) f^{\prime}\left(-\frac{1}{q x}\right) \\
& =-\frac{1}{q x^{2}}(1+(x-1) q)(1+(q-1) x) f^{\prime}\left(-\frac{1}{q x}\right) .
\end{aligned}
$$

More generally, we can find all operators D of the form $p(x) \partial$ which anti-commute with S_{q}. The relation $\left\{D, S_{q}\right\}=0$ gives

$$
p(x)=-q x^{2} p\left(-\frac{1}{q x}\right)
$$

Adding as constraint that p has to be polynomial, it is clear that it is of degree at most 2 . Plugging in $p(x)=p_{0}+p_{1} x+p_{2} x^{2}$ gives a solution for any p_{1} and $p_{2}=-q p_{0}$. In other words, the two fundamental solutions are $p(x)=x$ and $p(x)=1-q x^{2}$. Note in particular that the undeformed operator $x \partial$ still anticommutes with S_{q}. The particular choice above for D_{0} is $p_{1}=-1+3 q-q^{2}$ and $p_{0}=1-q$. We will see below why this is the simplest choice.

Let us determine the eigenfunctions of D_{0} with eigenvalue α. One has to solve $\alpha f=D_{0} f$, i.e., $(\ln f)^{\prime}=\frac{\alpha}{(1+(q-1) x)(1+(x-1) q)}$. The solutions are

$$
\left(\frac{1+(x-1) q}{1+(q-1) x}\right)^{\frac{\alpha}{q^{2}-q+1}}
$$

We define the q-rational transition map

$$
\begin{equation*}
g_{q}(x)=\frac{1+(x-1) q}{1+(q-1) x} \tag{2.1}
\end{equation*}
$$

which is the unique eigenfunction of D_{0} with eigenvalue $q^{2}-q+1$ and normalization $g_{q}(0)=1-q$. We can think of g_{q} as a deformation of the identity map. We study this function more in detail below in Section 2.2.

Now we come back to the discussion why our D_{0} is the simplest choice. Consider an operator $D=p(x) \partial$ anti-commuting with S_{q}, i.e., of the form $p(x)=p_{0}+p_{1} x-q p_{0} x^{2}$ with arbitrary $p_{0}, p_{1} \in \mathbb{Z}[q]$. We impose that D deforms $x \partial$, that is $p_{0}(1)=0$ and $p_{1}(1)=1$. We also impose the leading terms of p_{0}, p_{1} to be ± 1. We wish that the eigenfunctions of D are

Möbius transformations in $\mathbb{Z}[q]$. This is only the case if the discriminant of $p_{0}+p_{1} x-q p_{0} x^{2}$ is a square in $\mathbb{Z}[q]$. This leads to the equation $p_{1}(q)^{2}+4 q p_{0}(q)^{2}=R(q)^{2}$ for some $R \in \mathbb{Z}[q]$. This is equivalent to $4 q p_{0}^{2}=\left(R-p_{1}\right)\left(R+p_{1}\right)$. Excluding the case where $p_{0}=0$ which leads to the undeformed operator $x \partial$, the next simplest case is $p_{0}(q)=1-q$. By treating all possible factorizations of $4 q(1-q)^{2}$, we see that the p_{1} with lowest degree has to be $p_{1}(q)=-1+3 q-q^{2}$ which is the case for our choice D_{0}.

We complete the operators D_{-1} and D_{0} to a deformed $\mathfrak{s l}_{2}$. For that, we wish to deform $x^{2} \partial$. Note that $x^{2} \partial=S \circ \partial \circ S$. This motivates the following definition:

$$
D_{1}:=S_{q} \circ D_{-1} \circ S_{q}=(1+(x-1) q) x \partial .
$$

By definition, D_{1} commutes with $S_{q} T_{q} S_{q}$.
Our first result is that these three operators give a Lie algebra deforming $\mathfrak{s l}_{2}$:
Theorem 2.3. The operators D_{-1}, D_{0} and D_{1} form a Lie algebra with brackets

$$
\begin{aligned}
& {\left[D_{0}, D_{1}\right]=\left(q^{2}-q+1\right) D_{1}+(1-q) D_{0}, \quad\left[D_{0}, D_{-1}\right]=-\left(q^{2}-q+1\right) D_{-1}+(1-q) D_{0},} \\
& {\left[D_{-1}, D_{1}\right]=2 D_{0}+(1-q)\left(D_{1}-D_{-1}\right) .}
\end{aligned}
$$

For $q=1$, we get the Lie algebra $\mathfrak{s l}_{2}$.
Proof. The proof is a straightforward computation. All D_{i} are of the form $g(x) \partial$ with g a polynomial of degree at most 2. This explains why we can express any bracket as linear combination of D_{-1}, D_{0} and D_{1}. The non-trivial part is that the coefficients are in $\mathbb{Z}[q]$. Since $D_{0}=(1+(x-1) q) D_{-1}$, we get

$$
\left[D_{0}, D_{-1}\right]=-D_{-1}(1+(x-1) q) D_{-1}=-q(1+(q-1) x)^{2} \partial
$$

Similarly, we have $D_{0}=(1+(q-1) x) x^{-1} D_{1}$, hence

$$
\left[D_{0}, D_{1}\right]=-D_{1}\left(x^{-1}+q-1\right) D_{1}=(1+(x-1) q)^{2} \partial .
$$

The last bracket can be computed to be $\left[D_{-1}, D_{1}\right]=\left(1-q+2 q x+q(q-1) x^{2}\right) \partial$. One explicitely checks that these three brackets coincide with results claimed in the theorem.

Finally, it is clear that these brackets satisfy the Jacobi identity since we know a representation of the operators D_{i} as differential operators.

The Lie algebra $\mathfrak{s l}_{2}$ being simple, it does not allow any non-trivial deformations. Our q deformation is indeed abstractly isomorphic to $\mathfrak{s l}_{2}$ when q and $q^{2}-q+1$ are invertible. To give an explicit isomorphism, denote by (f, h, e) the generators of $\mathfrak{s l}_{2}$ given by the differential operators $\left(\partial, x \partial, x^{2} \partial\right)$. They satisfy $[h, e]=e,[h, f]=-f$ and $[e, f]=-2 h$. The following is an isomorphism of Lie algebras between $\left(D_{-1}, D_{0}, D_{1}\right)$ and (f, h, e) :

$$
\begin{aligned}
& f=q^{-1 / 2}\left(D_{-1}+\frac{q-1}{q^{2}-q+1} D_{0}\right), \quad h=\frac{D_{0}}{q^{2}-q+1}, \\
& e=q^{-1 / 2}\left(D_{1}+\frac{1-q}{q^{2}-q+1} D_{0}\right) .
\end{aligned}
$$

Using this isomorphism to $\mathfrak{s l}_{2}$, we can describe a 2-dimensional representation of the deformed Lie algebra defined by $\left(D_{-1}, D_{0}, D_{1}\right)$. Using the standard realization $f=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right), h=\left(\begin{array}{cc}1 / 2 & 0 \\ 0 & -1 / 2\end{array}\right)$ and $e=\left(\begin{array}{cc}0 & -1 \\ 0 & 0\end{array}\right)$, we get

$$
D_{-1}=\left(\begin{array}{cc}
\frac{1-q}{2} & 0 \\
q^{1 / 2} & \frac{q-1}{2}
\end{array}\right), \quad D_{0}=\left(\begin{array}{cc}
\frac{q^{2}-q+1}{2} & 0 \\
0 & \frac{-q^{2}+q-1}{2}
\end{array}\right), \quad D_{1}=\left(\begin{array}{cc}
\frac{q-1}{2} & -q^{1 / 2} \\
0 & \frac{1-q}{2}
\end{array}\right) .
$$

Note that this representation is not in $\mathfrak{s l}_{2}(\mathbb{Q}[q])$. A direct computation shows that there is no 2-dimensional representation of our q-deformed $\mathfrak{s l}_{2}$ into $\mathfrak{s l}_{2}(\mathbb{Q}[q])$. In dimension 3 , there is of course the adjoint representation into $\mathfrak{S l}_{3}(\mathbb{Z}[q])$.

Remark 2.4. It is tempting to consider D_{-1}, D_{1} and $\widehat{D}_{0}:=\left[D_{-1}, D_{1}\right]$. The operator \widehat{D}_{0} still anti-commutes with S_{q} and the bracket relations are

$$
\left[\widehat{D}_{0}, D_{ \pm 1}\right]= \pm\left(q^{2}+1\right) D_{ \pm 1} \pm(q-1)^{2} D_{\mp 1}
$$

The main drawback of this choice is that the eigenfunctions of \widehat{D}_{0} are Möbius transformations with coefficients not in $\mathbb{Z}[q]$.

Remark 2.5. A simpler and very similar Lie algebra deforming $\mathfrak{s l}_{2}$ is given by generators $\left(d_{-1}, d_{0}, d_{1}\right)$ with brackets

$$
\begin{aligned}
& {\left[d_{0}, d_{-1}\right]=-q d_{-1}+(1-q) d_{0}, \quad\left[d_{0}, d_{1}\right]=q d_{1}+(1-q) d_{0}} \\
& {\left[d_{-1}, d_{1}\right]=2 d_{0}+(1-q)\left(d_{1}-d_{-1}\right)}
\end{aligned}
$$

It can be obtained as our deformation for a formal parameter q with relation $(q-1)^{2}=0$. Then $q^{2}-q+1=q$. One checks that the Jacobi identity still holds.

$2.2 \quad q$-rational transition map

The map g_{q} defined in (2.1) plays a fundamental role, both for generalizing the q-deformation from $\mathfrak{s l}_{2}$ to the Witt algebra in Section 3, and in the theory of q-deformed rationals as we shall see now. It allows to pass between two different q-deformations of the rational numbers.

Recall that the q-rational transition map is defined by

$$
g_{q}(x)=\frac{1+(x-1) q}{1+(q-1) x}
$$

which is a deformation of the identity. It is the eigenfunction of D_{0} with eigenvalue $q^{2}-q+1$ and normalization $g_{q}(0)=1-q$. Note that g_{q} is a Möbius transformation associated to the matrix

$$
\left(\begin{array}{cc}
q & 1-q \\
q-1 & 1
\end{array}\right)
$$

which is of determinant $q^{2}-q+1$. For $q \neq 1, g_{q}$ is an elliptic transformation since its normalized trace is given by

$$
\frac{q+1}{\sqrt{q^{2}-q+1}}<2
$$

The unique fixed point on \mathbb{H}^{2} is $\frac{1+\mathrm{i} \sqrt{3}}{2}$ which is independent of q.
From the definition of g_{q}, we see the following duality between q and x :

$$
g_{q}(x) g_{x}(q)=1
$$

Proposition 2.6. The functions g_{q}, T_{q} and S_{q}, seen as 2×2 matrices satisfy:

$$
g_{q} T_{q}=q T_{q^{-1}} g_{q} \quad \text { and } \quad g_{q} S_{q}=q S_{q^{-1}} g_{q}
$$

Therefore, seen as Möbius transformations, we have $g_{q} \circ T_{q}=T_{q^{-1}} \circ g_{q}$ and $g_{q} \circ S_{q}=S_{q^{-1}} \circ g_{q}$.

Proof. Both assertions can be checked by a direct computation:

$$
g_{q} T_{q}=\left(\begin{array}{cc}
q & 1-q \\
q-1 & 1
\end{array}\right)\left(\begin{array}{ll}
q & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
q^{2} & 1 \\
q^{2}-q & q
\end{array}\right)=q T_{q^{-1}} g_{q},
$$

and similarly

$$
g_{q} S_{q}=\left(\begin{array}{cc}
q & 1-q \\
q-1 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
q & 0
\end{array}\right)=\left(\begin{array}{cc}
q-q^{2} & -q \\
q & 1-q
\end{array}\right)=q S_{q^{-1}} g_{q} .
$$

The second identity can be derived also as follows: since $S_{q} D_{0} S_{q}=-D_{0}$, we see that both $g_{q}^{-1}(x)$ and $g_{q}\left(S_{q}(x)\right)$ are eigenfunctions of D_{0} with eigenvalue $-q^{2}+q-1$. Hence they have to be multiple of each other. The precise relation is given by $g_{q}\left(S_{q}(x)\right)=\frac{-q}{g_{q}(x)}=S_{q^{-1}}\left(g_{q}(x)\right)$.

We describe now the main link to q-deformed rational numbers. In [13, Remark 3.2], the authors notice that the procedure for q-deformed irrational numbers gives two different answers when applied to rationals. This was further developed in [2], from which we borrow the notations. When one approaches a rational r / s from the right by a sequence of rationals strictly bigger than r / s, the procedure gives the so-called right q-rational $[r / s]_{q}^{\sharp}$. This is the deformation obtained from applying T_{q} and S_{q} to zero described at the beginning of the Introduction. When approaching r / s from the left, the limit gives another q-deformation of r / s, called left q-rational and denoted by $[r / s]_{q}^{b}[2$, Theorem 2.11].

The precise formulas given in [2, Definition 2.6] can be written in our context as follows: consider $U=T S T$, which is the function $U(x)=\frac{1}{1+1 / x}$, and its q-analog $U_{q}=T_{q} S_{q} T_{q}$. For a rational $r / s \in \mathbb{Q}$, take the unique even continued fraction expression $r / s=\left[a_{1}, a_{2}, \ldots, a_{2 n}\right]$. This means that $r / s=T^{a_{1}} U^{a_{2}} T^{a_{3}} \cdots U^{a_{2 n}}(\infty)$. By convention, we put $\infty=[]$, the empty expression. Then

$$
\begin{equation*}
\left[\frac{r}{s}\right]_{q}^{\sharp}=T_{q}^{a_{1}} U_{q}^{a_{2}} T_{q}^{a_{3}} \cdots U_{q}^{a_{2 n}}(\infty) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\frac{r}{s}\right]_{q}^{b}=T_{q}^{a_{1}} U_{q}^{a_{2}} T_{q}^{a_{3}} \cdots U_{q}^{a_{2 n}}\left(\frac{1}{1-q}\right) \tag{2.3}
\end{equation*}
$$

To give some examples, we have $[0]_{q}^{\sharp}=0$ and $[0]_{q}^{b}=\frac{q-1}{q},[1]_{q}^{\sharp}=1$ and $[1]_{q}^{b}=q,[2]_{q}^{\sharp}=1+q$ and $[2]_{q}^{b}=1+q^{2},[\infty]_{q}^{\sharp}=\infty$ and $[\infty]_{q}^{b}=\frac{1}{1-q}$.

It was noticed numerically by Valentin Ovsienko that g_{q} is a transition between these two q deformations of rational numbers. This is made precise in the following:

Theorem 2.7. The passage between the two q-deformations of rationals is given by

$$
g_{q}\left(\left[\frac{r}{s}\right]_{q}^{\sharp}\right)=\left[\frac{r}{s}\right]_{q^{-1}}^{b} .
$$

Note that q gets inversed to q^{-1}. The proof is an application of Proposition 2.6.
Proof. Proposition 2.6 gives $g_{q} U_{q}=U_{q^{-1}} g_{q}$. Using equation (2.2) and again Proposition 2.6, we get

$$
g_{q}\left(\left[\frac{r}{s}\right]_{q}^{\sharp}\right)=g_{q} T_{q}^{a_{1}} U_{q}^{a_{2}} T_{q}^{a_{3}} \cdots U_{q}^{a_{2 n}}(\infty)=T_{q^{-1}}^{a_{1}} U_{q^{-1}}^{a_{2}} T_{q^{-1}}^{a_{3}} \cdots U_{q^{-1}}^{a_{2 n}} g_{q}(\infty) .
$$

Now $g_{q}(\infty)=\frac{q}{q-1}=\frac{1}{1-q^{-1}}$. Hence we conclude by equation (2.3).

As an application, we can reprove the positivity property of left q-rationals, proven in $[2$, Appendix A.1] via an explicit combinatorial interpretation.

Corollary 2.8. For $r / s>1$, we have $R^{b}, S^{b} \in \mathbb{N}[q]$, where $[r / s]_{q}^{b}=R^{b}(q) / S^{b}(q)$.
Proof. From [12, Proposition 1.3], we know that for $r / s \in \mathbb{Q}_{>1}$ the right q-rational $[r / s]_{q}^{\sharp}=$ $R^{\sharp}(q) / S^{\sharp}(q)$ is a rational function in q with positive coefficients, i.e., $R^{\sharp}, S^{\sharp} \in \mathbb{N}[q]$. We also know from [12, Theorem 2] that if $r / s>r^{\prime} / s^{\prime}$, then $R^{\sharp} S^{\prime \sharp}-R^{\prime \sharp} S^{\sharp} \in \mathbb{N}[q]$. Since $r / s>1$, we get $R^{\sharp}-S^{\sharp} \in \mathbb{N}[q]$. Since $r / s+1>r / s$ and $[r / s+1]_{q}^{\sharp}=q[r / s]_{q}^{\sharp}+1$, we also get $(q-1) R^{\sharp}+S^{\sharp} \in \mathbb{N}[q]$. Finally, we deduce that

$$
\left[\frac{r}{s}\right]_{q^{-1}}^{b}=g_{q}\left(\left[\frac{r}{s}\right]_{q}^{\sharp}\right)=\frac{q\left(R^{\sharp}-S^{\sharp}\right)+S^{\sharp}}{(q-1) R^{\sharp}+S^{\sharp}}
$$

has positive coefficients. Multiplying both numerator and denominator with an appropriate power of q, we get the same for $[r / s]_{q}^{b}$.

Finally, we can use the transition function $g_{q}(x)$ as reparametrization of \mathbb{P}^{1}. To emphasize the dependence of our differential operators, we will write here $D_{-1}(q, x)=(1+(q-1) x) \partial_{x}$ and similar for D_{0} and D_{1}.

Proposition 2.9. Reparametrizing \mathbb{P}^{1} by the transition map $\xi=g_{q}(x)$ gives

$$
D_{ \pm 1}(q, x)=q D_{ \pm 1}\left(q^{-1}, \xi\right), \quad D_{0}(q, x)=\left(q^{2}-q+1\right) \xi \partial_{\xi} .
$$

The behavior of D_{-1} and D_{1} is reminiscent of Proposition 2.6.
Proof. Using $\frac{\mathrm{d} \xi}{\mathrm{d} x}=\frac{q^{2}-q+1}{(1+(q-1) x)^{2}}$ and $x=\frac{\xi+q-1}{q+(1-q) \xi}$, we get $1+(q-1) x=\frac{q^{2}-q+1}{q+(1-q) \xi}$. Hence

$$
D_{-1}(x, q)=(1+(q-1) x) \frac{\mathrm{d} \xi}{\mathrm{~d} x} \partial_{\xi}=\frac{q^{2}-q+1}{1+(q-1) x} \partial_{\xi}=(q+(1-q) \xi) \partial_{\xi}=q D_{-1}\left(q^{-1}, \xi\right) .
$$

The computation for D_{1} is similar. Finally,

$$
D_{0}(q, x)=(1+(q-1) x)(1+(x-1) q) \partial_{x}=\left(q^{2}-q+1\right) g_{q}(x) \partial_{\xi}=\left(q^{2}-q+1\right) \xi \partial_{\xi} .
$$

This proposition indicates that we can use the undeformed operator $x \partial$ together with $D_{ \pm 1}$ to get a deformation of $\mathfrak{s l}_{2}$ which is equivalent to our proposal. The importance of the q-rational transition map g_{q}, especially in the light of Proposition 2.6 , justifies to use D_{0} instead of $x \partial$.

2.3 Heisenberg algebra

The operators D_{-1} and g_{q}, seen as multiplication operator, give a deformation of the Heisenberg algebra. This strengthens the idea of considering g_{q} as a deformation of the identity.

Theorem 2.10. The two operators D_{-1} and g_{q} satisfy

$$
\left[D_{-1}, g_{q}\right]=q+(1-q) g_{q}
$$

Hence together with the central element 1, they define a solvable 3-dimensional Lie algebra deforming the 3 -dimensional Heisenberg algebra which we recover for $q=1$.

The proof is a simple computation:

$$
\left[D_{-1}, g_{q}\right]=D_{-1}\left(g_{q}\right)=\frac{q^{2}-q+1}{1+(q-1) x}=q+(1-q) g_{q}
$$

The Lie algebra generated by $\left(1, g_{q}, D_{-1}\right)$ is solvable since D_{-1} is not in the image of the Lie bracket. Hence the derived series becomes zero at the second step.

The previous theorem works since there is a nice expression for $D_{-1}\left(g_{q}\right)$. This holds true more generally:

Proposition 2.11. The function g_{q} behaves well under the operators D_{-1}, D_{0} and D_{1} :

$$
D_{0}\left(g_{q}\right)=\left(q^{2}-q+1\right) g_{q}, \quad D_{-1}\left(g_{q}\right)=q+(1-q) g_{q}, \quad D_{1}\left(g_{q}\right)=(q-1) g_{q}+g_{q}^{2}
$$

Proof. We only have to prove the last statement since we have already seen the first two. For that, we use the relation $g_{q}\left(S_{q}(x)\right)=-q / g_{q}(x)$, see Proposition 2.6. We get

$$
D_{1}\left(g_{q}\right)=S_{q} D_{-1} S_{q}\left(g_{q}\right)=S_{q} D_{-1}\left(-q / g_{q}\right)=S_{q}\left(-q g_{q}^{-2}\left(q+(1-q) g_{q}\right)\right)
$$

where we first used that S_{q} acts by precomposition, then Proposition 2.6 and finally the expression for $D_{-1}\left(g_{q}\right)$. Since S_{q} acts by precomposition applying 2.6 again concludes:

$$
D_{1}\left(g_{q}\right) S_{q}\left(-q g_{q}^{-2}\left(q+(1-q) g_{q}\right)\right)=g_{q}^{2}+(q-1) g_{q}
$$

We can use this proposition to express one operator in terms of another via the relation $D_{i}=\frac{D_{i}\left(g_{q}\right)}{D_{j}\left(g_{q}\right)} D_{j}$ for all $i, j \in\{-1,0,1\}$. This holds true since these differential operators are of order 1 .

3 Deformed Witt algebra

Now that we have deformed the differential operators $\partial, x \partial$ and $x^{2} \partial$, we can do the same for all $x^{n} \partial$ for $n \in \mathbb{Z}$. These are a realization of the Witt algebra, the Lie algebra of complex polynomial vector fields on the circle (the centerless Virasoro algebra). Putting $\ell_{n}=x^{n+1} \partial$, the Lie algebra structure is given by

$$
\left[\ell_{n}, \ell_{m}\right]=(m-n) \ell_{n+m}
$$

To get a deformation of the Witt algebra, we define for $n>1$:

$$
D_{n}=g_{q}^{n-1} D_{1}, \quad D_{-n}=\left(q g_{q}^{-1}\right)^{n-1} D_{-1}
$$

where $g_{q}^{-1}=1 / g_{q}$ denotes the inverse for multiplication (not composition).
Proposition 3.1. The operators D_{n} behave nicely when multiplied by g_{q}. By definition we have $g_{q} D_{n}=D_{n+1}$ for $n \geq 1$ and $g_{q} D_{-n}=q D_{-n+1}$ for $n \geq 2$. In addition,

$$
g_{q} D_{0}=(1-q) D_{0}+\left(q^{2}-q+1\right) D_{1}, \quad g_{q} D_{-1}=D_{0}+(1-q) D_{1}
$$

Similarly, there is a nice behavior when multiplied by $q g_{q}^{-1}$. By definition $q g_{q}^{-1} D_{-n}=D_{-n-1}$ for $n \geq 1$ and $q g_{q}^{-1} D_{n}=q D_{n-1}$ for $n \geq 2$. In addition,

$$
q g_{q}^{-1} D_{0}=(q-1) D_{0}+\left(q^{2}-q+1\right) D_{-1}, \quad q g_{q}^{-1} D_{1}=D_{0}+(q-1) D_{-1}
$$

Proof. From the definitions, we get $g_{q} D_{0}=(1+(x-1) q)^{2} \partial$. From Proposition 2.3 and its proof, we see that this is $\left[D_{0}, D_{1}\right]$. Therefore, $g_{q} D_{0}=\left(q^{2}-q+1\right) D_{1}+(1-q) D_{0}$. A direct computation also gives $g_{q} D_{-1}=(1+(x-1) q) \partial=D_{0}+(1-q) D_{1}$.

For the second half, note that

$$
g_{q} D_{0}+(q-1) g_{q} D_{-1}=\left(q^{2}-q+1-(q-1)^{2}\right) D_{1}=q D_{1}
$$

Dividing by g_{q} gives $q g_{q}^{-1} D_{1}=D_{0}+(q-1) D_{-1}$. Similarly,

$$
(q-1) g_{q} D_{0}+\left(q^{2}-q+1\right) D_{-1}=q D_{0}
$$

so dividing by g_{q} gives $q g_{q}^{-1} D_{0}=(q-1) D_{0}+\left(q^{2}-q+1\right) D_{-1}$.
Using Propositions 2.11 and 3.1 , we get the bracket relations of all D_{n} :
Theorem 3.2. The $\left(D_{n}\right)_{n \in \mathbb{Z}}$ form a Lie algebra with bracket given by (with $\left.n, r>0\right)$:

$$
\begin{aligned}
& {\left[D_{0}, D_{n}\right]=n\left(q^{2}-q+1\right) D_{n}+\left(q^{2}-q+1\right) \sum_{k=1}^{n-1}(1-q)^{k} D_{n-k}+(1-q)^{n} D_{0}} \\
& {\left[D_{0}, D_{-n}\right]=-n\left(q^{2}-q+1\right) D_{-n}-\left(q^{2}-q+1\right) \sum_{k=1}^{n-1}(q-1)^{k} D_{-n+k}-(q-1)^{n} D_{0}} \\
& {\left[D_{n}, D_{n+r}\right]=r D_{2 n+r}+(q-1) r D_{2 n+r-1},} \\
& {\left[D_{-n}, D_{-n-r}\right]=-r D_{-2 n-r}+(q-1) r D_{-2 n-r+1}} \\
& {\left[D_{-n}, D_{n}\right]=2 n q^{n-1} D_{0}+(2 n-1) q^{n-1}(q-1)\left(D_{-1}-D_{1}\right),} \\
& {\left[D_{n+r}, D_{-n}\right]=(q-1) q^{n-1}(2 n+r-1) D_{r+1}-\left(q^{2}+(2 n+r-2) q+1\right) q^{n-1} D_{r},} \\
& \quad-q^{n-1}\left(q^{2}-q+1\right) \sum_{k=1}^{r-1}(1-q)^{k} D_{r-k}-(1-q)^{r} q^{n-1} D_{0} \\
& {\left[\begin{array}{c}
{\left[D_{n}, D_{-n-r}\right]=-(q-1) q^{n-1}(2 n+r-1) D_{-r-1}-\left(q^{2}+(2 n+r-2) q+1\right) q^{n-1} D_{-r},}
\end{array}\right.} \\
& \quad-q^{n-1}\left(q^{2}-q+1\right) \sum_{k=1}^{r-1}(q-1)^{k} D_{-r+k}-(q-1)^{r} q^{n-1} D_{0}
\end{aligned}
$$

For $q=1$, one recovers the Witt algebra.
It is clear that the bracket of the operators D_{n} satisfies the Jacobi identity since these operators come from a realization as differential operators. We only have to check the bracket relations, which uses induction and all properties between g_{q} and D_{-1}, D_{0}, D_{1}.

Proof. We prove the first relation by induction on n. The case $n=1$ is true by Proposition 2.3. Then for $n>1$,

$$
\begin{aligned}
{\left[D_{0}, D_{n}\right]=} & {\left[D_{0}, g_{q} D_{n-1}\right]=D_{0}\left(g_{q}\right) D_{n-1}+g_{q}\left[D_{0}, D_{n-1}\right] } \\
= & \left(q^{2}-q+1\right) g_{q} D_{n-1}+g_{q}(n-1)\left(q^{2}-q+1\right) D_{n-1} \\
& +g_{q}\left(\left(q^{2}-q+1\right) \sum_{k=1}^{n-2}(1-q)^{k} D_{n-1-k}+(1-q)^{n-1} D_{0}\right) \\
= & n\left(q^{2}-q+1\right) D_{n}+\left(q^{2}-q+1\right) \sum_{k=1}^{n-1}(1-q)^{k} D_{n-k}+(1-q)^{n} D_{0}
\end{aligned}
$$

where we used that g_{q} is an eigenfunction of D_{0}, and Proposition 3.1. The second statement is a similar computation. The third relation comes as follows:

$$
\begin{aligned}
{\left[D_{n}, D_{n+r}\right] } & =\left[D_{n}, g_{q}^{r} D_{n}\right]=D_{n}\left(g_{q}^{r}\right) D_{n}=r g_{q}^{r-1} g_{q}^{n-1} D_{1}\left(g_{q}\right) D_{n} \\
& =r g_{q}^{r+n-2}\left(g_{q}^{2}+(q-1) g_{q}\right) D_{n}=r D_{2 n+r}+r(q-1) D_{2 n+r-1}
\end{aligned}
$$

where we used Proposition 2.11 for $D_{1}\left(g_{q}\right)$. The fourth bracket is a similar computation. To prove the fifth relation, we use induction on n again. The initial $n=1$ is done by Proposition 2.3. Then for $n \geq 1$,

$$
\begin{aligned}
{\left[D_{-n-1}, D_{n+1}\right]=} & {\left[q g_{q}^{-1} D_{-n}, g_{q} D_{n}\right]=q g_{q}^{-1} D_{-n}\left(g_{q}\right) D_{n}+q\left[D_{-n}, D_{n}\right]-q g_{q} D_{n}\left(g_{q}^{-1}\right) D_{-n} } \\
= & q^{n} g_{q}^{-n}\left(q+(1-q) g_{q}\right) D_{n}+q\left(2 n q^{n-1} D_{0}\right. \\
& \left.+(2 n-1) q^{n-1}(q-1)\left(D_{-1}-D_{1}\right)\right)+q g_{q}^{n-2}\left(g_{q}^{2}+(q-1) g_{q}\right) D_{-n} \\
= & 2 n q^{n} D_{0}+q^{n}\left(2 n(q-1)+q_{q}\right) D_{-1}-q^{n}\left(2 n(q-1)-q g_{q}^{-1}\right) D_{1} \\
= & (2 n+2) q^{n} D_{0}+(2 n+1) q^{n}(q-1)\left(D_{-1}-D_{1}\right),
\end{aligned}
$$

where we used several times Propositions 2.11 and 3.1. Finally, for the last two brackets, we start from (where $a, b>0$)

$$
\begin{align*}
{\left[D_{a}, D_{-b}\right] } & =\left[g_{q}^{a-1} D_{1},\left(q g_{q}^{-1}\right)^{b-1} D_{-1}\right] \\
& =q^{b-1}\left(g_{q}^{a-1} D_{1}\left(g_{q}^{1-b}\right) D_{-1}-g_{q}^{1-b} D_{-1}\left(g_{q}^{a-1}\right) D_{1}+g_{q}^{a-b}\left[D_{1}, D_{-1}\right]\right) \\
& =q^{b-1} g_{q}^{a-b}\left(-(a+b) D_{0}+(a+b-1)(q-1)\left(D_{1}-D_{-1}\right)\right) . \tag{3.1}
\end{align*}
$$

An easy induction gives for $r>0$,

$$
\begin{equation*}
g_{q}^{r} D_{0}=\left(q^{2}-q+1\right) \sum_{k=0}^{r-1}(1-q)^{k} D_{r-k}+(1-q)^{r} D_{0} \tag{3.2}
\end{equation*}
$$

Also we get $g_{q}^{r} D_{-1}=g_{q}^{r-1} D_{0}+(1-q) D_{r}$, where we can use equation (3.2) to express the first term. Similar results hold for $\left(q g_{q}^{-1}\right)^{r} D_{0}$ and $\left(q g_{q}^{-1}\right)^{r} D_{1}$. Putting $a=n+r$ and $b=n$ in equation (3.1) and using (3.2) gives the bracket $\left[D_{n+r}, D_{-n}\right.$]. Putting $a=n$ and $b=n+r$ gives in a similar way the last bracket $\left[D_{n}, D_{-n-r}\right]$.

Remark 3.3. Regarding Remark 2.5, we could try to simplify the defining relations of the q deformed Witt algebra by considering a formal parameter q satisfying $(q-1)^{2}=0$ (and then forget about this relation again). In contrast to the q-deformed $\mathfrak{s l}_{2}$, the result here is not a Lie algebra anymore. The Jacobi identity does not hold exactly, but only modulo $(q-1)^{2}=0$.

4 Möbius transformations

The differential operators $\partial, x \partial, x^{2} \partial$ can be interpreted in at least three different ways: first as differential operators on \mathbb{P}^{1} written in one chart (this was our approach). Second they can be seen as complex vector fields on the circle $\mathbb{S}^{1} \subset \mathbb{C}$ (this approach was used for the Witt algebra). Third, a Lie algebra can be realised as Killing vector fields on the associated symmetric space of non-compact type. For $\mathfrak{s l}_{2}$ this symmetric space is the hyperbolic plane \mathbb{H}^{2}.

In this section, we integrate the operators D_{-1}, D_{0} and D_{1} seen as vector fields of \mathbb{H}^{2}. The result gives interesting Möbius transformations with q-parameter. In the Taylor expansion around $q \rightarrow 1$ (the "semi-classical limit"), we recover the deformed translation T_{q}. Conjecturally there should be a q-deformation of \mathbb{H}^{2} on which these transformations act, such that the boundary can be identified with the q-deformed real numbers of [13].

4.1 Classical setting

Consider first the classical setup with the operators $\partial, x \partial$ and $x^{2} \partial$. These are Killing vector fields on the hyperbolic plane \mathbb{H}^{2}, whose integration determines isometries of \mathbb{H}^{2}. Here, we consider $\mathbb{H}^{2} \subset \mathbb{C}$ in the upper half-plane model and use the coordinate $x \in \mathbb{C}$.

To start, consider the case of the vector field $V=\partial=\frac{\partial}{\partial x}$. A curve γ integrates this vector field iff $\gamma^{\prime}(t)=V(\gamma(t))=1$ for all $t \in \mathbb{R}$ (where we identified 1 with the constant vector field ∂). With initial condition $\gamma(0)=x$ we get $\gamma(t)=x+t$. We should think of this as a function $\gamma_{x}(t)$ of the initial condition. For time 1, we get the translation $\gamma_{x}(1)=x+1=T(x)$.

Another important case is $x \partial$, for which we have to solve $\gamma^{\prime}(t)=\gamma(t)$. With initial condition $\gamma(0)=x$, we obviously get $\gamma(t)=\mathrm{e}^{t} x$. The function $x \mapsto \mathrm{e}^{t} x$ is the hyperbolic isometry of \mathbb{H}^{2} associated to the geodesic joining 0 to ∞. Its matrix is given by

$$
\left(\begin{array}{cc}
\mathrm{e}^{t / 2} & 0 \tag{4.1}\\
0 & \mathrm{e}^{-t / 2}
\end{array}\right)
$$

We can immediately generalize to the generators of the Witt algebra. Consider the operator $x^{n} \partial$ with $n \in \mathbb{Z}, n \neq 1$. A curve γ integrates the associated vector field if $\gamma^{\prime}(t)=\gamma(t)^{n}$. The solution with initial condition $\gamma(0)=x$ is given by

$$
\gamma_{x}(t)=\frac{x}{\left(1-(n-1) t x^{n-1}\right)^{1 /(n-1)}} .
$$

Apart from $n=0$ and $n=2$, the associated transformations in x are not Möbius transformations. We get Möbius transformations though when passing to a ramified covering. Putting $y=x^{n-1}$, we get

$$
\gamma_{x}(t)^{n-1}=\frac{y}{1-(n-1) t y}
$$

4.2 Deformed transformations

We repeat the method of the previous subsection to deduce the transformations associated to D_{-1}, D_{0} and D_{1}. Since these operators are still of the form $p(x) \partial$ with p a polynomial in x of degree at most 2 , the vector fields D_{i} are still Killing vector fields, so their integration gives Möbius transformations.

Start with $D_{-1}=(1+(q-1) x) \partial$. The associated differential equation is $\gamma^{\prime}(t)=1+(q-1) \gamma(t)$ with initial condition $\gamma(0)=x$. Solving this equation is standard: first one solves the homogeneous equation, then one uses the variation of the constant to finally get

$$
\gamma(t)=-\frac{1}{q-1}+\left(x+\frac{1}{q-1}\right) \mathrm{e}^{(q-1) t} .
$$

For $t=1$, we get the associated map $x \mapsto-\frac{1}{q-1}+\left(x+\frac{1}{q-1}\right) \mathrm{e}^{q-1}$. The Taylor expansion around $q-1$ at order 1 gives

$$
x \mapsto-\frac{1}{q-1}+\left(x+\frac{1}{q-1}\right) q=q x+1,
$$

which is nothing but $T_{q}(x)$. For a general time t, the same procedure gives $x \mapsto(1-t+q t) x+t$. To sum up:

Proposition 4.1. The time 1 flow of the operator D_{-1} seen as vector field on \mathbb{H}^{2} is the affine map $x \mapsto-\frac{1}{q-1}+\left(x+\frac{1}{q-1}\right) \mathrm{e}^{q-1}$ whose Taylor expansion at order 1 in $q-1$ is T_{q}.

For the operator D_{1}, it is not necessary to do any computation since $D_{1}=S_{q} D_{-1} S_{q}$. We can simply conjugate by S_{q} the previous computations. In particular, the associated transformation in the Taylor expansion is $S_{q} T_{q} S_{q}$.

Consider now the operator $D_{0}=(1+(q-1) x)(1+(x-1) q) \partial$. The associated differential equation reads

$$
\gamma^{\prime}(t)=1-q+\left(-1+3 q-q^{2}\right) \gamma+q(q-1) \gamma^{2}
$$

which is a Ricatti equation.
To solve a Ricatti equation, put $a=1-q, b=-1+3 q-q^{2}, c=q(q-1)$ and introduce the new function u such that $c \gamma(t)=-u^{\prime}(t) / u(t)$. Then u satisfies $u^{\prime \prime}(t)-b u^{\prime}(t)+a c u(t)=0$. The discriminant has the nice expression $b^{2}-4 a c=\left(q^{2}-q+1\right)^{2}$. The two roots of the characteristic equation are q and $-(q-1)^{2}$. Hence we get $u(t)=C_{1} \mathrm{e}^{q t}+C_{2} \mathrm{e}^{-(q-1)^{2} t}$, where C_{1}, C_{2} are two constants. Since $\gamma=-u^{\prime} /(c u)$, we can scale C_{1} and C_{2} by the same number without changing γ. Putting $C_{1}=1-q$, we get

$$
\gamma(t)=\frac{\mathrm{e}^{q t}+C_{2} \frac{q-1}{q} \mathrm{e}^{-(q-1)^{2} t}}{(1-q) \mathrm{e}^{q t}+C_{2} \mathrm{e}^{-(q-1)^{2} t}} .
$$

The initial condition $\gamma(0)=x$ gives

$$
C_{2}=\frac{q(1-q) x-q}{q-1-q x}
$$

We already see that $\gamma_{x}(t)$ is a Möbius transformation in x since C_{2} is. For time $t=1$, we get the following.

Proposition 4.2. Integrating to time $t=1$ the operator D_{0} seen as vector field in \mathbb{H}^{2} gives the Möbius transformation

$$
\gamma_{x}(1)=\frac{\left(q \mathrm{e}^{q}+(q-1)^{2} \mathrm{e}^{-(q-1)^{2}}\right) x+(1-q)\left(\mathrm{e}^{q}-\mathrm{e}^{-(q-1)^{2}}\right)}{q(1-q)\left(\mathrm{e}^{q}-\mathrm{e}^{-(q-1)^{2}}\right) x+(1-q)^{2} \mathrm{e}^{q}+q \mathrm{e}^{-(q-1)^{2}}} .
$$

If we Taylor expand $\gamma_{x}(1)$ around $q-1$ to order 1 , we get a quadratic polynomial in x. In order to keep a Möbius transformation, we Taylor expand all entries of the associated 2×2 matrix to order 1 in $q-1$. The result is

$$
W_{q}:=\left(\begin{array}{cc}
e(1-2 q) & (e-1)(q-1) \\
(e-1)(q-1) & -q
\end{array}\right),
$$

where we used $q^{2}=2 q-1$ coming from the Taylor expansion. We see that $q=1$ gives the transformation $x \mapsto e x$.

A similar computation with arbitrary time t gives

$$
W_{q}^{t}=\left(\begin{array}{cc}
\mathrm{e}^{t}(t-q t-q) & \left(\mathrm{e}^{t}-1\right)(q-1) \\
\left(\mathrm{e}^{t}-1\right)(q-1) & -q
\end{array}\right)
$$

which for $q=1$ gives the transformation $x \mapsto \mathrm{e}^{t} x$ from equation (4.1).

4.3 Speculations about a q-deformed hyperbolic plane

The above computations seem to indicate the existence of a q-deformed version of the hyperbolic plane \mathbb{H}_{q}^{2} on which the transformations T_{q}, S_{q}, g_{q} and W_{q} act. A similar idea is developed in [2] where a compactification of the space of stability conditions for type A_{2} is constructed.

The transformation $S_{q}(x)=-1 /(q x)$ has only one fixed point given by $i q^{-1 / 2}$. This equals $[i]_{q}$, the q-deformed version of i from [17, formula (9)]. The translation $T_{q}(x)=q x+1$ has two fixed points at the (usual) boundary at infinity, given by ∞ and $1 /(1-q)$. However, we expect the boundary of \mathbb{H}_{q}^{2} to be $\mathbb{R}_{q} \cup\{\infty\}$, where \mathbb{R}_{q} denotes the q-reals. On \mathbb{R}_{q}, the transformation T_{q} has no fixed point since $T_{q}[x]_{q}=[x+1]_{q}$.

An important role should play the q-rational transition map $g_{q}(x)=\frac{1+(x-1) q}{1+(q-1) x}$. Since it deforms the identity, there are strictly more transformations in the deformed setting. For $q \neq 1$, g_{q} is an elliptic transformation with only fixed point on \mathbb{H}^{2} given by $\frac{1+\mathrm{i} \sqrt{3}}{2}$ which is independent of q. In [17, Part 2.3], it is shown that this complex number stays itself under q-deformation. Note that both transformations g_{q} and $T_{q} S_{q}$ are rotations around the same center. Hence they commute. Similarly, the matrix of g_{q}^{-1} anti-commutes with the matrix of S_{q}.

These links between q-deformed numbers and the q-deformed $\mathfrak{s l}_{2}$-algebra are intriguing and might point towards a deeper relation.

Acknowledgements

I warmly thank Valentin Ovsienko and Sophie Morier-Genoud for inspiration, many suggestions and fruitful exchanges, and Peter Smillie and Vladimir Fock for helpful discussions. I also thank the anonymous referees for their remarks improving the paper. I gratefully acknowledge support from the University of Heidelberg where this work has been carried out, in particular under ERC-Advanced Grant 101018839 and Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project-ID 281071066 - TRR 191.

References

[1] Avan J., Frappat L., Ragoucy E., Deformed Virasoro algebras from elliptic quantum algebras, Comm. Math. Phys. 354 (2017), 753-773, arXiv:1607.05050.
[2] Bapat A., Becker L., Licata A.M., q-deformed rational numbers and the 2-Calabi-Yau category of type A_{2}, Forum Math. Sigma 11 (2023), e47, 41 pages, arXiv:2202.07613.
[3] Bharathram V., Birman J., On the Burau representation of B_{4}, Involve 14 (2021), 143-154, arXiv:2208.12378.
[4] Burau W., Über Zopfgruppen und gleichsinnig verdrillte Verkettungen, Abh. Math. Sem. Univ. Hamburg 11 (1935), 179-186.
[5] Chaichian M., Isaev A.P., Lukierski J., Popowicz Z., Prešnajder P., q-deformations of Virasoro algebra and conformal dimensions, Phys. Lett. B 262 (1991), 32-38.
[6] Curtright T.L., Zachos C.K., Deforming maps for quantum algebras, Phys. Lett. B 243 (1990), 237-244.
[7] Frenkel E., Reshetikhin N., Quantum affine algebras and deformations of the Virasoro and \mathcal{W}-algebras, Comm. Math. Phys. 178 (1996), 237-264, arXiv:q-alg/9505025.
[8] Hartwig J.T., Larsson D., Silvestrov S.D., Deformations of Lie algebras using σ-derivations, J. Algebra 295 (2006), 314-361, arXiv:math.QA/0408064.
[9] Hu N., q-Witt algebras, q-Lie algebras, q-holomorph structure and representations, Algebra Colloq. 6 (1999), 51-70, arXiv:math.QA/0512526.
[10] Kassel C., Cyclic homology of differential operators, the Virasoro algebra and a q-analogue, Comm. Math. Phys. 146 (1992), 343-356.
[11] Khesin B., Lyubashenko V., Roger C., Extensions and contractions of the Lie algebra of q-pseudodifferential symbols on the circle, J. Funct. Anal. 143 (1997), 55-97, arXiv:hep-th/9403189.
[12] Morier-Genoud S., Ovsienko V., q-deformed rationals and q-continued fractions, Forum Math. Sigma 8 (2020), e13, 55 pages, arXiv:1812.00170.
[13] Morier-Genoud S., Ovsienko V., On q-deformed real numbers, Exp. Math. 31 (2022), 652-660, arXiv:1908.04365.
[14] Morier-Genoud S., Ovsienko V., Veselov A.P., Burau representation of braid groups and q-rationals, Int. Math. Res. Not. 2024 (2024), 8618-8627, arXiv:2309.04240.
[15] Nedelin A., Zabzine M., q-Virasoro constraints in matrix models, J. High Energy Phys. 2017 (2017), no. 3, 098, 17 pages, arXiv:1511.03471.
[16] Nigro A., A q-Virasoro algebra at roots of unity, free fermions, and Temperley-Lieb hamiltonians, J. Math. Phys. 57 (2016), 041702, 12 pages, arXiv:1211.1067.
[17] Ovsienko V., Towards quantized complex numbers: q-deformed Gaussian integers and the Picard group, Open Commun. Nonlinear Math. Phys. 1 (2021), 73-93, arXiv:2103.10800.
[18] Scherich N., Classification of the real discrete specialisations of the Burau representation of B3, Math. Proc. Cambridge Philos. Soc. 168 (2020), 295-304, arXiv:1801.08203.
[19] Shiraishi J., Kubo H., Awata H., Odake S., A quantum deformation of the Virasoro algebra and the Macdonald symmetric functions, Lett. Math. Phys. 38 (1996), 33-51, arXiv:q-alg/9507034.
[20] Tsallis C., Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys. 52 (1988), 479-487.

[^0]: ${ }^{1}$ Unpublished, private communication.

