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Abstract. We introduce an invariant of a hyperbolic knot which is a map α 7→ Φα(h)
from Q/Z to matrices with entries in Q[[h]] and with rows and columns indexed by the
boundary parabolic SL2(C) representations of the fundamental group of the knot. These
matrix invariants have a rich structure: (a) their (σ0, σ1) entry, where σ0 is the trivial and σ1

the geometric representation, is the power series expansion of the Kashaev invariant of the
knot around the root of unity e2πiα as an element of the Habiro ring, and the remaining
entries belong to generalized Habiro rings of number fields; (b) the first column is given by the
perturbative power series of Dimofte–Garoufalidis; (c) the columns of Φ are fundamental
solutions of a linear q-difference equation; (d) the matrix defines an SL2(Z)-cocycle Wγ

in matrix-valued functions on Q that conjecturally extends to a smooth function on R
and even to holomorphic functions on suitable complex cut planes, lifting the factorially
divergent series Φ(h) to actual functions. The two invariants Φ and Wγ are related by
a refined quantum modularity conjecture which we illustrate in detail for the three simplest
hyperbolic knots, the 41, 52 and (−2, 3, 7) pretzel knots. This paper has two sequels, one
giving a different realization of our invariant as a matrix of convergent q-series with integer
coefficients and the other studying its Habiro-like arithmetic properties in more depth.
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Part 0: Introduction and overview

In this paper and the companion paper [44], we will define and study three different types of
objects that can be associated to a hyperbolic knot:

� periodic functions on Q with values in Q with striking arithmetic properties and belonging
to a generalization of the Habiro ring;

� divergent formal series in an infinitesimal variable h, or more precisely infinite collections
of such power series, indexed by a rational number α (here “h” is meant to remind one of
Planck’s constant and the perturbative expansions of quantum field theory); and
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� q-series with integer coefficients, convergent in the unit disk and also thought of via
q = e2πiτ as holomorphic functions of a variable τ in the upper half-plane.

The first of these generalizes the Kashaev invariant of the knot, while the second and third
correspond roughly to the two partition functions Z(h) and Ẑ(q) that are being studied in the
ongoing program of Gukov et al. [18, 50] for general 3-manifolds. We will study the first two
types of invariants in the present paper, and the functions of q or τ in [44]. In all three cases,
we will actually define a whole matrix of functions of the type described above, and in all three
cases one of the central questions will be the behavior of these functions under the action of
the modular group on the rational numbers or on the upper half-plane. Another key aspect
is that each of the three types of matrices constructed encodes the same information as the
other two and that all three can be interpreted as different realizations of the same abstract
object, a square matrix of “functions-near-Q” that we believe is associated to every hyperbolic
knot, just as the different types of cohomology groups associated to an algebraic variety over
a number field, despite their very different properties, are seen as different realizations of the
same underlying “motive”.

The starting point for our entire investigation is the Kashaev invariant of a knot and the
“quantum modularity” property for its Galois-equivariant extension that was conjectured in [84].
We will review these topics in detail in Section 1, but remind the reader briefly of the basic ingre-
dients here. The Kashaev invariant of a hyperbolic knot K is an element ⟨K⟩N of Z

[
e2πi/N

]
for

every N ∈ N whose absolute value is conjectured to grow exponentially like ecN , where c is 1/2π
times the hyperbolic volume of the knot complement S3∖K. This invariant can be extended to
a function J = J (K) (we will omit the knot from the notation when it is fixed) from Q/Z to Q by
Galois equivariance.

(
This means that we write ⟨K⟩N as a polynomial in e2πi/N with rational co-

efficients and define J(a/N) for all a prime to N as the same polynomial evaluated at e−2πia/N .
)

The quantummodularity conjecture gives a formula for the ratio of the values of J(X) and J(γX)
as an asymptotic series in 1/X as X tends to infinity through integers, or even through rational
numbers with bounded denominator, where γX = aX+b

cX+d with γ =
(
a b
c d

)
∈ SL2(Z). The quanti-

tative version of this conjecture is given in equation (1.6) below, via a collection of well-defined
formal power series {Φα(h)}α∈Q with algebraic coefficients, but the conjecture can also be vi-
sualized in a weaker qualitative form by comparing the graphs of J(x) and of J(x)/J(γx) as
functions, as is done in the following figure (taken from [84]), which shows the plots of log(J(x))
and log(J(x)/J(−1/x)) for K = 41 (“figure 8 knot”), the simplest hyperbolic knot. The for-
mer consists of a whole “cloud” of points and has no reasonable extension to the real numbers,
whereas the latter does extend to a well-defined function on R, albeit one with infinitely many
discontinuities.
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Figure 1. The functions log(J(x)) and log(J(x)/J(−1/x)) for the 41 knot.
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Figure 2. Plots of the six nontrivial entries (rescaled) of the matrix W
(41)
S (x).

The marked improvement of the graph on the right of Figure 1 as opposed to the one on the
left was already very striking and led to the introduction in [84] of a notion of “quantum modular
forms” that has proved quite useful and has been exploited and extended by several subsequent
authors. But it was also somehow unsatisfactory, because the function log J(x)− log J(−1/x)
still is far from smooth or even continuous, whereas in all the other examples in [84] the dif-
ference f(x)− f(γx) for a quantum modular form f : Q → C extended to an analytic function
on R minus a finite set. This problem was “solved” in [84] by defining quantum modular forms
by the weak requirement that the difference f(x) − f(γx) was “analytically better behaved”
than f itself, rather than demanding that it be analytic on the complement of a finite set. But
now it turns out that this cop-out is not needed, since the riddle of the missing smoothness is
solved completely by upgrading J to a matrix of which it is only one entry. Specifically, in the
new picture, J(X) is replaced by a certain matrix-valued invariant J(X) = J(K)(X) (we use
boldface letters to indicate matrices) which is defined and studied in the course of this paper
(Sections 2.2, 3.1, and 4.1–4.5). For the figure 8 knot this matrix has the form1 J(X) ∗

0 ∗ ∗
0 ∗ ∗

 ,

where each of the six nontrivial components has a “cloudlike” graph like the first plot in Figure 1.
But now instead of dividing the scalar invariant J(X) by J(−1/X) as before, we look at the
matrix product J(−1/X)−1j̃S(X)J(X), where j̃γ(X) is the matrix-valued automorphy factor
defined in (4.14). Then the graphs of the six nontrivial entries of this product matrix, multiplied
by suitable elementary factors to make them real and finite at the origin, look as in Figure 2
and are now smooth functions on the real line!1 The same graph also beautifully illustrates the
interrelationship of the different matrix invariants of knots which we spoke of above, because the
six curves that are plotted are at the same time canonical lifts to C∞(R) of the six components
of the matrix of formal power series Φα(h) that is associated to the knot and to every rational
number α (here for α = 0). In this way the matrix J of Habiro-like functions determines the
formal power series Φα(h) (to get values of α other than 0, one would replace −1/X by γ(X) for
any γ ∈ SL2(Z) with γ(∞) = α), and conversely the matrices Φα(h) determines the matrix J
simply by J(α) = Φα(0).

1To avoid misconceptions, we note that the other striking property of this picture, its symmetry with respect
to the vertical axis, is due to the accidental fact that the 41 knot is amphicheiral. But already for the next simplest
case of the 52 knot, which will be the second of our three standard examples throughout the paper, the matrix J
would be have size 4× 4 with 12 non-trivial entries, all complex, and a graph of their 24 real and imaginary parts
would be visually unintelligible.
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This preliminary discussion and these pictures already give a first impression of the content
of this paper. However, giving the exact definitions of the various objects being studied is not
at all a straightforward business, because some of these are based only on numerical data and
cannot yet be justified by any theoretical considerations, so that they can only reasonably be
introduced after the numerical investigations have been presented, while in other cases there
are different candidate definitions whose equality is only conjectural. In the body of the paper
we will therefore present the material in two stages. Part I introduces the main players: the
perturbative power series, their conjectural analytic and number-theoretical properties, and
the emergence of an SL2(Z)-cocycle through their quantum modularity properties. The final
(conjectural) statements are given in Section 5, so that a reader who wants to see just the short
version of the story right away can skip directly to that section. Part II then contains more
detailed information about the definitions and properties of the objects appearing in Part I,
including a discussion of the numerical methods used, some of which are quite subtle. The
paper ends with an appendix containing tables of some of the functions studied for a few simple
hyperbolic knots.

Since the paper contains so many different types of objects, with rather intricate inter-
connections and taking shape only gradually in the course of the exposition, it seemed useful to
end this introduction by giving a detailed overview of the main ingredients. A further reason
to include this rather long list here is that it contains a number of items (the unexpected
appearance of algebraic units, a description of the Bloch group and extended Bloch group
in terms of “half-symplectic matrices”, the notions of “asymptotic functions near Q” and of
“holomorphic quantum modular forms”, a generalization of the Habiro ring to Habiro-like rings
associated to number fields other than Q, or a procedure to “evaluate” divergent power series
numerically) that are applicable or potentially applicable in domains quite separate from that
of quantum knot invariants and that therefore may be of independent interest.

• Indexing set. Both the rows and the columns of the matrices associated to a knot K
are indexed by a finite set PK that can be described either in terms of boundary parabolic
representations of the fundamental group of the knot complement S3 ∖ K or in terms of flat
connections, as explained in detail in Section 2.

• Lift of the complex volume. The leading asymptotic exponent of the new matrices
is a complex-valued function on the set PK which agrees with the complexified volume of the
boundary parabolic representation, except that the latter is only well-defined modulo 4π2Z.
Thus, a consequence of the refined quantum modularity conjecture is that the complexified
volume of a hyperbolic knot now has a canonical lift from C2/4π2Z to C.
• Level. As already mentioned, the matrices that we study also depend on a rational

number α. In all cases they are periodic in α, with the period N = NK however not always
being the same: it is 1 for the 41 and 52 knots, but 2 for the (−2, 3, 7)-pretzel knot. (These three
knots will serve as our standard illustrations throughout the paper.) Similarly, the modular
invariance properties are not always under the full modular group SL2(Z), but sometimes under
the subgroup Γ(N). We do not know what this “level” N is in general, although we have
a guess (in terms of the quasi-periodicity of the degrees of the colored Jones polynomials), but
its appearance in the numerical investigations was striking.

• Perturbatively and non-perturbatively defined power series. In the original ver-
sion of the quantum modularity conjecture, the main statement was the existence of a collection
of formal power series Φα(h) describing the relationship between J(X) and J(γX) for large X
and fixed γ ∈ SL2(Z), with no prediction of what this power series was. However, in two pa-
pers [14, 15] by Tudor Dimofte and the first author explicit candidates for these power series as
perturbative series in h defined by Gaussian integration of a function explicitly given in terms
of a triangulation of M3, rendering the original conjecture much more precise. These series
will now form all but the top entry of the second column of our matrix.

(
The first column is
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simply (10 . . . 0)t.
)
The top entry of the second column is defined in a completely different, non-

perturbative way in terms of the expansion near q = e2πiα of the Kashaev invariant of K seen as
an element of the Habiro ring. All of this will be explained in detail in Section 2, while the defi-
nitions of the other entries of the matrix Φα(h), which are again given by perturbatively defined
power series in all but the top row and (conjecturally) by elements of the Habiro ring for their
top entries, will emerge via the Refined quantum modularity conjecture discussed in Sections 4.

• Arithmetic aspects. One of the main themes of this paper is that the topology of a knot
involves a large amount of surprisingly complicated algebraic number theory. This is valid both
for the values of the Kashaev invariant itself and of its generalizations as given by the ma-
trix J(x) at rational arguments x and more generally for the coefficients of the entries Φ

(σ,σ′)
α (h)

(α ∈ Q, σ, σ′ ∈ PK), which conjecturally belong to Q(h). Among the most striking things that
we found were the occurrence of certain algebraic units, which led to the paper [10] with Frank
Calegari associating units (modulo nth powers) in the nth cyclotomic extension of an arbitrary
number field to elements in the Bloch group of this field, congruence properties of Ohtsuki type
(which will be touched on only briefly here but will become a main theme in the planned paper
with Peter Scholze and Campbell Wheeler on the construction of Habiro rings associated to
any number field), and universal bounds, independent of the knot, for the denominators of the
coefficients of the perturbative power series occurring (see Section 9.2).

• Half-symplectic matrices and the extended Bloch group. The power series con-
structed in [14, 15] are given in terms of the so-called Neumann–Zagier data describing the
combinatorics of a triangulation of a knot complement. This data takes the form of an N × 2N
integral matrix, where N is the number of simplices of the triangulation, together with a solu-
tion (corresponding to the “shape parameters”, i.e., the cross-ratios of the vertices of the ideal
tetrahedra) of a collection of algebraic equations defined by this matrix. The key property here
is that the defining matrix is the upper half of a 2N×2N symplectic matrix over Z. This leads to
a somewhat different description than the standard one of the Bloch group and extended Bloch
group. All of this is discussed in Section 6, together with the definition of the perturbative series
and a different appearance of the same construction in the context of Nahm sums.

• Unimodularity and inverse matrix. Experimentally, we find that the matrices that we
construct are always unimodular, and also that there are explicit formulas for their inverses as
linear (or, for the top row, quadratic) rather than higher-degree polynomials in the entries of
the matrices themselves. Combined with the behavior under complex conjugation, this leads to
a kind of generalized unitarity property for our matrices (of course, again only conjecturally, but
we will not keep repeating this since most of the properties we are discussing are only conjectural,
though based on such extensive data that they are very unlikely not to hold). All of this will
be discussed in Section 5. The formula for the inverses of our matrices (apart from the top
row) can be interpreted as giving quadratic relations for our power series, a special case of which
appears in a recent paper of Gang, Kim and Yoon [22] and which will be described in Section 3.3.
These quadratic relations will take on a life of their own in the companion paper [44] in terms
of expressions for the “state integrals” defined by Kashaev and others as bilinear expressions in
power series in q = e2πiτ and q̃ = e−2πi/τ .

• Extension property. As already stated, the rows and columns of our matrices are indexed
by the set PK of flat connections. This set has a canonical element, the trivial connection, which
we put at the beginning of the list, and the first row and column of each of our matrices then has
a completely different nature from the other entries. In particular, as we already saw, the first
column always consists of a 1 followed by 0s, so that the entire matrix is in (1+r)×(1+r) block tri-
angular form, where 1+r = |PK |. This means that these matrices are describing structures which
are r-dimensional extensions of 1-dimensional substructures. This can be seen clearly in the q-
holonomy discussed below, where the recursions satisfied by elements giving the top row contain
a constant term 1 and those of the other rows are the corresponding homogeneous recursions.
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• q-holonomy. As already explained, the second column (the first column being trivial) of
our matrices of formal power series has a direct definition in terms of the triangulation of the
knot complement and the corresponding Neumann–Zagier data. The other columns are defined
in a more complicated way that we still have not understood completely. Roughly speaking,
each of the entries of the original column belongs to a “q-holonomic system”, meaning that it
is part of a sequence of functions of q = e2πiα that satisfy linear recursions over Q[q] and hence
span a finite-dimensional space, and the other columns belong to, and in fact span, the same
space. This applies not only to the matrices of formal power series in h, but also to the Habiro-
like matrices J and to the matrices of q-series studied in [44], and will be discussed in detail in
Section 7. The mysterious point here is that the columns of our matrices, which are completely
and uniquely defined by the various properties embodied in the refined modularity conjecture,
give a canonical basis for these q-holonomic modules, but that even in those situations where
we know what the module is or should be, we do not have an a priori description of this basis.

• Refined quantum modularity. As stated at the beginning of this introduction, our
whole story arises from the quantum modularity conjecture (QMC) made in [84]. In its original
form, the QMC says that for all γ =

(
a b
c d

)
in SL2(Z) we have

J(γX) ≈ (cX + d)3/2J(X)Φ̂a/c

(
2πi

c(cX + d)

)
, X →∞

as X tends to infinity with a bounded denominator, where Φ̂α(h) for α ∈ Q is a “completed” ver-
sion of Φα(h) obtained by multiplying it by a suitable pure exponential in 1/h, and where “≈”
denotes asymptotic equality to all orders in 1/X (or h). This statement already refines the
volume conjecture of Kashaev [58] and its arithmetic properties and extension to all orders as
described in [16]. In the refined quantum modularity conjecture (RQMC), which will be devel-
oped step by step in the course of Sections 3 and 4, it is extended in two different ways. First
of all, the above asymptotic statement will be generalized by replacing the function J : Q→ Q
by the other entries, initially of the first column and then by a kind of “bootstrapping” process
(see below) of the whole matrix. More importantly, however, the right-hand side will be sharp-
ened by the addition of lower-order terms which are completed versions of other entries of the
matrix Φ̂α(X). Since the addition of an exponentially smaller expression to a divergent power
series does not make sense a priori, this requires a process of numerical evaluation by “optimal
truncation” and then “smoothed optimal truncation” as listed in the bullet “Numerical aspects”
below and discussed in detail in Sections 4.1 and 10.2. The final result gives an asymptotic de-
velopment to much higher precision of each of the generalized Habiro-functions J(σ,σ′) evaluated
at γX with X tending to infinity as a linear combination of (r + 1) of the power series Φ̂α(h),
with α = a/c and h = 2πi/c(cX + d). This can then be written compactly in matrix form as

J(K)(γX) ≈ j̃γ(X)J(K)(X)Φ̂
(K)
a/c

(
2πi

c(cX + d)

)
(= equation (4.12)), which is the final version of the RMC. Here the “automorphy factor” j̃γ(X)
is a diagonal matrix whose first entry is (cX+d)3/2 and whose other entries are pure exponentials
in X + d/c. Note that this property relates the matrices J and Φ̂, and allows in particular to
compute the second one from the first one.

• A matrix-valued cocycle. The matrix-valued form of RQMC as just stated leads im-
mediately to the definition of an SL2(Z)-cocycle with coefficients in the space of matrix-valued
functions on Q (or more precisely—and necessary in order to have an SL2(Z)-module structure—
of almost-everywhere-defined functions on P1(Q)), defined by

Wγ(x) = J(γx)−1j̃γ(x)J(x),
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where this time the “automorphy factor” j̃g(x) is a slightly different diagonal matrix, again with
elementary entries, as defined explicitly in equations (4.14) and (3.5). The cocycle properties
of this automorphy factor imply that Wγ is a multiplicative cocycle, meaning that Wγγ′(X) is
equal to Wγ(γ

′X) times Wγ′(X). Its remarkable properties are summarized in the next two
bullets.

• Analyticity and holomorphic quantum modular forms. The most important single
discovery of this paper is that the cocycle Wγ(X), originally defined on rational numbers by the
formula just given, extends to a smooth function on the real numbers. This fact, which might
have been found purely experimentally by looking at the graphs of the components of Wγ(X), as
illustrated by Figure 2 above, and which can also be checked purely experimentally, as explained
in Section 5.4, was actually predicted in advance on the basis of the occurrence of the same
cocycle γ 7→ Wγ with a completely different construction in the companion paper [44] to this
one. Specifically, in that paper we construct a matrix Qhol(τ) of holomorphic functions of
a complex variable τ ∈ C∖R, whose entries are power series with integer coefficients in q = e2πiτ ,
and such that the coboundary Qhol(γτ)−1Qhol(τ) extends holomorphically across both the half-
lines

(
γ−1(∞),∞

)
and

(
−∞, γ−1(∞)

)
, with the restrictions to these two half-lines coinciding

with the function Wγ there. This extendability of Qhol(γτ)−1Qhol(τ) across subintervals of the
real line means that Qhol is an example of a “holomorphic quantum modular form”, a new type
of object that turns out to occur in many other contexts and that will be described briefly in
Section 5.4 and in detail in the papers [44, 85].

• “Functions near Q”. Each component Φσ,σ′
α (h) of the matrix Φα has a natural com-

pletion, as explained in Section 2, defined as its product with a certain exponential in 1/h and
(in the case of the top row) a half-integral power of h, and it is these completions that appear
in the original quantum modularity conjecture and its various extensions. It turns out that
the “right way” to think of these collections of series is that they represent one single “asymp-
totic function near Q” defined by Q(σ,σ′)(α− ℏ) = Φ̂σ,σ′

α (2πiℏ), where α varies over Q and ℏ is
infinitesimal. This notion of asymptotic functions near Q (or simply “functions near Q” for
short), which will be defined and explained more carefully in Section 5.3, sheds light on sev-
eral properties of our knot invariants (and also turns out to occur also in other contexts). In
particular, the cocycle Wγ , which was initially defined (almost everywhere) on Q by the for-
mula Wγ(x) = J(γx)−1j̃γ(X)J(x), is not a coboundary in the space of functions on Q, but is
one in the larger space of functions near Q: Wγ(x) = Q(γx)−1Q(x). The occurrence of the same
cocycle with two different representations as a coboundary in appropriate matrix-valued SL2(Z)-
modules provides the link between the two papers and the reason for our belief that both the
matrix Q of generalized Habiro functions and the matrix Qhol of q-series are realizations of the
same underlying motive-like object.

• Numerical aspects. Everything in the paper is based on numerical computations, and
these have several non-obvious aspects, as discussed in Section 10. In particular, we explain
there how Kashaev invariants can be computed rapidly and how one can then use extrapolation
techniques to evaluate many coefficients of the power series Φ

(σ,σ′)
a (h) numerically and recognize

them as real numbers. The calculations also have a “bootstrapping” aspect in which the succes-
sively discovered relations among the series as described by the final refined quantum modularity
conjecture permit one to evaluate these series to increasing levels of precision in a recursive way.
Finally, in order to identify the correct series in the RQMC, it is crucial to be able to evaluate
the divergent series in h occurring, not only up to order hN for any fixed integer N , but up to
exponentially small error terms, where the constant occurring in the exponential can also be
successively improved in several steps. This is done by a process of “smoothed optimal trun-
cation” which was originally a second appendix to this paper, but has now been relegated to
a separate publication [45] and is also briefly described in Section 10.2.

We end with a few miscellaneous remarks on different aspects of the above constructions.
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• Resurgence aspects. An important aspect of our paper are the matrices Φα(h) of
factorially divergent series and their distinguished lift Wγ(x) to a matrix of analytic functions.
In this connection we find several properties that can be classified under the general heading
of “resurgence.” On the one hand, we find experimentally that the coefficients of each entry
of Φα(h) are given asymptotically as integer linear combinations of certain divergent expansions
involving the coefficients themselves multiplied by gamma factors. The integrality of the so-
called Stokes constants is a phenomenon observed in the current paper and further studied
in [27, 28]. A different connection of our results with the usual resurgence properties of the
perturbative series Φα(h) is the method of smoothed optimal truncation mentioned just above,
which can be seen as an alternative approach to lifting these power series to actual functions
than the standard method via Borel resummation and Padé approximation. Of course, the
final emergence of a canonical lift coming from the analyticity properties of the cocycle Wγ(x)
eventually makes both numerical procedures obsolete in our case, but this cocycle could not be
found without having them first.
• Equivalence of the various invariants. We observe that all of our invariants, assuming

their conjectured properties, determine each other and in particular all are determined by the
colored Jones polynomials and perhaps even by the Kashaev invariant alone. The point of
the paper is therefore not that our new invariants can distinguish knots, but that they reveal
new properties and make connection with SL2(C)-representations of the fundamental group,
hyperbolic geometry and non-trivial number theory.
• Eighth roots of unity and the Dedekind eta function. A further minor surprise

was the appearance of Dedekind sums at several places in the calculations, which we had not
expected. Notably, this occurred in the construction of state sums for the non-Habiro-like
elements of our matrix J (see Section 7.2) and in the ubiquitous but mysterious 8th root of
unity that enters all of our asymptotic formulas and that is related to the 8th root of unity
occurring in the modular transformation behavior of η3.
• 3 + 1: a possible alternative interpretation. Finally, we mention a point that will

not be discussed in the paper at all, but may give a different way of looking at the objects
studied here. Namely, the (σ, σ′) entry of the matrix J(X) that we have associated to a knot K,
and hence also to its complement M = S3 ∖ K, can be thought of as numbers associated
to the “Witten cylinder”, which is the 4-manifold M × R equipped with a pair of boundary-
parabolic SL2(C) connections σ and σ′ on its two ends, together with an integer k, called the
“level” in complex Chern–Simons theory [80, 81] and related to the rational number X by
k + 2 = den(X). This suggests a possible interpretation of the entries of J(X) as expectation
values of some yet-to-be-defined (3 + 1)-dimensional theory on M × R.

Figure 3. The Witten cylinder.

• Relation with the Kauffman bracket skein module. The objects that we have
studied have another connection with a 3+1 dimensional theory that goes though the Kauffman
bracket skein module and a conjecture of Witten (see, for instance, [79]), now a theorem of
Gunningham–Jordan–Safronov [51]. Recently, Lê and the first author defined an explicit map
from the Kauffman bracket skein module of an integer homology 3-sphere to the Habiro ring [36].
The image of this map (with can be effectively computed, and is naturally a topological invariant)
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generates a finite-rank Z
[
q±
]
-module which is a subset of the Habiro ring, and a basis of this

module conjecturally coincides with the top row of the J-matrix.
We end this introduction with a disclaimer. In this paper, we are trying only to present inter-

esting new phenomena and are not striving for maximum generality. Not only are we restricting
our attention to knot complements rather than arbitrary 3-manifolds, but we will usually assume
that the knots being considered have whatever properties (e.g., that their parabolic character
varieties are 0-dimensional) are convenient for our exposition. In any case most of the material
presented is empirical, based on extensive experiments with a few very simple knots having all of
these special properties, and we prefer not to speculate on what modifications might be needed
in more general situations. Of course, we expect that the whole story is quite general, and
ongoing calculations by Campbell Wheeler that appear in his thesis [76] indeed already confirm
that very similar types of statements will hold, for instance, for the Witten–Reshitikhin–Turaev
invariant of certain closed hyperbolic 3-manifolds.

Part I: The main story

1 The original quantum modularity conjecture

The starting point for this paper is the quantum modularity conjecture of [84], which itself is
a refinement of the famous volume conjecture of Kashaev [58]. Let us recall them briefly here.
Kashaev defined an invariant ⟨K⟩N ∈ Z[e2πi/N ] for every knot K and positive integer N and
conjectured that if K is hyperbolic knot the absolute values of these numbers grow exponentially
like ecKN , where 2πcK is the hyperbolic volume of S3 ∖ K. A more precise version of the
conjecture [48] says that there is a full asymptotic expansion

⟨K⟩N ∼ N3/2ev(K)NΦ(K)

(
2πi

N

)
(1.1)

valid to all orders in 1/N where v(K) is the suitably normalized complexified volume of K
and where Φ(K)(h) is a (divergent) power series.

(
Here and from now on we use the abbrevia-

tion ζn = e(1/n) for n ∈ N, where e(x) := e2πix.
)
It was further conjectured in [16] and in [23]

that Φ(K)(h) has algebraic coefficients, and more precisely that it belongs to ζ8δ
−1/2FK [[h]],

where FK is the trace field of K and δ some nonzero element of FK .
For instance, for the simplest hyperbolic knot 41 (figure eight knot), the Kashaev invariant

is given explicitly by

⟨41⟩N =
N−1∑
n=0

∣∣(ζN ; ζN )n
∣∣2 (1.2)

(see [59, equation (2.2)]) with (q; q)n :=
∏n

j=1

(
1 − qj

)
, with values for N = 1, . . . , 6 and 100

given numerically by

N 1 2 3 4 5 6 · · · 100

⟨41⟩N 1 5 13 27 46 + 2
√
5 ≈ 50.47 89 · · · 8.2× 1016

Here the trace field FK is Q
(√
−3
)
and the series Φ(K)(h) begins

Φ(41)(h) =
1
4
√
3

(
1 +

11

72
√
−3

h+
697

2
(
72
√
−3
)2h2 + 724351

30
(
72
√
−3
)3h3 + · · ·

)
. (1.3)
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Similarly, for the knot 52, where the Kashaev invariant is given by formula (A.2) below, the trace
field is Q(ξ), where ξ is the root of ξ3 − ξ2 + 1 = 0 with negative imaginary part, and Φ(K)(ℏ)
has an expansion starting

Φ(52)(h) =
ζ8√

3ξ − 2

(
1 +

117ξ2 − 222ξ + 203

24(3ξ − 2)3
h

+
117279ξ2 − 209229ξ + 157228

2
(
24(3ξ − 2)3

)2 h2 + · · ·

)
. (1.4)

The passage from the volume conjecture to the quantum modularity conjecture (QMC for
short) begins with the observation that the Kashaev invariant ⟨K⟩N is the value at x = −1/N of
a 1-periodic function J(x) = J (K)(x) on the rational numbers (i.e., it satisfies J(x+ 1) = J(x)
for all x), defined uniquely by the further requirement that it is a Galois-invariant function
of e(x). (The uniqueness holds because every primitive N -th root of unity is a Galois conjugate
of ζN .) As shown by Murakami and Murakami [64], this function can also be identified with
an evaluation of the colored Jones polynomial JK,N (q) [57, 73] by J(x) = JK,N (e(−x)) for
any N ∈ Z with Nx ∈ Z. In [84], it was found that (1.1) is just the special case

(
a b
c d

)
=
(
0 −1
1 0

)
of the more general (and of course still conjectural) statement that

J (K)

(
aN + b

cN + d

)
∼ (cN + d)3/2ev(K)(N+d/c)Φ

(K)
a/c

(
2πi

c(cN + d)

)
(1.5)

to all orders in N as N → ∞ for any matrix
(
a b
c d

)
∈ SL2(Z) with c > 0, where Φ

(K)
α (ℏ) is

a power series with algebraic coefficients depending on α ∈ Q/Z, with Φ
(K)
0 = Φ(K). This does

not yet look like a modularity statement, but in [84] it was further observed that (1.5) holds
also for non-integral values of N (which we then denote by X for clarity) but with one crucial
modification, namely that we have

J (K)

(
aX + b

cX + d

)
∼ (cX + d)3/2ev(K)(X+d/c)Φ

(K)
a/c

(
2πi

c(cX + d)

)
J (K)(X) (1.6)

to all orders in 1/X as X →∞ in Q with bounded denominator, with the same series Φ
(K)
α (ℏ)

as before but now with the additional factor J (K)(X) depending only on X modulo 1. (Here the
condition of X having bounded denominator was included in the original conjecture, and will be
retained for its refinements in this paper, because all of our experiments were done for X with
simple fractional part. However, it will be a consequence of the smoothness statements cited
above and discussed in Section 5.2 that in fact (1.6) remains true for any sequence of rational
numbers X tending to infinity, and we have checked this experimentally for many cases.)

Formula (1.6) expresses the QMC in a quantitative form, in terms of specific power series
with algebraic coefficients, while the plots of J (K)(X) and J (K)(X)/J (K)(γX) for K = 41
and γ = S that were shown (on a logarithmic scale because the functions grow exponentially)
in the introduction presents the same conjecture in a more qualitative visual form. Both ways
of looking at the conjecture will be refined greatly during the course of this paper.

The QMC (1.6), or even its special case (1.5), give us not just one, but a whole collection of
power series Φ

(K)
α (ℏ) associated to any knot. These series Φ

(K)
α (ℏ) have a striking arithmetical

structure. For example, in [84] we found that for K = 41 and α with denominator 5 that

Φ(41)
α (ℏ) = ± 4

√
3ε1/5α

(
A

(α)
0 +A

(α)
1 h+ · · ·

)
if α ∈ 1

5
Z ∖ Z, (1.7)

where εα is a unit (whose fifth root must be chosen appropriately) of the cyclotomic fieldQ(ζ15) =
F41(ζ5) (ζm := e(1/m))

(
explicitly εα = Z4

α−1
Zα(Zα+1)2

, with Zα := e
(
α− 1

3

))
and the coefficients A

(α)
n
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belong to the same field, e.g., A
(a)
0 = 1 + Z2

α + Z−2
α − Z4

α − Z−4
α , a prime of norm 29. More

generally, in the appendix to this paper extensive evidence is given for the conjecture that the
power series Φ

(K)
α (ℏ) for any knot K and rational number α always belongs to µδ−1/2 c

√
εFK,c[[h]]

with the same δ as before and some 8c-th root of unity µ, where c is the denominator of α, FK,c

the field obtained by adjoining the c-th root of unity e(α) to FK , and ε is an S-unit of FK,c for
some finite set of primes S of FK independent of c. This experimentally discovered property of
quantum invariants of knots in turn suggested the purely number-theoretical conjecture, which
was then proved in [10], that to an arbitrary number field F and element of the Bloch group
of F one can canonically associate a sequence of S-units, well defined up to c-th powers, in the c
cyclotomic extension F (ζc) for all c ≥ 1, with S independent of c.

We will give more details about this and other arithmetic properties of the series Φ
(K)
α (such

as estimates of the denominators of their coefficients) in Section 9, and will give a complete proof
in the case of the 41 knot in Section 8. (This case and a few others were proven independently by
Bettin and Drappeau [6].) We will also give detailed numerical evidence for several other knots,
for several values of α ∈ Q/Z, and to a relatively high degree in the power series Φ

(K)
α (ℏ), in the

appendix to this paper. The calculations required to obtain these values are not at all trivial,
since one has to be able to calculate the Kashaev invariants for (many) arguments with large
denominators and then use very precise extrapolation methods to be able to find the coefficients
to high enough accuracy to recognize them numerically as algebraic numbers.

Presenting the numerical evidence for the QMC was the initial motivation for this paper, and
this already led to interesting numerical observations, such as the appearance of the near unit ε
or the denominator estimates mentioned above. But in the course of doing these calculations
we discovered that the QMC is only part of a much larger story involving a whole collection
of power series

{
Φ
(K,σ)
α (ℏ)

}
α∈Q/Z,σ∈PK

indexed by a certain finite set PK (defined below) as well
as by an index in Q/Z as before. In the rest of Part I, we explain what these power series are,
how they are related to each other, and how they lead to new invariants and to a whole series
of successive refinements of the original quantum modularity conjecture.

2 A collection of formal power series

2.1 The indexing set PK

The power series mentioned above are labeled by a finite set PK that coincides with the set of
boundary parabolic SL2(C)-representations of Γ := π1

(
S3 ∖K

)
(or equivalently, of flat connec-

tions on S3 ∖K whose restriction to the peripheral subgroup of Γ are parabolic) whenever the
latter is finite. For a hyperbolic knot, this set has three distinguished elements, denoted σ0, σ1
and σ2, corresponding respectively to the trivial representation, the geometric representation
(given by the natural embedding of Γ into the isometry group of H3) and the antigeometric rep-
resentation, which is its complex conjugate and corresponds to the geometric representation of
the orientation-reversed hyperbolic knot. We denote by Pred

K = PK∖{σ0} the reduced set of non-
trivial representations (or connections), and often number the elements of PK as σ0, σ1, . . . , σr,
where r :=

∣∣Pred
K

∣∣ will be called the rank of the knot. (We hope that the superscript “red” will
not confuse the reader into thinking that the representations in Pred

K are reducible; in fact, quite
the opposite is true.) The points of Pred

K correspond to the solutions (in C) of a set of polynomial
equations

(
the so-called Neumann–Zagier equations coming from a triangulation of S3 ∖K

)
as

explained in detail in Section 6. In particular, Pred
K comes equipped with an action of the ab-

solute Galois group Gal
(
Q/Q

)
, so to every element σ ∈ Pred

K is associated a number field Fσ(
given either as the field generated by the coordinates of the solution of the NZ equations or as
the fixed field of the stabilizer of σ in Gal

(
Q/Q

))
, called its trace field, together with an em-

bedding, also denoted σ, of Fσ into Q ⊂ C. The field Fσ1 coincides with the trace field FK of K
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as introduced above and Fσ2 is the same field with the complex conjugate embedding into C.
Two more important invariants of σ ∈ Pred

K are an element ξσ of the Bloch group (or third K-
group) of Fσ and a complexified volume V(σ) = V(K,σ) (= i times the usual volume plus the
Chern–Simons invariant), obtained as the image of ξσ under the Borel regulator map or via the
dilogarithm, or alternatively its renormalized version v(σ) = v(K,σ) = V(σ)/2πi, which for the
geometric representation is the same as the number v(K) occurring in (1.1). (We will usually
omit the letter K in this and all similar notations when the knot is not varying.) We extend all
of these invariants to PK by setting Fσ0 = Q, V(s0) = 0, ξσ0 = 0. In Section 6 of Part II, we
will give more details about the set PK and its invariants, and also say something about the sit-
uation when the variety of parabolic representations contains positive-dimensional components.
In Sections 5 and 6, we will also describe a large (matrix- rather than vector-valued) collection
of power series associated to K.

Before explaining how to associate a formal power series to each σ ∈ PK and α ∈ Q/Z,
we first would like to make the above definitions more tangible by describing PK explicitly for
three simple examples, the knots 41 and 52 already used above and the (−2, 3, 7) pretzel knot
(henceforth simply (−2, 3, 7)), which will be our basic examples throughout the paper. They
have ranks 2, 3, and 6, respectively. For K = 41, the only elements of PK are the three universal
ones σ0, σ1 and σ2, the first corresponding to the trivial SL2(C)-representation with trace field Q
and the other two both with trace field Q

(√
−3
)
, but with the complex embedding

√
−3 7→ −i

√
3

in the second case. The corresponding volumes are V(σ0) = 0, V(σ1) = iV , and V(σ2) = −iV ,
where V = 2.02 . . . is the usual volume, and are all real because the knot 41 is amphicheiral.(
In general, the mirror knot K of a knot has trace fields FK,σ = FK,σ and V(K,σ) = V(K,σ).

)
For K = 52 we again have only two essentially different fields Q and Q(ξ) with ξ3 − ξ2 + 1 = 0
(the cubic field with discriminant −23), the latter with three embeddings σ1, σ2, and σ3 corre-
sponding to choosing the root ξ ∈ C with negative, positive, or zero imaginary part, respectively.
But for the third knot K = (−2, 3, 7), PK consists of seven elements, the trivial representa-
tion σ0, the three representations σ1, σ2, σ3 corresponding to the trace field of K (which is
the same as that of 52, with its embeddings numbered the same way), and three further ele-
ments σ4, σ5 and σ6 corresponding to the field Q(η) with η3 + η2 − 2η − 1 = 0 (the abelian
cubic field with discriminant 49) together with the three embeddings into C given by sending η
to 2 cos(2π/7), 2 cos(4π/7) and 2 cos(6π/7), respectively. In general, to each knot K we associate
the algebra AK = Q×Ared

K defined as the product of the abstract fields Fσ with σ ranging over
representatives of the Galois orbits of PK , so that PK

(
resp. Pred

K

)
can be identified with the

set of all algebra maps from AK

(
resp. Ared

K

)
to C; then for our three basic examples, we have

Ared
41 = Q

(√
−3
)
, Ared

52 = Q(ξ), Ared
(−2,3,7) = Q(ξ)×Q(η). (2.1)

2.2 Four constructions of the power series Φ(K,σ)
α (h)

We will now describe several different approaches to obtaining the formal power series Φ
(K,σ)
α (h)

associated to an element σ of PK and a number α ∈ Q/Z.
If σ = σ1 is the geometric representation, then Φ

(K,σ)
α (h) is by definition just the power

series ΦK
α (h) whose existence is asserted by the quantum modularity conjecture, and for σ in

the Galois orbit of σ1 we simply apply Galois conjugation to this series (at the level of its n-th
power if α has denominator n), with some special consideration for the roots of unity occurring.
For example, for the knot K = 41 the series Φ

(K,σ)
α (h) for α = 0 and α = a/5 are the ones

given by (1.3) and (1.7), respectively, for σ = σ1. We then get Φ
(K,σ2)
0 simply by replacing

√
−3

by −
√
−3 (or, in this case, replacing h by −h and multiplying by i) in (1.3), and Φ

(41,σ2)
a/5 is

obtained from (1.7) by performing the same operation on both εa/5 and the coefficients A
(a/5)
n .

Similarly, if K is the 52 knot then the value of Φ
(K,σ)
α (h) at α = 0 is given by (1.4) if σ = σ1,
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and the values for σ = σ2 or σ3 are obtained simply by replacing ξ by its Galois conjugates. In
general, the coefficients of these power series lie in the product of a certain root of unity, the
c-th root (where c is the denominator of α) of a unit in Fσ, and a conjugate of the same factor
δ−1/2 as in the original QMC as described in Section 1. More details about the arithmetic of
these numbers will be given in Section 9.

The reader may have noticed that the QMC asserts the existence of the power series Φ
(K,σ)
α (h)

for σ = σ1 but gives no clue about how to define them (and especially how to define those
for σ not a Galois conjugate of σ1) given a hyperbolic knot K. A definition of the power
series Φ

(K,σ)
α (h) for all σ ̸= σ0 was given by Tudor Dimofte and the first author in the two

papers [14] (for α = 0) and [15] (for general α). What is more, the definition of the series uses
as input the gluing equation matrices of an ideal triangulation of the knot complement, along
with a solution to the Neumann–Zagier equations. Roughly speaking, one associates to an ideal
triangulation of the knot complement a collection of polynomial equations (the Neumann–Zagier
equations) whose solutions correspond to the elements of Pred

K , the solution for each σ ∈ Pred
K

being a collection of algebraic numbers (the shape parameters) belonging to the field Fσ. One
then associates to each solution of these equations and for each α ∈ Q/Z a certain integral
that is evaluated perturbatively by the standard method of Gaussian integration and Feynman
diagrams (with a possible ambiguity of multiplication by a power of e(α)). This process, whose
details will be reviewed in Section 6, is completely effective and gives, for instance, the three
power series

Φ
((−2,3,7),σj)
0 (h) =

ξj√
6ξj − 4

(
1−

33ξ2j − 123ξj + 128

24(3ξj − 2)3
h

−
104172ξ2j − 183417ξj + 130189

2
(
24(3ξj − 2)3

)2 h2 + · · ·

)
(2.2)

for the elements σ1, σ2, and σ3 of P(−2,3,7), where ξ1, ξ2, ξ3 are the Galois conjugates of ξ as
numbered above, and the three totally different power series

Φ
((−2,3,7),σj+3)
0 (h) =

√
ηj − 2

14

(
1−

43η2j − 21

168
h−

3928η2j + 63ηj − 1491

2 · 1682
h2 + · · ·

)
(2.3)

for the elements σ4, σ5, and σ6, where ηj = 2 cos(2πj/7) are the Galois conjugates of η in the
ordering given above. The coefficients of the power series Φ(K,σ)(h) for all σ ∈ PK have similar
arithmetic properties to the special case when σ is Galois conjugate to σ1.

As well as the “straight” power series Φ
(K,σ)
α (h), we will also need the completed functions

Φ̂(K,σ)
α (h) = eV(σ)/c2hΦ(K,σ)

α (h), c = den(α), σ ̸= σ0, (2.4)

which for the moment we think of as a purely formal expression (the exponential of a Laurent
series in h with a simple pole) but which will be given a more precise sense later (cf. Section 10.2).
It is this combination that appear in all of our asymptotic formulas, e.g., the right-hand side
of (1.5) would become

(cN + d)−3/2Φ̂
(K)
a/c

(
2πi

cN + d

)
in this notation. We should also mention here that in [15] the series Φ

(K,σ)
α (h) is defined only

up to an 2n-th root of unity, where n is the denominator of α. The generalized QMC that we
will present in the next section eliminates this ambiguity (at least up to a net sign depending
on σ but not on α).
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An idea that will be crucial for this paper is that we have to associate power series Φ
(σ)
α (h) ∈

Q[[h]] to the trivial representation σ = σ0 as well as to the non-trivial ones to get a coherent
total picture. Here there is no Neumann–Zagier data and we use instead a completely different
construction based on the Habiro ring. Recall that this ring is defined by

H := lim←−Z[q]/((q; q)n), (2.5)

where (x; q)n =
∏n−1

i=0

(
1 − qix

)
denotes the q-Pochhammer symbol or “shifted quantum fac-

torial”. As mentioned in the introduction, Habiro showed in [52] that the Galois-equivariantly
extended Kashaev invariant J (K)(α) (α ∈ Q) is the evaluation at q = e(α) of a uniquely defined
element, which we will denote by J (K)(q), of this ring. We then define the power series Φ

(K,σ)
α (h)

for σ = σ0 by

Φ(K,σ0)
α (h) = J (K)

(
e(α)e−h

)
∈ Q[e(α)][[h]].

For example, for K = 41 we have the explicit representation (equivalent to (1.2) for q = ζN )

J (41)(q) =

∞∑
n=0

(
q−1; q−1

)
n
(q; q)n =

∞∑
n=0

(−1)nq−n(n+1)/2(q; q)2n (2.6)

of J (K)(q) as an element of the Habiro ring, and setting q = e−h ∈ Q[[h]] we find

Φ
(41,σ0)
0 (h) = 1− h2 +

47

12
h4 − 12361

360
h6 +

10771487

20160
h8 − · · · (2.7)

(which happens to be even because the knot 41 is amphicheiral), while the Kashaev invariant
for our second standard example 52 is given by formula (A.2) below and we find

Φ
(52,σ0)
0 (h) = 1 + h+

5

2
h2 +

49

6
h3 +

797

24
h4 +

19921

120
h5 + · · · .

For the (−2, 3, 7) knot, we have no convenient Habiro-like formula for the Kashaev invariant,
but there is still a method (explained in Part II) to obtain its expansion to any order in h at
any root of unity just from the values at roots of unity, the expansion at q = 1 beginning

Φ
((−2,3,7),σ0)
0 (h) = 1− 12h+ 129h2 − 7275

4
h3 − 384983

8
h4 + · · · .

Note that the complexified volume vanishes for the trivial representation, so that (2.4) would
suggest that we should define the completion Φ̂

(K,σ0)
α (h) to be Φ

(K,σ0)
α (h). But in fact, for reasons

that will appear clearly in Section 3, it turns out to be better to define Φ̂
(K,σ0)
α (h) in this case by

Φ̂(K,σ0)
α (h) =

(
ch

2πi

)3/2
Φ(K,σ0)
α (h). (2.8)

We have now described constructions of the power series Φ
(K,σ)
α (h) for every σ ∈ PK , but

based on very disparate ideas: if σ is the geometric representation or is Galois conjugate to it,
we use the quantum modularity conjecture and Galois covariance, for other representations σ
different from the trivial one we use a perturbative approach (which is given in [14] and [15] and
conjectured there to agree with the first definition when σ = σ1), and for the trivial representa-
tion we define Φ

(K,σ)
α (h) by a completely different formula based on the Habiro ring. In fact, as

already mentioned in the introduction, there is even a fourth approach in which the series Φ
(K,σ)
α

are obtained from the asymptotics as q tends radially to e(α) of certain q-series with integral
coefficients. (This connection will not be discussed further here but will be the main theme
of [44].) It is then natural to ask why we consider these different series as being similar at all
and why we denote them in the same way. In the next two sections, we will present a whole
series of properties that justify this.
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3 Interrelations among the power series Φ(σ)
α (h)

In this section, we describe four empirically found properties, of very different natures, that link
and motivate the formal power series introduced above.

3.1 The generalized quantum modularity conjecture

The function J (K) from Q/Z to Q, which was originally defined as the Galois-equivariant ex-
tension of the Kashaev invariant ⟨K⟩N , has now re-appeared as the constant term Φ

(K,σ0)
α (0) of

one of a collection of formal power series Φ
(K,σ)
α (h) ∈ Q[[h]] indexed by the elements σ of a finite

set PK associated to the knot. This suggests that we should look also at the constant terms of
the other series as well, i.e., that we should study the functions (generalized Kashaev invariants)

J (K,σ) : Q/Z→ Q, J (K,σ)(α) := Φ(K,σ)
α (0) (3.1)

for all σ ∈ PK . These functions turn out to have beautiful arithmetic properties generalizing
in a non-obvious way the Habiro-ring property of the original functions J (K) = J (K,σ0). These
will be the subject of the subsequent paper [38] and, apart from a few numerical examples, will
not be discussed further here. Instead, we will concentrate on the asymptotic properties of the
new functions (3.1). In particular, we can ask whether these functions satisfy an analogue of the
quantum modularity conjecture for J (K). The answer turns out to be positive, but to involve
a number of successive refinements arising from the numerical data. We will present the simplest
version here and the strongest versions, which require more preparation, in Sections 4 and 5.

We start once again with the simplest knot K = 41. Here the function J (K,σ0)(α) = J (K)(α)
is the one given by (1.2) (with ζN replaced by e(α)) whereas the new functions J (K,σ1)(α)
and J (K,σ2)(α) are given explicitly by

J (K,σ1)(α) =
1

√
c 4
√
3

∑
Zc=ζ6

c∏
j=1

∣∣1− qjZ
∣∣2j/c, c = den(α), q = e(α) (3.2)

and J (K,σ2)(α) = iJ (K,σ1)(−α) = J (K,σ1)(α). The original QMC says that J (41)
(
aX+b
cX+d

)
is asymp-

totically equal to (cX + d)3/2Φ̂
(41)
a/c

(
2πi

c(cX+d)

)
J (41)(X) for any matrix

(
a b
c d

)
∈ SL2(Z) as X tends

to infinity with bounded denominator, where the “completion” Φ̂ is defined by (2.4). When
we look at the corresponding asymptotics for the two new functions and for the two simple
matrices

(
0 −1
1 0

)
and

(
1 0
2 1

)
of SL2(Z), we see a similar behavior, but with two major differences:

the “automorphy factor” (cX + d)3/2 is no longer there, and there is a new exponential factor
involving the complex volume. Explicitly, what we find experimentally is

J (41,σ1)(−1/X) ∼ ev(K)/(num(X)·den(X))J (41,σ1)(X)Φ̂
(41)
0

(
2πi

X

)
(3.3)

(here “num” and “den” denote the numerator and denominator) and

J (41,σ1)(X/(2X + 1)) ∼ ev(K)/((X+ 1
2
)·den(X)2)J (41,σ1)(X)Φ̂

(41)
1/2

(
2πi

2(2X + 1)

)
(3.4)

and similarly for Φ(σ2) but with v(K) replaced by v(K,σ2) = −v(K). The two equations (3.3)
and (3.4) can be written uniformly in the form

J (41,σ1)(γX) ∼ ev(K)λγ(X)J (41,σ1)(X)Φ̂
(41)
a/c

(
2πi

c(cX + d)

)
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for γ =
(
a b
c d

)
∈ SL2(Z), where λγ(x) is defined for x = r/s ∈ Q with r and s coprime by

λγ(x) :=
1

den(x)2
(
x− γ−1(∞)

) =
c

s(cr + ds)
= ± c

den(x)den(γx)
. (3.5)

The experiments show that the same thing happens for other knots K and all representa-
tions σ, i.e., we can formulate the generalized quantum modularity conjecture (GQMC)

(cX + d)−κ(σ)e−v(σ)λγ(X)J (K,σ)(γX) ∼ J (K,σ)(X)Φ̂
(K)
a/c

(
2πi

c(cX + d)

)
, (3.6)

as X → ∞ with bounded denominator (as usual), and where γ =
(
a b
c d

)
∈ SL2(Z) with c > 0,

and where the weight κ(σ) of the representation σ ∈ PK is defined by

κ(σ) =

{
3/2 if σ = σ0,

0 otherwise.
(3.7)

Notice that (3.6) coincides with the original QMC when σ = σ0 because in this case the fac-
tor e−v(σ)λγ(X) on the left-hand side of (3.6) is identically 1. We also see that the two different
definitions (2.4) and (2.8) of Φ̂(K,σ) for σ ̸= σ0 and σ = σ0 can now be written in a uniform
way as

Φ̂(K,σ)
α (h) = |cℏ|κ(σ)ev(σ)/c2ℏΦ(K,σ)

α (h), c = den(α), ℏ := h/2πi, (3.8)

which will also be convenient at many other points. Notice that the convention ℏ = h/2πi is
almost, but not quite, the same as the one used in ordinary quantum mechanics, and also that
the factor 2πi relating h and ℏ is the same as that used in our two different normalizations V(σ)
and v(σ) = V(σ)/2πi of the volume, so that ev(σ)/c

2ℏ = eV(σ)/c2h.

We end this subsection by proving a cocycle property of the arithmetic function λγ(X) that
will be needed in Section 5.

Lemma 3.1. For all γ, γ′ ∈ PSL2(Z) and x ∈ Q∖
{
γ′−1(∞), (γγ′)−1(∞)

}
, we have

λγγ′(x) = λγ(γ
′x) + λγ′(x).

Proof. Let γ =
(
a b
c d

)
, γ′ =

(
a′ b′

c′ d′

)
and γγ′ =

(
a′′ b′′

c′′ d′′

)
. Then c′′d′ − c′d′′ = c, and hence

λγγ′(x)− λγ′(x) =
c′′

s(c′′r + d′′s)
+

c′

s(c′r + d′s)
=

c

s(c′r + d′s)(c′′r + d′′s)
= λγ(γ

′x)

as required. A more enlightening way to say this is that λγ(γ
′(∞)) = C(γγ′, γ′), where

C(γ1, γ2) :=
c
(
γ1γ

−1
2

)
c(γ1)c(γ2)

= γ−1
2 (∞)− γ−1

1 (∞),

which is a coboundary and hence a cocycle. ■

3.2 Lifting the QMC from constant terms to power series

In the previous subsection, we generalized the original QMC by replacing the Kashaev invari-
ant J (K) by the generalized Kashaev invariants J (K,σ) for any σ ∈ PK . This in turn will be
further refined in Section 4 by adding terms of exponentially lower order to the right-hand side
of the asymptotic formula. Here we discuss instead a different refinement.
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Our starting point, just as in Section 3.1, is that the Kashaev invariant J (K)(α) is equal
to the constant term Φ

(σ0)
α (0) of the power series Φ

(σ0)
α (h) as defined in Section 2, so that the

original QMC (1.6) can be rewritten as

Φ
(σ0)
γX (0) ∼ (cX + d)3/2Φ

(σ0)
X (0)Φ̂a/c

(
2πi

c(cX + d)

)
for X tending to infinity with fixed fractional part or with bounded denominator. (Here we
again omit the knot K from the superscripts when it is not varying to avoid cluttering up the
notations. Recall also that c > 0.) It is then natural to ask whether this asymptotic formula can
be lifted to a corresponding statement for the full series Φ

(σ0)
α (h) rather than just its constant

term. The answer is affirmative, but with a little twist,

Φ
(σ0)
γX (h∗) ∼ (cX + d)3/2Φ

(σ0)
X (h)Φ̂a/c

(
2πi

c(cx+ d)

)
, (3.9)

where x = X − ℏ with ℏ as in (3.8) and h∗ = h
(cx+d)(cX+d) .

Let us explain what the asymptotic expansion (3.9) means in the simplest case of the figure 8
knot. Recall that Φ

(σ0)
X (h) = J

(
e(X)e−h

)
where J (q) = J (41)(q) is the element of the Habiro

ring given by (2.6), related to J(X) = J (41)(X) by J(X) = J (e(X)). Since the Habiro ring is
closed under the operator qd/dq, it contains the function J ′ defined by

J ′(q) := q
d

dq
J (q) =

∞∑
n=1

(
q−1; q−1

)
n
(q, q)n

n∑
k=1

k
1 + qk

1− qk
. (3.10)

We then define the formal derivative J ′ : Q/Z → 2πiQ by J ′(X) = 2πiJ ′(e(X)). Then the
statement of (3.9) in this case is

1

(cX + d)2
J ′(aX+b

cX+d

)
J
(
aX+b
cX+d

) − J ′(X)

J(X)
≈ − 2πi

(cX + d)2

Φ̂′
a/c

(
2πi

c(cX+d)

)
Φ̂a/c

(
2πi

c(cX+d)

) , (3.11)

interpreted in the following sense. The left-hand side of (3.11) is 2πi times an algebraic number
belonging to some fixed cyclotomic field for each fixed element γ =

(
a b
c d

)
∈ SL2(Z) and bound

on the denominator of X, while the right-hand side is defined only as a divergent power series
in (cX + d)−1. The claim is then that when we compute both sides of (3.11) for fixed γ and
for X tending to infinity with bounded denominator, using (3.10) to compute the terms J ′(X)
and J ′(γX) as exact algebraic numbers, the two expressions agree numerically to all orders
in 1/X, and this is the statement that we verified numerically for several elements γ and se-
quences of large rational numbers X. Note that (3.11) is almost what we would get if we
differentiated the original QMC formula (1.6) logarithmically (which of course we are not al-
lowed to do since it is only an asymptotic statement valid for large rational numbers X with
fixed denominator and hence is rigid), except that then we would have an extra term 3

2
c

cX+d
which is in fact not present because equation (3.9) contains (cX + d)3/2 rather than (cx+ d)3/2.

All of this was for the trivial connection σ0. If we consider instead an arbitrary element σ
of PK , then what we find is the obvious combination of (3.6) (which was only for the constant
terms Φ(0)) and (3.9) (which gave the “twist” needed to include h), namely

(cX + d)−κ(σ)e−v(σ)λγ(X)Φ
(σ)
γX(h∗) ∼ Φ

(σ)
X (h)Φ̂a/c

(
2πi

c(cx+ d)

)
, (3.12)

with x = X − ℏ and h∗ = h/(cx+ d)(cX + d) as in (3.9).
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Equation (3.12) differs in two notable ways from the original QMC (1.6): the appearance
of the “tweaking factor” e−v(σ)λγ(X) and the change of infinitesimal variable from h to h∗.
In fact, the first is explained very simply by replacing the two power series Φ(σ) in (3.12)
by their completions as defined in (3.8), because a short calculation shows that the num-
ber λγ(X) defined in (3.5) is equal to the difference between 1/den(X)2ℏ and 1/den(γX)2ℏ∗
with ℏ∗ := ℏ∗/2πi = ℏ/(cx+ d)(cX + d), so that (3.12) becomes simply

Φ̂
(K,σ)
γX (h∗) ∼ (cx+ d)−κ(σ)Φ̂

(K,σ)
X (h)Φ̂

(K,σ1)
a/c

(
2πi

c(cx+ d)

)
, (3.13)

where we have now again included the complete labels of the Φ̂ series for clarity. In this version
both the tweaking factor e−v(σ)λγ(X) and the automorphy factor (cX+d)3/2 have been absorbed
into the completed power series, but then producing a new automorphy factor (cx+ d)−3/2. Fi-
nally, the “twisting” from h to h∗ is partly motivated by the calculation just given and the sim-
plifications in (3.13), but more conceptually by observing that x = X−ℏ implies γx = γX − ℏ∗.
Equation (3.13) will then take on an even more natural form in terms of the notion of “functions
near Q” that will be introduced in Section 5.

3.3 Quadratic relations

The next interconnection among the power series Φ
(K,σ)
α (h) associated to a given knot K that

we discover (experimentally, as always) from the examples is that they satisfy an unexpected
quadratic relation, namely∑

σ∈Pred
K

Φ(K,σ)
α (h)Φ

(K,σ)
−α (−h) = 0. (3.14)

Notice that this relation is non-trivial even at the level of its constant term, where it says,
for example, that the value of the generalized Kashaev invariant J (52,σ)(α) defined in the last
subsection belongs to the kernel of the trace map from Q(ξ, ζα) to the trace field Q(ξ) of 52 for
every rational number α. The special case of this when α = 0 was observed independently by
Gang, Kim and Yoon [22].

The relation (3.14) is practically vacuous for the figure 8 knot, since in that case it follows
immediately from the identity Φ

(41,σ2)
α (h) = iΦ

(41,σ1)
−α (−h) mentioned at the beginning of Sec-

tion 2.2. (Stated differently, if we multiply the series (1.3) by its value at −h, we obtain an
element of

√
−3Q

[[
h2
]]
, so that the trace down to Q vanishes, and similarly for (1.7).) But for

the 52 knot the identity is non-trivial even at α = 0, where (1.4) gives

Φ52(h)Φ52(−h) = 1

3ξ − 2
+

102ξ2 − 183ξ + 135

(3ξ − 2)7
h2

− 143543ξ2 − 252029ξ + 190269

4(3ξ − 2)13
h4 + · · ·

in which one can check that the three coefficients given, and in fact all coefficients up to or-
der h108, lie in the kernel of the trace map from Q(ξ) to Q. Notice, by the way, that the series
here has much simpler coefficients (specifically, much smaller denominators) than the individ-
ual factors as given by (1.4). This is a special case of a more general phenomenon that will
be discussed in [38]. When we look at (3.14) for this knot but other values of α, the same
thing happens: the m-th root of a unit in Q(ξ, ζm) that is a common factor of each Φ

(52)
α (h)

when α has denominator m cancels when we multiply the series at α and −α, and the series
in Q(ξ, ζm)[[h]] that we find, although it is no longer even when α is different from 0 or 1/2,
always has coefficients lying in the kernel of the trace map from Q(ξ, ζm) to Q(ζm).
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The above illustrates the relation (3.14) for our second simplest knot 52. For our third
standard example K = (−2, 3, 7), this relation is even more surprising because now PK has two
Galois orbits, as discussed in Section 2, and the quadratic relation relates them to one another.
Specifically, if we consider separately the contributions from σi for 1 ≤ i ≤ 3 and for 4 ≤ i ≤ 6,
then equation (2.2) gives

3∑
j=1

Φ(K,σj)(h)Φ(K,σj)(−h)

= TrQ(ξ)/Q

(
ξ2

2(3ξ − 2)
+

605ξ2 − 1217ξ + 878

24(3ξ − 2)7
h2 + · · ·

)
=

1

2
+ 0h2 − 13

26
h4 +

2987

211 · 3
h6 +

3517753

216 · 5
h8 − 110362454561

219 · 33 · 5 · 7
h10 − · · ·

and equation (2.3) gives

6∑
j=4

Φ(K,σj)(h)Φ(K,σj)(−h)

= TrQ(η)/Q

(
η − 2

2 · 7
+

18811η2 − 78046η + 67485

28 · 3 · 74
h2 + · · ·

)
= −1

2
+ 0h2 +

13

26
h4 − 2987

211 · 3
h6 − 3517753

216 · 5
h8 +

110362454561

219 · 33 · 5 · 7
h10 + · · · .

Each of these two series belongs to Q
[[
h2
]]
. Computing many more terms

(
we went up

to O
(
h38
))
, we find that their sum vanishes, confirming the quadratic relation in a very striking

way and at the same time showing a subtle interdependence between the two cubic number
fields associated to this knot. We note, however, that these are only two of the three number
fields making up the algebra A(−2,3,7) = Q × Q(ξ) × Q(η) as defined in (2.1). We have not
found any relation between the power series Φ

(K,σ0)
α (h) or Φ

(K,σ0)
α (h)Φ

(K,σ0)
−α (−h) and the power

series Φ
(K,σ)
α (h) for σ ̸= σ0. This is reflected in the fact that the summation in (3.14) is over Pred

K

and not over all of PK .

We end this subsection by mentioning that, as well as the quadratic relation (3.14), there are
also bilinear expressions in the Φ(K,σ) that are not zero, but (experimentally, and in some cases
provably) are convergent rather than factorially divergent power series. This will be discussed
briefly in Section 5.4 and in detail in the companion paper [44]. Here we give only a numerical
example. In Proposition 5.2 below, we will give certain explicit bilinear combinations of the Φ-
series which we believe are the Taylor expansions of analytic functions and hence have a positive
(and known) radius of convergence. In the simplest case (corresponding in the notation of
Proposition 5.2 to the (σ1, σ1) component of the matrix W

(41)
S (1 + x), where S =

(
0 −1
1 0

)
as

usual, combined with (5.9)), this power series is given by

e−v(41)Φ(2πix)Φ

(
− 2πix

1 + x

)
− ev(41)Φ

(
2πix

1 + x

)
Φ(−2πix), (3.15)

with Φ = Φ
(41)
0 as given in (1.3). The power series Φ has coefficients growing like n! times

an exponential function (the precise asymptotics will be described in the next subsection) and
has 100th coefficient of the order of 1094, but the combination (3.15) has radius of convergence 1
and, for instance, 100th coefficient of order 10−3. Notice that if we replace all Φ’s in (3.15) by
the corresponding Φ̂’s, then the prefactors e±v(41) disappear.
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3.4 Asymptotics of the coefficients

The third interrelationship between the series Φ
(σ)
α for different elements σ of PK arises via the

asymptotics of their coefficients.

For both theoretical and numerical purposes, we need to be able to compute the “values” of
the divergent series Φ

(σ)
α (h) for very small h, and for this we need to know how their coefficients

grow. We will write A
(σ)
α (n) = A

(K,σ)
α (n) for the coefficient of hn in Φ

(K,σ)
α (h).

As usual, we start with the simplest example K = 41, σ = σ1 (geometric representation),
and α = 0, where Φ

(K,σ)
α (h) is just the series (1.3). Let us write just A(n) for its n-th coefficient(

so A(0) = 3−1/4, A(1) = 11A0/72
√
−3
)
. Calculating many coefficients and using a standard

numerical extrapolation method that is recalled in Part II, we find that A(n) grows factorially
like (n− 1)!λ−n

(
c0 + c1n

−1 + c2n
−2 + · · ·

)
for some constants λ and ci. The numbers λ and c0

are easily recognized to be 2V(K) = 2iVol(K) and 3A(0)/2π, respectively, but the further
coefficients ci have more and more complicated expressions. It turns out that a much more
convenient representation for the asymptotics is as a sum of shifted factorials (n− 1− ℓ)! rather
than of terms n!/nℓ, because in this version we find the expansion

A(n) ∼ 3

2π

∑
ℓ≥0

(−1)ℓA(ℓ)
(n− ℓ− 1)!

(2V(41))n−ℓ
(3.16)

with easily recognizable coefficients to all orders. If we now recall that Φ
(41,σ2)
0 (h) equals

iΦ
(41,σ1)
0 (−h) and hence A

(41,σ2)
0 (n) = (−1)nAni, then we can recognize (3.16) as one of a pair of

coupled asymptotic expansions

A
(σ1)
0 (n) ∼ 3

2πi

∑
ℓ≥0

A
(σ2)
0 (ℓ)

(n− 1− ℓ)!

(2V(41))n−ℓ
, A

(σ2)
0 (n) ∼ −3

2πi

∑
ℓ≥0

A
(σ1)
0 (ℓ)

(n− ℓ− 1)!

(−2V(41))n−ℓ
.

This already looks quite nice, but the picture becomes even clearer when we consider also the
coefficients B(0) = 1, B(1) = 0, B(2) = −1, . . . of the third series Φσ0

0 as given in (2.7). Since
the B(n) vanish for n odd, it would first seem that one has to give separate asymptotic formulas
according to the parity of n, but a better way is to write B(n) = A

(σ0)
0 (n) as a sum of two

asymptotic expansions labelled by the two other elements σ1 and σ2 of PK :

B(n) ∼
√
2π
∑
ℓ≥0

A
(σ1)
0 (ℓ)

Γ
(
n− ℓ+ 3

2

)
(−V(41))n−ℓ+3/2

−
√
2π
∑
ℓ≥0

A
(σ2)
0 (ℓ)

Γ
(
n− ℓ+ 3

2

)
V(41)n−ℓ+3/2

. (3.17)

Here we observe that the expressions 2V(41), −2V(41), −V(41) and V(41) occurring in the
denominators of the last two formulas can be written in a uniform way as V(σ1) − V(σ2),
V(σ2)−V(σ1), V(σ0)−V(σ1) and V(σ0)−V(σ2), respectively. Exactly analogous asymptotic
statements turn out to hold for the coefficients of the series Φ

(41,σ)
α also for α ̸= 0, with the same

coefficients, leading for this knot to the uniform conjectural statement

A(K,σ)
α (n) ∼ (2π)κσ−1

∑
σ′ ̸=σ

MK(σ, σ′)
∑
ℓ≥0

A(σ′)
α (ℓ)

Γ(n− ℓ+ κσ)(
V(σ)−V(σ′)

)n−ℓ+κσ
, (3.18)

for all elements σ ∈ PK and all α ∈ Q, where κσ is defined as in (3.7) and where the coeffi-
cients MK(σ, σ′) are integers independent on α, given for K = 41 by

M41 =

0 1 −1
0 0 −3
0 3 0

 .
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Experiments with our other two standard sample knots 52 and (−2, 3, 7) reveal the same asymp-
totic behavior (3.18), with the matrix MK given in these two cases by

M52 =


0 1 1 −1
0 0 4 −3
0 −4 0 −3
0 3 3 0

 , M(−2,3,7) =



0 0 0 1 0 0 0
0 0 0 1 2 2 2
0 0 0 1 2 2 2
0 −1 −1 0 0 0 0
0 −2 −2 0 0 0 0
0 −2 −2 0 0 0 0
0 −2 −2 0 0 0 0


.

We end this subsection by making a number of remarks about the asymptotic formula (3.18)
and the matrices MK .

1. The coefficients of the matrices MK are much simpler invariants of K than the coefficients
of the power series Φ

(σ)
α , because they are rational integers rather than algebraic numbers and

also do not depend on α. It would be of considerable interest to have an direct topological
definition of these numbers rather than just an indirect one in terms of the (still conjectural)
asymptotic formula (3.18). One possibility in Section 2 is that they are related to the counting
of flow lines in Floer homology. They are also presumably the same as the skew-symmetric
matrices of “Stokes indices” as recently introduced by Kontsevich [61].

2. The different forms of the asymptotics of the coefficients of Φ
(σ)
α for σ = σ0 and σ ̸= σ0

are directly related to the different weights and different completions of these series as given in
equation (3.8).

3. A different asymmetry between the trivial and non-trivial representations is seen in the
fact that MK(σ, σ0) always vanishes but MK(σ0, σ) does not, meaning that the large-index
coefficients of the Φ(σ0) series “see” the small-index coefficients of the Φσ series for σ ̸= σ0
but not vice versa. It is interesting to note that similar “one-way phenomenon” regarding the
matrices appearing in [78], see also Gukov et al. [49, 50].

4. In all three examples given above, we further observe that apart from their first col-
umn, which vanishes, and first row, which does not, the matrices MK are skew-symmetric, i.e.,
MK(σ, σ′) = −MK(σ′, σ) for σ, σ′ ̸= σ0. This phenomenon, which we expect to hold for all
knots, will be shown below to be a formal consequence of the quadratic relation (3.14).

5. We also observe that the lower 4× 4 block of the matrix M(−2,3,7) vanishes identically. In
view of the numbering of the indices, this means that MK(σ, σ′) vanishes whenever σ and σ′ are
both real and distinct from σ0. This in fact holds for all knots and is a special case of the more
general identity MK

(
σ, σ′

)
= −MK(σ, σ′) for all σ, σ′ ̸= σ0, which we can prove easily (assuming

that the expansion (3.18) is correct) simply by taking the complex conjugate of (3.18) and noting
that V(σ) and A

(σ)
α (n) are the complex conjugates of V(σ) and A

(σ)
−α(n), respectively (and, of

course, that the coefficients of MK are real). The minus sign arises from the pure imaginary
prefactor (2πi)−1 in (3.18).

6. A corollary of (3.18) is the growth estimate

A(σ)
σ (n) = O

(
nκσ−1n!∆(σ)−n

)
,

where

∆(σ) = ∆(K,σ) = min
MK(σ,σ′ )̸=0

∣∣V(σ)−V(σ′)
∣∣.

This estimate will be important for the optimal truncation that is used in the next section and
discussed in more detail in Section 10 and in [45].

7. We should also mention that there is still some sign ambiguity in the definition of the ma-
trix MK . At the moment, even assuming the validity of the various conjectures presented
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in the next two sections, we can only normalize the power series Φ
(σ)
σ (h) up to the ambi-

guity of a sign εσ ∈ {±1} independent of α but depending on σ, and making this change
would multiply MK(σ, σ′) by εσεσ′ (which would not affect either of the properties mentioned
in 3 and 4 above). Similarly, when σ = σ0 the formula defining MK(σ, σ′) has an inherent
ambiguity coming from the choice of sign of square-root of Vσ−Vσ′ = −Vσ′ in (3.18) (only in the
first term; the choices for the other terms are then determined in the obvious way), so that each
of the matrix entries MK(σ0, σ

′) is actually only well defined up to sign. Of course, it is possible
that there is some canonical way to normalize everything to eliminate these ambiguities, but we
do not yet know how to do this.

8. Actually, however, there is a problem with all of these statements that we have glossed
over so far but that does need to be addressed. This is that the right-hand side of (3.18) does
not really make sense as it stands, since the terms on the right-hand side are given by divergent
series and hence can be computed only up to some level of precision, but at the same time have
exponentially different orders of growth, so that it is not a priori clear what it means to add
them. In the case of 41, we did not see this problem, because there is only one term in (3.18).
This point will be discussed briefly in Section 10.2 and in detail in [45].

4 Refining the quantum modularity conjecture

In this section, we will show how one can go beyond the original QMC as described in Section 1
or its generalization as described in Section 3.1. We will present this via a series of successive
refinements, each one found experimentally and building on its predecessors. This will culmi-
nate in the complete, though of course still conjectural, definition (in Sections 4.1–4.4) of the
matrices J and Φ discussed in the introduction and of the final refinement (in Section 4.5) of
the original quantum modularity conjecture.

4.1 Improving the quantum modularity conjecture: optimal truncation

The QMC in its original form says that J (K)(−1/X) agrees with X3/2J (K)(X)Φ̂
(K)
0 (2πi/X)

to all orders in 1/X as X tends to infinity with fixed denominator, with a similar statement
when −1/X is replaced by aX+b

cX+d for any
(
a b
c d

)
∈ SL2(Z). A natural question is whether we can

do better than this and obtain an asymptotic estimate, or even a precise asymptotic formula, for
the difference of these two expressions. At first sight this seems to makes no sense, since Φ̂

(K)
0 (h)(

or more generally Φ̂
(K)
a/c (h)

)
is given in terms of a divergent power series that a priori does not

have a numerical value but rather gives only an approximation up to any given order in h. But
we can remedy this by replacing the series Φ(h) = Φ

(K)
0 (h) or Φ

(K)
a/c (h) by its “optimal trunca-

tion” Φ(h)opt obtained by truncating the divergent infinite series at the value of N (depending
on h) where the terms of this series become smallest in absolute value, a little like what is done
in physics when for instance the magnetic moment of the electron is computed to high accuracy
by truncating a divergent sum of Feynman integrals at a suitably small term. If Φ(h) =

∑
Anh

n

with An growing like n!/Bn for some complex number B, then this “naive optimal truncation”
is given by

∑N
n=0Anh

n with N chosen near to |B/h|. Then the first term neglected, and hence
also the expected error, is of the order of magnitude of e−N , so we have a way to define Φ(h)
up to an exponentially small error rather than only up to fixed powers of h. Of course, to get
a completely well-defined function Φ(h)opt we would have to fix a prescription for choosing N ,
say as the floor or ceiling or nearest integer to |B/h| (and perhaps also dividing by 2 the last
term retained), but since the terms with n ≈ |B/h| are all very small the specific choice is not
important and we will do better later anyway.

Using the description of the asymptotics of the coefficients of the series Φ
(K,σ)
α (h) given in

Section 3.4 above, we can compute their optimal truncations explicitly. Starting as usual with
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the simplest example K = 41 and α = 0
(
and also Φ = Φ(σ1) = Φ(41,σ1), the series occurring in

the QMC
)
, we have from (3.16) the estimate An = O(n!/(2V )n) with V = Vol(41) = 2.02988 . . .,

so the optimal truncation occurs for N near 2V/|h|. The expected error in Φ(h) for h = 2πi/X
is therefore of the order of e−2v(41)X , with v(41) = V/2π = 0.32306 . . . , and since the completed
function Φ̂(h) = eV/hΦ(h) grows like ev(41)X , this means that not only the relative but even the
absolute expected error in Φ̂(h)opt is exponentially small in this case. As a numerical example, we
consider the value X = 100. The Kashaev invariant ⟨41⟩100, which we can compute to arbitrary
precision from (2.6) with q=ζ100, has the approximate value 81985188380512462.9310054954341,
while the corresponding value 1003/2Φ̂

(
2πi
100

)opt
(obtained in this case by retaining the first 66

coefficients of the divergent series) has the numerical value 81985188380512461.9269943535808
with an expected error of the order of 10−12. We see immediately that these two numbers are
not equal within the accuracy of the computation, so that the most obvious first guess for a more
precise version of the QMC is not true. But when we look at the difference of these two numbers
we find the numerical value〈

41
〉
100
− 1003/2Φ̂

(
2πi

100

)opt

≈ 1.00401114185,

which is very close to 1. Repeating the experiment for other large integral values of X, we
find that this difference has the asymptotic expansion 1− h2 + 47

12h
4 + · · · (with h = 2πi/X as

before), which we recognize easily as the power series Φ(41,σ0)(h) as given in (2.7), and a numerical
computation shows that indeed the optimal truncation of that series at h = 2πi

100 has precisely the
same value 1.00401114185, to the same precision. Repeating the calculations with other integral
and non-integral values of X and also for J (41)(γX) for matrices γ ∈ SL2(Z) other than

(
0 −1
1 0

)
,

we find the same behavior in all cases, leading to the conjectural asymptotic formula

(cX + d)−3/2J (41)

(
aX + b

cX + d

)
?
≈ J (41)(X)Φ̂(41,σ1)

(
2πi

c(cX + d)

)
+ Φ̂(41,σ0)

(
2πi

c(cX + d)

)
(4.1)

for any matrix γ =
(
a b
c d

)
∈ SL2(Z) and for X →∞ with fixed (or bounded) denominator, with

the coefficient of the second series Φ̂(41,σ0) being 1 for all X and γ.
Here the natural question arises whether one can improve the precision of (4.1) even further

by adding to the right-hand side a third term involving Φ̂(41,σ2), the last of the three completed
series for the 41 knot. But for the moment we can’t even make sense of this since the intrinsic
error in the optimal-truncation values of both Φ̂(41,σ1)(h) and Φ̂(41,σ0)(h) has exponential decay
of the order of e−v(K)X (for the first function because it grows like e+v(K)X and has a relative
error e−2v(K)X , as we have already seen, and for the second because it grows only like a power
of X but has a larger relative error e−v(K)X by virtue of (3.17)). This is the same as the order
of growth of the third function Φ̂(41,σ2)(h), so that dividing the difference of the left- and right-
hand sides of (4.1) by Φ̂(41,σ2)(h), with all Φ̂-series defined by optimal truncation, would give
meaningless values. We will return to this problem in Section 4.3 below. Before doing that,
however, we first look at two other knots for which a new phenomenon appears that is not visible
for 41.

4.2 New elements of the Habiro ring

For the knot K = 52 the set PK has four elements: the Habiro one, the geometric and antige-
ometric ones, and the one corresponding to the real embedding of the cubic field FK = Q(ξ).
However, it has only three distinct real volumes: the geometric volume ImV(σ1) = Vol(K)
(with the numerical value 2.82812 . . . ), the anti-geometric volume ImV(σ2) = −Vol(K), and 0
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for both σ = σ0 and σ = σ3, and consequently only three distinct orders of growth (one expo-
nentially large, one exponentially small, and two of polynomial growth) of the corresponding Φ̂-
functions Φ̂(K,σ)(h). (For simplicity we concentrate for the moment only on α = 0 and omit it
from the notations.) This means that in the analogue of (4.1) there is only one term that is
too small to be seen numerically when we replace the Φ-series by their optimal truncation, so
that here one can hope to see three distinct terms on the right. To test this, we take the same
values N = 100, h = 2πi/N as before. Then J (K)

(
− 1

N

)
is of the order of magnitude of 1022

and the difference N−3/2J (K)
(
− 1

N

)
− Φ̂(K,σ1)

(
h
)opt − Φ̂(K,σ0)

(
h
)opt

is of the order of 1 just as
before, but now when we divide this difference by Φ̂(K,σ3)

(
h
)opt

we obtain 2+(1.22−5.23i)·10−9,
strongly suggesting that the limiting value of this difference as X tends to infinity through in-
tegers exists and is equal to 2. Further experiments for non-integral values of X and for other
matrices γ =

(
a b
c d

)
then lead to the new conjectural asymptotic statement

(cX + d)−3/2J (52)

(
aX + b

cX + d

)
?
≈ J (52)(X)Φ̂

(52,σ1)
a/c

(
2πi

c(cX + d)

)
+ Φ̂

(52,σ0)
a/c

(
2πi

c(cX + d)

)
+Q(52)(X)Φ̂

(52,σ3)
a/c

(
2πi

c(cX + d)

)
(4.2)

for all γ and all X tending to infinity with bounded denominator, where Q(52)(x) (which is
a temporary notation, only for this knot) is a function that is independent of γ but that, unlike
the constant coefficient 1 of the Habiro term Φ̂(K,σ0)(h), is not independent of x. Instead,
Q(52)(x) is numerically found to be a periodic function of period 1 taking on simple algebraic
values, the first few being

Q(52)(0) = 2, Q(52)
(
1
2

)
= 8, Q(52)

(
±1

3

)
=

37± 3
√
−3

2
, Q(52)

(
±1

4

)
= 29± 13i.

(These values were found experimentally, using a Chinese-remainder-type interpolation, and the
existence of such functions for all knots is not known.) Looking at more values (specifically,
for all x with denominator up to 200), we find that Q(52)(x) belongs to Z[e(x)] and is Galois-
invariant, so we can write it as Q(52)(e(x)) where Q(52)(q) is an element of Z[q] for every root
of unity q, the first values being given by

Ord(q) 1 2 3 4 5 6

Q(52)(q) 2 8 20 + 3q 29 + 13q 69 + 27q + 37q2 + 2q3 −46 + 69q

This suggests that q 7→ Q(52)(q) might be an element of the Habiro ring H defined in (2.5), just
as we know is the case for the coefficient J (52)(X) of the first Φ̂-term in (4.2). This hypothesis
can be tested numerically, because a well-known property of any element Q ∈ H (originally
observed by Ohtsuki [68] in the context of the WRT-invariants of integer homology spheres even
before the Habiro ring had been formalized) is that it satisfies an infinite number of congruences,
the simplest of which is that Q(ζp) for every prime number p should be congruent modulo p
to c0 + c1πp + c2π

2
p + · · ·+ cp−2π

p−2
p , where πp = ζp − 1 is the prime dividing p in Q(ζp) and

where the ci are rational integers independent of p. This means in our case that the coefficient
of xi in the polynomial Qp(1+ x) ∈ Z[x] should be congruent modulo p to a fixed integer ci ∈ Z
for all primes p > i + 1, and testing this for the numerically obtained polynomials Qn, we find
that it is indeed true, with Qp(ζp) ≡ Oh(πp) (mod p) for a power series Oh(x) ∈ Z[[x]] beginning

Oh(x) = 2− 3x+ 8x2 − 28x3 + 120x4 − 614x5 + 3669x6 − 25125x7 +O
(
x8
)
.

In fact, later we were able to guess an explicit formula, given below in Section 7.1, that is
manifestly in the Habiro ring and that reproduces the values of the polynomials Qn(q) and
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power series Oh(x) as given above. But in many other cases, including the (−2, 3, 7) knot
discussed below, we cannot give even conjectural explicit formulas of the required kind, and in
such cases it is important to be able to have a numerical test of the Habiro-ness of a periodic
function.

Notice that the right-hand side of (4.2) contains only three of the four completed power
series Φ̂52,σ

a/c . Just as for the 41 knot, this is not because the last one isn’t really there, but because
our approximate evaluations are not accurate enough at this point to detect the remaining term,
which is exponentially small. We will correct this in Section 4.3.

We were able to carry out similar calculations for the (−2, 3, 7) pretzel knot, though the
numerical analysis required here was much more arduous due to the larger number of series
involved. Recall that this knot has rank 6, so that PK contains seven elements. What makes
the calculation feasible at all is that five of these seven elements are real (the Habiro one and
the ones corresponding to the real embedding of Q(ξ) and to all three embeddings of Q(η)), so
that only one of the seven Φ̂-functions is exponentially small and hence invisible with optimal
truncation. (Actually, the fact that the other terms apart from the geometric one are of the
order of 1 is not quite enough: one also has to verify by using the formulas of Section 3.4 and the
numerical values of the complex volumes v(K,σi) that the absolute error made in calculating the
exponentially large dominant term Φ̂(K,σ1)(h) using optimal truncation is exponentially small.)
We find a formula exactly analogous to (4.2), but now with six terms on the right, namely

(cX + d)−3/2J (−2,3,7)

(
aX + b

cX + d

)
?
≈
∑

0≤j≤6
j ̸=2

Q
(−2,3,7)
j (X)Φ̂

((−2,3,7),σj)

a/c

(
2πi

c(cX + d)

)
, (4.3)

where j = 2 is omitted for the same reason as in (4.2) (viz., that the corresponding term is too
small to see at this stage) and where Q

(−2,3,7)
1 (x) = J (−2,3,7)(x), and Q

(−2,3,7)
0 (x) ≡ 1, and the

four new periodic functions Q
(−2,3,7)
j (x) = Q(−2,3,7)

j (e(x)) take values in Z[e(x)] just as before,
the first values (for j ̸= 0, 2) being

Ord(q) 1 2 3 4 5 6

Q(−2,3,7)
1 (q) 1 1 −5 + 6q 17− 8q −21− 27q − 5q2 + 4q3 −107 + 108q

Q(−2,3,7)
3 (q) −4 −12 −15− 10q −16− 2q −36− 20q − 29q2 − 24q3 23 + 14q

Q(−2,3,7)
4 (q) 2 −10 −16− 12q −46q −8− 44q − 38q2 − 48q3 116− 24q

Q(−2,3,7)
5 (q) −2 −6 −14− 6q 8− 10q 32q − 4q2 − 10q3 −82 + 122q

Q(−2,3,7)
6 (q) 2 2 4− 8q 10− 12q −4− 36q − 44q2 − 34q3 136− 16q

Just as with the 52 knot, we can verify the Ohtsuki property for these functions to a large
number of terms and thus convince ourselves that each one belongs to the Habiro ring, even
though in this case we do not know an explicit formula that makes this property manifest.

4.3 Smoothed optimal truncation

We already mentioned at the end of Section 4.1 that it would be natural to expect a third term
in (4.1) involving the missing Φ̂-function Φ̂(K,σ2)(h), and the same applies even more strikingly to
the two knots discussed in Section 4.2, where we were obliged to omit the σ2-term in both (4.2)
and (4.3) because it would have been absorbed in the error terms of the other Φ̂’s and hence
could not be seen numerically if these values were defined by naive optimal truncation. However,
there is a more precise way of turning the divergent series Φ(h) = Φσ

α(h) into functions that
are defined up to exponentially rather than merely polynomially small errors, but with a much
better exponent than before, by replacing the naive optimal truncation Φ(h)opt by a smoothed
version Φ(h)sm. The details of the procedure to do this are somewhat complicated and play no
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role for the story we are telling here, so will be given in detail in a separate publication [45] and
described briefly in Section 10.2, the only important point here being that the improvement is
sufficiently good, at least for our three standard knots, that we can unambiguously identify the
periodic coefficients of the missing Φ̂-terms.

We start as usual with the knot K = 41 and the series Φ(h) = Φ
(σ1)
0 (h) whose initial terms

are given in (1.3). In Section 4.1, we considered X = 100, h = 2πi
X and saw that the num-

ber 1003/2Φ̂(h)opt ≈ 8.195× 1016 had an error of the order of 10−12, which was more than
sufficient to identify its difference with

〈
41
〉
100

unambiguously as Φ̂(σ0)(h) but not enough to
see a possible contribution from the much smaller Φ̂(σ2)(h). If we replace optimal by smooth
truncation, then the error in Φ̂(h) decreases from (approximately) 10−15 to 10−44 and the er-
ror in Φ̂(σ0)(h) from 10−15 to 10−42. We can therefore compute the difference of the left- and
right-hand sides of (4.1) (for X = 100, γ = S) to 42 digits, finding that it vanishes, and since
the remaining Φ̂-value Φ̂(σ2)(h) has the much larger order of 10−14, we see that this quantity, if
it occurs at all, must have coefficient 0. But when we replace X = 100 by 1001

3 , we find that
the difference X−3/2J(−1/X)− J

(
1
3

)
Φ̂(σ1)(h)sm − Φ̂(σ0)

(
h
)sm

no longer vanishes but instead is
equal to Φ̂(σ2)

(
h
)sm

times −1.732050807568877293527446341i, which coincides to this accuracy
with −

√
−3. Doing the same for other large values of X with small denominators and other γ,

we find that (4.1) with all Φ-values interpreted by smooth rather than optimal truncation can
be improved to

(cX + d)−3/2J (41)

(
aX + b

cX + d

)
?
≈

2∑
j=0

Q
(41)
j (X)Φ̂(41,σj)

(
2πi

c(cX + d)

)
, (4.4)

where, just as for the (−2, 3, 7) pretzel knot, Q(41)
0 (x) = 1, Q

(41)
1 (X) = J (41)(x) and Q

(41)
2 is a 1-

periodic functions, the notations in each case being a shorthand for Q
(41)
σj . The first few values

of the periodic functions Q
(41)
i (x) = Q(41)

i (e(x)) for i = 1 and 2 are given by

Ord(q) 1 2 3 4 5 6

Q(41)
1 (q) 1 5 13 27 44− 4q2 − 4q3 89

2Q(41)
2 (q) 0 0 −2− 4q −14q −15− 30q − 22q2 − 8q3 46− 92q

Just as with the functions Q(52)(x) and Q
(−2,3,7)
i (x) (i = 3, 4, 5, 6) found for the 52 and (−2, 3, 7)

knots in the previous subsection, the function Q
(41)
2 (whose values we found by the numerical

procedure just outlined for all x with denominators up to 200), multiplied by 2, turned out to
always belong to Z[e(x)] and to satisfy all of the necessary Ohtsuki-type congruences near 0
and 1/2 required for it to be an element of the Habiro ring. In this case, following a tip
by Campbell Wheeler, we were actually able to guess a formula that reproduced all of the
numerically found values and (after multiplication by 2) was visibly in the Habiro ring, namely
the following simple variant of equation (2.6):

Q(41)
2 (q) =

1

2

∞∑
n=0

(
qn+1 − q−n−1

)(
q−1; q−1

)
n
(q; q)n. (4.5)

When we recompute the examples of Section 4.2 with smooth rather than optimal truncation,
the situation is exactly similar and we are able to add a Φ̂

(K,σ2)
α (h) term to the right-hand sides

of both (4.2) and (4.3), obtaining for both knots a conjectural approximate formula of the form

(cx+ d)−3/2J (K)

(
aX + b

cX + d

)
?
≈
∑

σ∈PK

Q(K)
σ (X)Φ̂

(K,σ)
a/c

(
2πi

c(cX + d)

)
, (4.6)

where Q
(K)
σ0 (x) = 1 and Q

(K)
σ1 (x) = J (K)(x). In Sections 7.1 and 9, we give more information

about these numbers including a formula for Q
(52)
σ2 (x) as an element of the Habiro ring.
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4.4 Strengthening the generalized quantum modularity conjecture

So far we have generalized the original quantum modularity conjecture (1.6) in two very different
ways: in Section 3.1, we extended it from the Kashaev invariant J = J (σ0) to the functions
defined in (3.1), and in the last three subsections we refined it by adding additional terms of
lower order to the right-hand side. Not surprisingly, these two can be combined, but with some
new aspects.

If we repeat the calculations described in the previous subsection (using smooth truncation
for all the Φ-series occurring) but with the function J (K) = J (K,σ0) replaced by the function
defined in (3.1) with σ ̸= σ0, then instead of (4.6) we find

e−v(σ)λγ(X)J (K,σ)

(
aX + b

cX + d

)
?
≈

∑
σ′∈Pred

K

J (K,σ,σ′)(X)Φ̂
(K,σ′)
a/c

(
2πi

c(cX + d)

)
, (4.7)

where J (K,σ,σ′) are 1-periodic functions on Q with J (K,σ,σ1)(x) = J (K,σ)(x) (cf. (3.6)). There are,
however, three main differences with (4.6). The first is that the automorphy factor (cX + d)3/2

is replaced for σ ̸= σ0 by the factor e−v(σ)λγ(X) involving the σ-th volume v(σ) (which is zero
for σ = σ0). The second is that the Habiro power series Φ̂

(K,σ0)
a/c , which in (4.6) had the coef-

ficient 1, now does not occur at all. The third is that the new functions J (K,σ,σ′)(x) are now
no longer elements of the Habiro ring when considered as functions of q = e(x), as was the
case for the functions J (K,σ0,σ′)(x) = Q

(K)
σ′ (x). But they are still Q-valued and have various

“Habiro-like” properties, including the following:

� J (K,σ,σ′)(x) for x ∈ Q/Z is the constant term of a power series Φ
(K,σ,σ′)
x (h) lying in the

same space as the power series Φ
(K,σ)
x (h), as discussed briefly after (1.7) and in more detail

in Section 9, i.e., it belongs to µδ−1/2 m
√
εFσ(ζm)[[h]] with the same root of unity µ, the

same element δσ of F×
σ , the same set S of primes of Fσ (independent of x) and the same

S-unit ε = εx of Fσ(ζm) as for Φ
(K,σ)
x (h).

� one can interpret Φ
(K,σ,σ′)
x (h) as Q

(
e(x)e−h

)
where Q is an element of a Habiro ring HFσ

generalizing the ordinary Habiro ring H = HQ whose definition and arithmetic properties
will be discussed in a planned joint paper with Peter Scholze and Campbell Wheeler [38].
In particular, for primes p that split completely in Fσ, there are congruence properties
modulo p relating, for instance, the first p coefficients of Q

(
e−h
)
to the value of Q(ζp).

We can write equation (4.7) more uniformly by allowing the case of σ = σ0, but remembering
that there is then an automorphy factor (cX + d)−3/2 that is not present for σ ∈ PK . Then all
of the formulas found so far can be collected into a single conjectural formula

e−v(σ)λγ(X)(cX + d)−κ(σ)J (K,σ)

(
aX + b

cX + d

)
?
≈
∑

σ′∈PK

J (K,σ,σ′)(X)Φ̂
(K,σ′)
a/c

(
2πi

c(cX + d)

)
(4.8)

valid for all γ =
(
a b
c d

)
∈ SL2(Z) and all σ ∈ PK for X → ∞ with bounded denomina-

tor, where J (K,σ,σ′) are periodic functions belonging to a generalized Habiro ring and satis-
fying J (K,σ,σ0) = δσ,σ0 and J (K,σ0,σ) = Q

(K)
σ (as introduced in the previous section), with the

weight κσ and the multiplier λγ(X) defined as in (3.5) and (3.7).
As a concrete illustration of the refined QMC (4.8) we take once again the figure 8 knot

with σ = σ1. Here, (4.8) involves three terms σ′ = σ0, σ1, σ2, with two of the three coefficients
already known (the first vanishes and the second is J (41,σ1)(X)) but with the third one being
a new periodic function on Q given explicitly by

J (41,σ1,σ2)(x) =
i

2 4
√
3
√
c

∑
Zc=ζ6

(
Zq − Z−1q−1

) c∏
j=1

∣∣1− qjZ
∣∣2j/c,

c = den(x), q = e(x), (4.9)
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which is related to the function given in (3.2) in exactly the same way as Q
(41)
σ2 (x) and J (41)(x)

are related by (4.5) and (2.6). Likewise, the refined QMC (4.8) for 41 and for σ = σ2 leads to
the periodic function J (41,σ2,σ2)(x) = −iJ (41,σ1,σ2)(−x). We also find the bilinear identity

J (41,σ1,σ1)(x)J (41,σ2,σ2)(x)− J (41,σ1,σ2)(x)J (41,σ2,σ1)(x) = 1 (4.10)

for all x ∈ Q/Z.
(
Note also that J (σ1,σ1)(x) = J (σ1)(x) and J (σ2,σ1)(x) = J (σ2)(x).

)
This identity

will be generalized to all knots in Section 5.

4.5 The refined quantum modularity conjecture

The refinement of the quantum modularity conjecture that we have obtained so far, equa-
tion (4.8), has two noteworthy aspects. One is that, although we find new collections of “Habiro-
like” functions J (σ,σ′) for the asymptotic expansion as X →∞ of the functions J (σ0,σ)(γX) for
different σ ∈ PK (here we continue the practice of omitting the knot from all notations when
it is not varying), these arise as coefficients of the same completed formal power series Φ̂(σ′)(h)
as we found for the initial Galois-extended Kashaev invariant J (σ0). The other is that among
the new coefficients J (K,σ,σ′), the subset corresponding to σ′ = σ1 coincides precisely with the
set of functions J (σ) whose asymptotic behavior near fixed rational points is being studied. It
is therefore natural to ask whether the functions J (K,σ,σ′) for σ′ different from σ1 also have
a quantum modularity property, and if so, what new power series are involved. In this final
subsection, we will study both questions and give our (nearly) final version of the QMC.

As usual, we look first at the 41 knot. Here, as well as the three periodic functions J (σ0,σ1)(x)
:= J(x) and J (σ0,σ1)(x) := J (σ1) and J (σ0,σ2) := J (σ2) we had studied earlier, we found two new
periodic functions J (σ1,σ2)(x) and J (σ2,σ2)(x), given explicitly by formulas (4.9) and related to
the others by (4.10). If we look numerically at the asymptotics of both functions with x = −1/X
for X →∞ with bounded denominator, we find

X−3/2J (σ0,σ2)

(
− 1

X

)
∼ J (σ0,σ1)(X)Ψ̂(1)

(
2πi

X

)
,

e−v(σ1)λS(X)J (σ1,σ2)

(
− 1

X

)
∼ J (σ1,σ1)(X)Ψ̂(1)

(
2πi

X

)
with the same completed power series

Ψ̂(1)(h) = eV(41)/hΨ(1)(h), Ψ(1)(h) =
i 4
√
3

2

(
1− 37

72
√
−3

h− 1511

2(72
√
−3)2

h2 + · · ·
)

in both cases. Based on the analogy with the asymptotics of the functions J (σ1,σ1)(−1/X) as
given in (4.4), we would now expect the more accurate approximations

X−3/2J (σ0,σ2)

(
− 1

X

)
≈ Ψ̂(0)

(
2πi

X

)
+ J (σ0,σ1)(X)Ψ̂(1)

(
2πi

X

)
+ J (σ0,σ2)(X)Ψ̂(2)

(
2πi

X

)
,

e−v(σ1)λS(X)J (σ1,σ2)

(
− 1

X

)
≈ J (σ1,σ1)(X)Ψ̂(1)

(
2πi

X

)
+ J (σ1,σ2)(X)Ψ̂(2)

(
2πi

X

)
,

e−v(σ2)λS(X)J (σ2,σ2)

(
− 1

X

)
≈ J (σ2,σ1)(X)Ψ̂(1)

(
2πi

X

)
+ J (σ2,σ2)(X)Ψ̂(2)

(
2πi

X

)
, (4.11)

where Ψ̂(2)(h) is the completed series e−V(41)/hΨ(2)(h) with Ψ(2)(h) = −iΨ(1)(−h) and where
Ψ̂(0)(h) is the completed series (h/2πi)3/2Φ(0)(h) (cf. (2.8)) with

Φ(0)(h) = −h+
11

6
h3 − 1261

120
h5 +

611771

5040
h7 − · · ·
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the power series in hQ
[[
h2
]]

obtained by replacing q = e(X) by q = e−h in formula (4.5), as
well of course as similar formulas for J (σ,σ′)(γX) for other matrices γ =

(
a b
c d

)
in SL2(Z) with

the completed power series Ψ̂(j)(h) replaced by suitable new completed power series

Ψ̂
(j)
a/c(h) = eV(σj)/ch(h/2πi)κ(σj)Ψ

(j)
a/c(h)

but with the same periodic coefficients.

To test (4.11) or its generalizations to other γ ∈ SL2(Z) directly we would need to find many
terms of the power series Ψ

(j)
α (h) and carry out the smoothed optimal truncation as described

earlier in this section, because the different exponential growths of their completions would
mean that the contributions with j ̸= 1 would not be numerically visible at the level of mere
formal power series. This could be done, but an easier test of the prediction is to take linear
combinations of the first two or last two lines in (4.11) to eliminate the dominant Ψ̂(1)-term.
This (together with (4.10)) produces the two new asymptotic predictions

X−3/2J (σ1,σ1)(X)J (σ0,σ2)

(
− 1

X

)
− e−v(σ1)λS(X)J (σ0,σ1)(X)J (σ1,σ2)

(
− 1

X

)
≈ J (σ1,σ1)(X)Ψ̂(0)

(
2πi

X

)
,

e−v(σ1)λS(X)J (σ2,σ1)(X)J (σ1,σ2)

(
− 1

X

)
− e−v(σ2)λS(X)J (σ1,σ1)(X)J (σ2,σ2)

(
− 1

X

)
≈ Ψ̂(2)

(
2πi

X

)
,

both of which can be tested directly since they do not involve functions of different orders of
growth on the right, and both of which we confirmed numerically to very high precision. We
omit the details, having given more than enough descriptions of analogous numerical calculations
in this section already.

Generalizing the above discussion to other knots, we find as our nearly-final version of the
QMC the asymptotic statement

(cX + d)−κ(σ)e−v(σ)λγ(X)J (K,σ,σ′)

(
aX + b

cX + d

)
?
≈

∑
σ′′∈PK

J (K,σ,σ′′)(X)Φ̂
(K,σ′′,σ′)
a/c

(
2πi

c(cX + d)

)

for X ∈ Q tending to infinity with bounded denominator and for every
(
a b
c d

)
∈ SL2(Z)

with c > 0, where the functions J (K,σ,σ′) are the “Habiro-like” functions that we found in Sec-
tion 4.4, given as the constant terms of certain power series Φ

(K,σ,σ′)
α (h) ∈ Q[[h]], and where

Φ̂
(K,σ,σ′)
α (h) are the completions defined by

Φ̂(K,σ,σ′)
α (h) = (ch/2πi)κ(σ)eV(σ)/c2hΦ(K,σ,σ′)

α (h), σ, σ′ ∈ PK .

To get the final version, we upgrade this statement about constant terms to a statement about
the full (completed) power series in the same way as we did in 3.2, obtaining:

Refined quantum modularity conjecture (RQMC): For fixed γ =
(
a b
c d

)
∈ SL2(Z)

with c > 0, we have

Φ̂
(K,σ,σ′)
γX (h∗)

?
≈ (cx+ d)κ(σ)

∑
σ′′∈PK

Φ̂
(K,σ,σ′′)
X (h)Φ̂

(K,σ′′,σ′)
a/c

(
2πi

c(cx+ d)

)
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to all orders in 1/X as X ∈ Q tending to +∞ with bounded denominator, where

x = X − ℏ and h∗ = h/(cx+ d)(cX + d).

We end this section by observing that the two versions of the refined quantum modularity
conjecture that we just stated can both be written more succinctly in matrix form as

J(K)(γX) ≈ j̃γ(X)J(K)(X)Φ̂
(K)
a/c

(
2πi

c(cX + d)

)
(4.12)

and

Φ̂
(K)
γX (h∗)

?
≈ jγ(x)Φ̂

(K)
X (h)Φ̂

(K)
a/c

(
2πi

c(cx+ d)

)
(4.13)

as X → ∞ with bounded denominator for a fixed knot K and element γ =
(
a b
c d

)
∈ SL2(Z),

where J(K) and Φ̂(K) denote the matrices of Habiro-like functions and completed formal power
series, with columns and rows indexed by PK , with entries J (K,σ,σ′)(x) and Φ

(K,σ,σ′)
a/c (h), respec-

tively, and where j and j̃ are the matrix-valued automorphy factors defined by

jγ(x) = diag
(
|cx+ d|κ(σ)

)
, j̃γ(x) = diag

(
ev(σ)λγ(x)|cx+ d|κ(σ)

)
, (4.14)

the second of which is the “tweaked” version of the first. Note that both of these factors are
unchanged if we replace γ by −γ, and hence are actually automorphy factors on PSL2(Z). Also,
from the fact that λ is an additive cocycle (see Lemma 3.1) we deduce that both j and j̃ are
matrix-valued cocycles on PSL2(Z), meaning that they satisfy

jγγ′(x) = jγ′(x)jγ(γ
′x), j̃γγ′(x) = j̃γ′(x)̃jγ(γ

′x), (4.15)

for all γ, γ′ ∈ PSL2(Z). This will be important in the next section.

5 The matrix-valued cocycle associated to a knot

Let us define, for a fixed knot K (suppressed from the notation as usual), matrix γ ∈ SL2(Z)
and number x ∈ Q∖

{
γ−1(∞)

}
, an (r + 1)× (r + 1) matrix Wγ(x) by

Wγ(x) = J(γx)−1j̃γ(x)J(x), (5.1)

where j̃ is the automorphy factor defined in (4.14). (This formula makes sense because the
matrix J is conjecturally invertible, and even unimodular, as discussed in (5.8) below.) This
function has remarkable properties. On the one hand, the refined quantummodularity conjecture
as presented above can now be rewritten as the asymptotic statement

Wγ(X) ≈ Φ̂a/c

(
2πi

c(cX + d)

)−1

(5.2)

for X ∈ Q tending to infinity with bounded denominator. In particular, unlike the completely
discontinuous function J(x) in terms of which it is defined, Wγ(X) has an asymptotic behavior
at infinity that depends only on X as a real number and not on its numerator and denomi-
nator separately, and in Section 5.2 we will present very strong evidence that this is true not
only asymptotically at infinity, but also for finite values of the argument, so that Wγ(x) be-
comes a smooth (and in fact real analytic) function of its argument away from the singularity
at x = γ−1(∞). On the other hand, the cocycle property (4.15) of j̃ immediately implies that
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the function γ 7→Wγ(·) is a cocycle for the group PSL2(Z) acting on the multiplicative group of
almost-everywhere-defined invertible matrix-valued functions on P1(Q), meaning that it satisfies

Wγγ′(x) = Wγ(γ
′x)Wγ′(x) (5.3)

for all γ and γ′ in PSL2(Z). But this cocycle property then immediately extends by continuity
to imply that Wγ on R is also a PSL2(Z)-cocycle, but now in the space of piecewise smooth
matrix-valued functions on P1(R). We can then use the smoothness to define a canonical lift of
each of the formal power series Φ

(σ,σ′)
α (h) to an actual function of h, simply by requiring (5.2)

to be an exact rather than merely an asymptotic equality.
These various properties will be described in detail in this section. The first subsection treats

the elementary properties (behavior under complex conjugation, determinant, and inverse) of
the matrices J(x) and Wγ(x). The discussion of the smoothness properties and the lifting of the
perturbative series Φ

(σ,σ′)
α (h) to well-defined functions of h will be given in Section 5.2, while the

brief final subsection treats the expected equality between the cocycle Wγ(x) and the cocycle
constructed in the companion paper [44] using state integrals, which gives the real explanation
for its smoothness and even analyticity.

5.1 The Habiro-like matrix and the perturbative matrix

In Section 4, we saw how successive refinements of the original quantum modularity conjec-
ture (1.6) led to a whole matrix J(K)(x) of generalized Kashaev invariants and to a collection of
matrices Φ

(K)
α (h) of formal power series having J(K)(α) as their constant term. The existence

of these new matrices and the description of their properties is the main content of this paper.
We emphasize that, although the refined QMC which led to the definition of these matrices
and to the means of finding them numerically is still conjectural, the matrices themselves are
well-defined, at least in terms of a chosen triangulation: Their first columns are trivial (a one
followed by r zeros). Their second columns were defined in Section 2 in terms of the original
Kashaev invariant and of the perturbative series defined in [14, 15]. The further columns of
the Φ-matrix can also be given by Gauss-type integrals like those in [14, 15], and in principle
one could also always find explicit formulas for the J matrix, as has been written out for the 41
knot in detail in Section 4.3 (equations (4.5) and (4.9)) and will be discussed more generally
in Sections 7.1–7.3 in the context of q-holonomic systems, with full details for the knot 52. In
general, it is not known that these quantities are topological invariants, since their definitions
depend a priori on the choice of an ideal triangulation and are believed but not proven to be
invariant under Pachner moves. But we expect this invariance to be true, and in any case the
new matrices are completely computable in practice, as we seen, and have extremely interesting
properties. In this subsection, we look at the properties that are directly visible, and in the
following one at the deeper properties of the associated cocycle W .

Extension property. From their very definitions, the matrices J and Φ (now omitting the
knot from the notation) both have a (1 + r)× (1 + r) block triangular form

J(x) =

(
1 Q(x)
0 Jred(x)

)
, Φα(h) =

(
1 Q

(
e(α)e−h

)
0 Φred

α (h)

)
, (5.4)

where Q(x) =
(
Q(σ)(x)

)
σ∈Pred

K
is the vector of length r whose entries are given by the periodic

functions found in Section 4, Q(q) =
(
Q(σ)(q)

)
σ∈Pred

K
is the corresponding function in terms

of q = e(x) (which we believe to be elements of the Habiro ring H ⊗ Q and therefore to be
defined not just at roots of unity, but also at infinitesimal deformations of roots of unity),
and Jred and Φred

α are r × r matrices with rows and columns indexed by the elements of Pred
K .

We are mainly interested in the larger matrices, but we will sometimes want to consider the
“reduced” matrices separately because they sometimes occur separately (notably in Section 3.3,
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where only Pred
K occurs in (3.14), and in the statements below about the inverse matrices of Jred

and Φred
α ). This block triangular property, trivial though it is, should have a deeper meaning

as the statement that the (r + 1)-dimensional objects associated to a knot K (specifically, the
q-holonomic modules that will be the subject of Section 7), with a basis parametrized by the set
of representations PK , are in fact extensions of r-dimensional objects with a basis parametrized
by Pred

K by something one-dimensional.

Behavior under complex conjugation. The next point is the following compatibility
with complex conjugation, namely

Jσ,σ′(−x) =

{
Jσ,σ′

(x) if σ is real,

−iJσ,σ′
(x) if σ is not real,

(5.5)

where “σ real” means σ = σ. In matrix form this becomes

J(−x) = BJ(x), (5.6)

where B is the unimodular symmetric unitary matrix with B(σ,σ′) equal to 1 if σ′ = σ = σ, to −i
if σ′ = σ ̸= σ, and to 0 if σ′ ̸= σ. The symmetry (5.5) has as the special case (σ, σ′) = (σ0, σ1)
the behavior J(−x) = J(x) of the Kashaev invariant for rational numbers x under complex con-
jugation, which holds because the colored Jones polynomials have real (even integer) coefficients
or alternatively because J is an element of the Habiro ring. The same argument applies conjec-
turally to all J (σ0,σ), since they also belong to the Habiro ring, and if we use the full RQMC it
also suffices to establish the general case. Actually, equation (5.6) can be strengthened to

Φ−α

(
h
)
= BΦα(h), (5.7)

which specializes at h = 0 to (5.6). We remark that equation (5.7) remains true if we re-
place both Φ’s by their completions Φ̂ (except for the top rows, which differ by a factor of i),
because V (σ) = V (σ) for all σ ∈ Pred

K .

Unimodularity. The next statement, generalizing equation (4.10), is that the matrices J
and even Φred, are experimentally found to be unimodular. More precisely, this is definitely true
for the 41 and 52 knots, for which we have closed formulas for all of the entries of the Habiro-
like matrices and can compute numerically; for other knots, we are convinced, and willing to
conjecture, that the determinant is ±1, but we have no really convincing reason except aesthetics
that it should always be +1. The unimodularity implies in particular that the J-matrices are
always invertible, a fact that is of course crucial even to define the cocycle W in (5.1). Notice
that it is compatible with (5.6) and (5.7), since the matrix B is unimodular.

Inverse/Unitarity. The final property that we want to mention, again only conjectural, is
more surprising. This is that the inverse of Jred (but not of the full matrix J, for which we have
no corresponding guess) can be given explicitly by the formula

Jred(x)tJred(−x) = Bred, (5.8)

where we have set B =
(
1 0
0 Bred

)
. In fact, even this statement can be strengthened, namely to

Φred
α (h)tΦred

−α(−h) = Bred, (5.9)

which specializes to (5.8) when we set h = 0. In view of (5.6), the first of these equations can
be rewritten as

Jred(x)tBredJred(x) = Bred,
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which we see as a kind of unitarity or rather sesqui-unitarity, since if Bred were the identity
matrix they would simply say that the matrices Jred(x) and Φred

α (h) are unitary. Note that
equation (5.9) remains true also if we replace Φ by Φ̂, since the volume factors cancel, and also
that the very special case σ = σ′ = σ1, for which the right-hand side of (5.9) vanishes, is just the
quadratic relation (3.14) that was discussed in Section 3.3. It is also worth remarking explicitly
that the expression on the left of (5.9) is a priori an element of Q(ζc)[[h]] (c = den(α)), at
least if the predicted algebraic properties of the power series Φ

(σ,σ′)
α as discussed in Section 9.1

are true, because the extra factors (root of unity and c-th root of an S-unit in Fσ′′(ζc)) cancel
in the products Φ(σ′′,σ)(h)Φ(σ′′,σ′)(−h) and because the sum over σ′′ implicit in the matrix
multiplication gets us from Fσ′′(ζc) down toQ(ζc). Finally, we should mention that equation (5.8)
also gives us a formula for the inverse of the full matrix J(x), because of the block triangular
form of the latter as given in (5.4), namely

J(x)−1 =

(
1 −Q(x)BredJred(−x)t
0 BredJred(−x)t

)
,

in which the elements of the top row are bilinear in the entries of J(x) and J(−x) rather than
merely linear as is the case for the other rows.

However, the real interest to us of the final point above is not just that there are explicit
formulas for the inverses of the matrices Jred (or even J) and Φ, but above all that the inverse
of Jred is expressed linearly (more correctly, sesquilinearly) in terms of the entries of the matrix
itself. This means in particular that the entries of the cocycle W red (the bottom right r×r block
of W ) are expressed bilinearly in terms of those of Jred. This remark will come into its own in
the sequel [44], where this reduced cocycle will arise in a completely different way as a bilinear
combination in functions of q = e2πτ and q̃ = e−2π/τ as a consequence of the factorization of
state integrals.

We end this subsection by listing the properties of the function Wγ that it inherits by virtue
of its definition (5.1) from the corresponding properties of J listed above. These will become
important in the next subsection, when we extend Wγ from Q to R.

The “extension property” is immediate: the matrix Wγ(x) has the block triangular form( 1 0
0 W red

γ (x)

)
for an r × r “reduced” matrix W red

γ (x) which is again a cocycle. The complex
conjugation property for W takes the form

Wγ(x) = Wεγε(−x) (5.10)

for all γ ∈ SL2(Z) and x ∈ Q, where ε =
(−1 0

0 1

)
. (Note that εγε ∈ SL2(Z).) This is a conse-

quence of the following short calculation using (5.6) and the easy conjugation behavior of the
automorphy factor j̃γ(x):

Wγ(x) = J(x)−1j̃γ(−x)J(γ(−x)) = J(x)−1B−1j̃γ(−x)BJ(−γ(x)) = Wεγε(−x).

A nice consequence of (5.10) is that we can now extend equation (5.2), which described the
asymptotics of Wγ(X) as X tends to infinity with bounded denominator on the assumption of
the RQMC, to give the corresponding asymptotic behavior of Wγ(X) also as X → −∞:

Wγ(X) ≈ BΦ̂a/c

(
2πi

c(cX + d)

)−1

, X → −∞. (5.11)

The third property is that the determinant of Wγ(x) is given by

detWγ(x) = |j(γ, x)|−3/2,
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where j(γ, x) is defined as cx+d for γ =
(
a b
c d

)
. This follows from the (conjectural) unimodularity

of J, the definition of j̃γ(x), and the fact that
∑

σ∈PK
v(σ) vanishes (“Galois descent”). Finally,

from (5.8) we immediately deduce the corresponding formula for the inverse matrix of W red
γ (x):

W red
γ (x)−1 = BredW red

εγε(−x)t.

In this connection, we note that (5.1) and (5.8) also imply that

W red
γ (x) =

(
Bred

)−1
Jred(−γx)t̃jredγ (x)Jred(x).

In other words, W red is bilinear in the entries of the matrices J, an important property that is
also shared by the functions defined by state integrals.

5.2 Smoothness

We now come to the really exciting point. The cocycle Wγ(x) is defined in terms of the “Habiro-
like” matrix J by (5.1). The entries of J(41), one of which was shown in Figure 1 of the intro-
duction, would all have a “cloudlike” structure like the one seen there. But when one graphs
the entries of the matrix Wγ(x), they are all smooth! For instance, Figure 4 shows the graphs
of the six nontrivial components of the 3× 3 matrix WS(x) for the figure 8 knot (with three of
them divided by i to make them real), where S =

(
0 −1
1 0

)
as usual, plotted in each case for all

rational numbers in (0, 2] with denominator at most 40 (so for roughly 1000 data points).

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 4. Plots of the six nontrivial entries of the matrix WS(x) for the 41 knot.

We formalize this by stating the following conjecture:

Conjecture 5.1. The function Wγ defined on Q ∖
{
γ−1(∞)

}
extends to a C∞ function on

R∖
{
γ−1(∞)

}
.

A first consequence of this is that the cocycle property (5.3), which held for the restriction
of W to P1(Q) by equation (5.1) and the cocycle property of j̃, is then automatically true for the
extended function on P1(R), even though there is no longer any “coboundary-like formula” of
type (5.1). This new cocycle now takes values in the much smaller space of almost-everywhere-
defined matrix-valued functions on P1(R).

The conjectural smoothness of the function Wγ has another important consequence that was
already mentioned in the introduction to this section, namely that we can invert the asymptotic
statement (5.2) to get a definition of exact matrix-valued functions for all α ∈ Q which are
smooth on all of R and whose Taylor expansions (after the “Wick rotation” h 7→ ℏ = h/2πi)
agree with the divergent power series Φα(h). To do this, we simply define a new function Φexact

α

by requiring (5.2) to be an exact rather than just an asymptotic equality, i.e., by defining

Φα(2πix)
exact := diag

(
|cx|−κ(σ)e−v(σ)/c2x

)
Wγ

(
1

c2x
− d

c

)−1

(5.12)
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for any γ =
(
a b
c d

)
∈ SL2(Z) with α = γ(∞) = a/c. This should then be an everywhere smooth

and almost everywhere analytic function on R whose Taylor expansion at 0 agrees with the
original divergent series. The six functions obtained in this way from the non-trivial elements
of WS(x) for the figure 8 knot as plotted above (and multiplied by suitable powers of i to make
them all real) are the ones shown in Figure 2 in the introduction.

Apart from the numerical data, there are at least four reasons why we should expect this
smoothness property of the function Wγ to hold:

1. At the simplest level, equation (5.2) tells us that the matrix Wγ(X) is at least asymptoti-
cally smooth in the limit as X →∞ through rational numbers with bounded denominator,
since it agrees to all orders in 1/X with a power series in 1/X with coefficients that do
not depend on the denominator or other arithmetic properties of X. Stated more visually,
if we were to display the components of Wγ(X) by plotting their values, for instance, for
rational values of X between 1000 and 1001 and with denominators less than 100, then
these data points would have to lie on a very smooth curve to very high precision.

2. In fact this same argument can be pushed much further, since by using the cocycle prop-
erty (5.3) for x = X tending to infinity with bounded denominator we get a description of
the asymptotic behavior of Wg(x) in the neighborhood of any rational point, not merely
at infinity, and hence an explicit formula for its Taylor expansion at any rational point
near which it has a smooth expansion. This will be carried out in Proposition 5.2 below.

3. But the real reason that we expected the smoothness property is much deeper and also
predicts (and in some cases leads to a proof of) much more: the entries of the matrix-
valued function Wγ(·) for a fixed γ extend to functions that are not merely smooth, but
actually analytic, on R ∖ {−d/c}. This comes from the study of q-series associated to
a knot and their relation to state integrals, as carried out in the companion paper [44] to
this one, and will be discussed in more detail in the final subsection of this section.

4. Finally, once one expects the real-analyticity, one can check it numerically using only the
matrices studied in this paper, without any reference to either q-series or state integrals,
by computing many Taylor coefficients of Wγ at any rational point using Proposition 5.2
and seeing that they now grow only polynomially rather than factorially. This point too
will be discussed in more detail in Section 5.4 below.

In the context just of this paper, where we are considering only functions on Q and formal
power series in h, but not holomorphic functions in the upper or lower half-planes or on cut
planes, we cannot justify the statement about analyticity or even continuity of the entries of the
matrix Wγ(·), i.e., we cannot show that the function Wγ(·) : Q ∖ {−d/c} → C has any natural
extension to a matrix-valued function on R ∖ {−d/c}. However, as indicated in point 2 above,
we can deduce a weaker statement if we assume the RQMC. To explain what this means, we
must first discuss the various possible senses in which a function f : Q → C can be continuous
or differentiable. There are at least three different natural notions. Usually one considers the
set of rational numbers with either the discrete topology or else the topology inherited from
their embedding into the reals. In the first sense, of course every function from Q to C is
continuous (i.e., f(α + εi) → f(α) for any sequence of rational numbers α + εi converging to
α ∈ Q, since any such sequence is eventually constant) and in fact even C∞ (with the “Taylor
expansion” of f at an arbitrary rational point α being just the constant power series f(α)). In
the second sense, one means that f(α + εi) → f(α) or f(α + εi) = Pα,d(εi) + o

(
εdi
)
as i → ∞

for every α and every d ∈ N, where Pα,d is a polynomial of degree d and the εi are a sequence
whose absolute values tend to 0 as i tends to ∞. Such a function of course need not extend as
a C∞ or even continuous function to R

(
an obvious counterexample being f(x) = 1/

(
x−
√
2
))
,

but if it does then this extension is unique, so that the space C∞
strong(Q) of smooth functions
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in this sense contains C∞(R) as a subspace. But there is a third, weaker, sense, in which
one requires f(α+ εi) = f(α) + o(1) or f(α+ εi) = Pα,d(εi) + o

(
εdi
)
only for sequences {εi} of

rational numbers that have bounded numerators but denominators tending to infinity (so that
in particular they tend to 0 in the usual sense). We then have the strict inclusions

C∞(R) ⫋ C∞
strong(Q) ⫋ C∞

weak(Q) ⫋ C∞
discrete(Q) = CQ.

An example (courtesy of Peter Scholze) of a function f : Q → R that is C∞ in the weak sense
but not in the strong sense is given by choosing a sequence of rational numbers {xn} tending
to 0 and disjoint intervals In ∋ xn with In containing no rational numbers with numerator ≤ n;
then define f to be 0 at x = 0 and to be the restriction of a C∞ function on R∗ supported
on
⋃

n In and with f(xn) = 1, in which case f is obviously smooth in the strong sense always
from 0 and in the weak sense at 0 (since the values of f on any sequence of rational numbers
tending to 0 with bounded numerators stabilizes to 0), but is not even continuous at 0.

After this lengthy preliminary discussion, we can state the result on the smoothness properties
of the cocycle Wγ , with an explicit formula for the power series of Wγ(α + ε) near any α ∈ Q.
We will write ε as −ℏ to match our previous conventions.

Proposition 5.2 (assuming RQMC). The function Wγ belongs to C∞
weak

(
Q ∖

{
γ−1(∞)

})
for

every γ ∈ PSL2(Z). Explicitly, Wγ(α − ℏ) for α ̸= γ−1(∞) and ℏ tending to 0 with bounded
numerator is given to all orders in ℏ by the power series

Wγ(α− ℏ) ≈ Φγα(2πiℏ∗)−1 diag

(∣∣∣∣den(γα)ℏ∗den(α)ℏ

∣∣∣∣κ(σ) ev(σ)λγ(α)

)
Φα(2πiℏ), (5.13)

with ℏ∗ = ℏ/((cα+ d)(cα− cℏ+ d)) if γ =
(
a b
c d

)
.

Proof. By the definition of weak smoothness on Q, we have to show that Wγ(α + ε) for
fixed γ ∈ SL2(Z) and α ∈ Q is given to all orders by a power series in ε depending only on α
and γ as ε tends to 0 through rational numbers with bounded numerator. If we write α as a′/c′

with a′ and c′ coprime and extend
(
a′

c′

)
to a matrix γ′ =

(
a′ b′

c′ d′

)
∈ SL2(Z), then the condition

of ε having bounded numerator is easily seen to be equivalent to the condition that α+ ε = γ′X
with X tending to ±∞ with bounded denominator. We consider first the case when X → +∞
(meaning that α + ε tends to α from the left). By the cocycle property (5.3) and the basic
asymptotic property (5.2) of Wγ , we have

Wγ(α+ ε) = Wγ(γ
′X) = Wγγ′(X)Wγ′(X)−1

≈ Φ̂a′′/c′′

(
2πi

c′′(c′′X + d′′)

)−1

Φ̂a′/c′

(
2πi

c′(c′X + d′)

)
,

where we have written γ =
(
a b
c d

)
and γγ′ = γ′′ =

(
a′′ b′′

c′′ d′′

)
and where ≈ as usual means that

the two expressions being compared are equal to all orders in 1/X as X tends to infinity with
bounded denominator or ε to zero with bounded numerator. If we now use our previous con-
ventions, writing

−ε = ℏ =
1

c′(c′X + d′)
, ℏ∗ =

1

c′′(c′′X + d′′)
=

c′2ℏ
c′′(c′′ − cc′ℏ)

,

and also use that the “tweaking function” λγ satisfies

1

c′2ℏ
− 1

c′′2ℏ∗
=

(
X +

d′

c′

)
−
(
X +

d′′

c′′

)
=

c

c′c′′
= λγ(α), (5.14)
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then we get equation (5.13) above. This equation expresses Wγ(α + ε) as a product of three
matrices of power series in ℏ = −ε and hence shows that it is itself such a matrix. This proves
the assertion in the first case X → +∞. To treat the case X → −∞ we use equation (5.11)
instead of (5.2) and find that Wγ(α − ε) is given by the same formula as a product of three
matrices of power series for ε > 0 as it was for ε < 0, because the prefactors B in (5.11) cancel.
This completes the proof that Wγ is a two-sided smooth function on the rational numbers in
the weak sense. ■

Corollary 5.3. The function x 7→ Φα(2πix)
exact on Q defined by (5.12) is differentiable in the

weak sense for every α ∈ Q.

Proof. This follows directly from Proposition 5.2 away from x = 0, since the diagonal prefactor
in (5.12) is smooth away from 0, and Φα(2πix)

exact simply agrees with Φα(2πix) to all orders
in x as x→ 0, so it is smooth there too. ■

As a final remark in this subsection, we recall that in order to specify the cocycle γ 7→ Wγ

completely, it suffices to give its values for the two special matrices T =
(
1 1
0 1

)
and S =

(
0 −1
1 0

)
,

since these generate the whole modular group. The function WT (x) is elementary (constant
and conjugate to a diagonal matrix of Nth roots of unity, where N is the level of the knot).
In the case where the level is 1, such as the 41 or 52 knots, WT is simply the identity matrix
and the whole cocycle is determined by the single matrix-valued function WS(x). The fact
that T 7→ 1, S 7→ WS extends to a cocycle on the whole group is then equivalent to the
requirement that WS(x) satisfies the symmetry property WS(x) = WS(−1/x)−1, together with
the three-term Lewis functional equation

WS(x) = WS(x+ 1)WS(x/(x+ 1)),

familiar from the theory of period polynomials of holomorphic modular forms on SL2(Z) or of
period functions in the sense of [63] of Maass forms on SL2(Z). Our cocycles thus belong in
some sense to the same family as periods of modular forms.

5.3 “Functions near Q”

We now come to an important and somewhat subtle point. In the calculation that we gave to
prove Proposition 5.2, we used only the refined quantum modularity conjecture in its “rational
version” (4.12), since the statement of Proposition 5.2 involves only the values of Wγ at rational
arguments. If we had used instead the full version (4.13) of the RQMC, we would have obtained
a stronger version of the “weakly smooth” condition that applies to approximating a rational
number not just by rational numbers that differ from it by a small rational number with bounded
numerator, but also by infinitesimal variations of such numbers. To make sense of a statement
of this type, we now introduce a notion that will shed more light on the two cocycles γ 7→ λγ

and of γ 7→Wγ and that is also relevant in connection with the notion of “holomorphic quantum
modular forms” that will be touched on briefly in Section 5.4 and developed in more detail in [44]
and in the survey paper [85]. This is the notion of asymptotic functions near Q. The basic idea
here is to specify a particular type of asymptotic behavior (such as a formal power series) in
an infinitesimal neighborhood of every rational point, where “neighborhood” can mean that we
approach the rational number from the right and the left on the real line, or in other contexts
from above and below in the upper and lower complex half-planes. Since there are many types
of behavior that may be of interest, and since it is hard to give a general definition that includes
all of the examples and all of the properties that one wishes to include, we will restrict here to
the particular classes that arise in the context of knot invariants.
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The simplest version of this notion is just given by a collection {fα(ε)}α∈Q of formal power
series with complex coefficients indexed by the rational numbers. Here we want to think of
the infinitesimal power series variable ε as the difference between the rational number α and
an infinitesimally nearby real “number” α + ε, i.e., we want to think of the whole collection of
power series {fα} as a single “asymptotic function near Q”, i.e., as a “function” f defined in
infinitesimal neighborhoods of all rational points α by f(α + ε) = fα(ε). Of course f is not
a function at all in the traditional sense, since one cannot evaluate it at numerical values of
its argument, but as we will see in a moment, this point of view is nevertheless very fruitful.
It originally showed up in the paper [84], where “quantum modular forms” were first defined
simply as functions on Q (more precisely, as almost-everywhere-defined functions on Q) but then
upgraded to a notion of “strong quantum modular forms” where the original values at rational
numbers became the constant terms of a collection of formal power series.

The set of asymptotic functions near Q (from now on we omit the quotation marks, trusting
the reader to remember that these are not actually functions) of this special type forms a ring via
pointwise addition and multiplication if we think of its elements as collections of formal power
series, and by straight addition and multiplication if we think of them as functions defined in
infinitesimal neighbourhoods of all rational points. To understand its elements, it is helpful to
think of the following two extreme cases.

(i) Each fα(ε) is the Taylor expansion
∑

f (n)(α)εn/n! of a function f ∈ C∞(R) at the point α.
Here the various asymptotic expansions near rational points fit together nicely into a single
smooth function on R.

(ii) Each fα(ε) is the formal power series expansion at q = e2πi(α+ε) of an element A(q) of the
Habiro ring H = lim←−Z[q]/((q; q)n). Here the different power series do not in general fit
together smoothly at all, and even their constant terms jump around wildly, as illustrated
in Figure 1 in the introduction.

At first sight this definition seems to be pointless because we are not requiring any compati-
bility at all between the different power series fα and therefore the ring we have just introduced
is canonically isomorphic to the direct product C[[ε]]Q =

∏
αC[[ε]] of one copy of the power

series ring C[[ε]] for every rational number α. The point, however, is that if we pass to the
quotient ring F0,0 ≈

∏
αC[[ε]]/

⊕
αC[[ε]] of asymptotic functions in the neighborhood of all but

a finite set of rational points, then the modular group Γ1 = SL2(Z) acts by sending f to f ◦ γ
for γ ∈ Γ1, and this action does not simply permute the different power series fα but twists them
as well. Specifically, if f(x) is represented near α by f(α+ε) = fα(ε) then f(γ(x)) is represented
near α∗ = γ(α) by fα∗(ε∗) rather than simply by fα∗(ε), where ε∗ = γ(α + ε) − γ(α), or more
explicitly ε∗ = ε/(cα+ d)(cα+ d+ cε) if γ =

(
a b
c d

)
. This is precisely the twist that we already

encountered in Section 3.2 (equations (3.9) and (3.12)) and in Proposition 5.2 above, except
that we have changed the previous variable h to −2πiε here. (The rescaling of h by a factor 2πi
was introduced for our knot invariants only to make the power series coefficients algebraic and
there is no reason to make this change of variable in the general situation.)

We now generalize the above notion by introducing two complex parameters v and κ and
considering the vector space of asymptotic functions near Q whose local form fα(ε) = f(α+ ε)
in a real infinitesimal neighborhood of any α ∈ Q is given by

fα(ε) = |den(α)ε|κe−v/den(α)2εϕα(ε) (5.15)

for some power series ϕα(ε) ∈ C[[ε]]. Again we pass to the quotient Fκ,v of almost-everywhere-
defined asymptotic functions on Q, i.e., we identify two collections of completed power series if
they differ for only finitely many α. The space Fκ,v is a free module of rank 1 over the ring F0,0

introduced above, and is again isomorphic to
∏

αC[[ε]]/
⊕

αC[[ε]] via f 7→ {ϕα}, but with
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a different action of SL2(Z) than before. Specifically, γ ∈ SL2(Z) sends f to the function near Q
that corresponds via (5.15) to the collection of power series {ϕ∗

α(ε) = evλγ(α)ϕα∗(ε∗)} with α∗

and ε∗ as above and with the “tweaking cocycle” λγ(α) introduced in (3.5). Alternatively, in
terms of the variable x = α+ ε infinitesimally near α ∈ Q we can write this action as the “slash
action” (familiar from the theory of modular forms if κ is an even integer, and from the theory
of the principal series representation of SL2(R) if not) given by (f |κγ)(x) = |cx + d|−κf(γx)
for γ =

(
a b
c d

)
∈ SL2(Z), where |cx + d|−κ := |cα + d|−κ(1 + cε/(cα + d))−κ. This also explains

the reason for including the perhaps strange-looking factors den(α) and den(α)−2 in (5.15), since
without them there would be no action of the modular group. We also point out that, because of
the “tweaking” factor evλγ(α) in the definition of the action, Fκ,v is a free module of rank 1 over
the ring F0,0 as a vector space, but not as an SL2(Z)-module: one cannot choose a generator in
an SL2(Z)-invariant way.

Of course from the point of view of this paper the main reason for introducing the parame-
ters κ and v and the definition (5.15) is that this is exactly the behavior that we found exper-
imentally from the refined quantum modularity conjecture, with v = v(σ) and κ = κ(σ) being
the normalized volume and weight associated to a parabolic flat connection σ and with ϕa(ε)
and fα(ε) being the power series Φ

(K,σ)
α (h)

(
or more generally Φ

(K,σ,σ′)
α (h)

)
and its comple-

tion Φ̂
(K,σ)
α (h)

(
or Φ̂

(K,σ,σ′)
α (h)

)
as in (3.8), with h = −2πε. But it is worth noting that the

space Fκ,v also contains classical modular forms on the full modular group, since a holomor-
phic modular form f(τ) of (necessarily even) weight k on SL2(Z) canonically defines a function
near Q of type (5.15) with κ equal to −k, with v equal to −2πi times the valuation of f at
infinity (the smallest exponent of q = e(τ) in the Fourier expansion of f(τ)), and with each
power series ϕα(ε) reducing to its constant term ϕα(0), as one sees easily by using the modular
transformation property of f to compute the asymptotic development of f(α + ε) for α ∈ Q
and ε tending to 0 with positive imaginary part. More generally, mock modular forms (whose
definition we omit) also define elements of Fκ,v, where κ is again the negative of the weight, but
in that case the power series ϕα(ε) are in general factorially divergent rather than constant. We
do not elaborate on any of this since it is far from the theme of this paper, but it is nice to
observe that classical modular and mock modular forms have properties in common with the
asymptotic functions occurring here.

There are two further points that we should mention in connection with the definition (5.15).
One is that the absolute value appearing there is only appropriate for ε real, which is our original
situation when we think of α + ε as being a deformation of the rational number α on the real
line or when we take ε = −1/c(cX + d) with X a rational number tending to infinity as in the
RQMC. But when we consider functions near Q in the complex as well as in the real domain,
the absolute value sign would destroy holomorphy. If κ is an even integer, the problem does not
arise, since we can simply replace |ε|κ by εκ, which is holomorphic. If this is not the case then
if we consider only functions near rational points in the upper or lower half-plane, we can still
replace |ε|κ in the definition by εκ, which makes sense because ε has a well-defined logarithm in
either half-plane. (We will never encounter functions in Fκ,v for κ ̸= 0 that are defined in a 360o

complete complex neighborhood of α; our functions will either be defined for nearby real points
or for nearby non-real points, or sometimes in a cut plane C ∖ (−∞, 0] or C ∖ [0,∞), in which
case we can extend |ε|κ holomorphically as εκ or (−ε)κ, respectively.) However, when κ is not
an integer and we want to discuss the SL2(Z) action on Fκ,v, then we have to include some kind
of multiplier system, as familiar from the theory of modular forms of arbitrary weight. Again,
we omit details.

The second minor comment is that one can further generalize F0,0 by introducing a level N as
well as the parameters κ and v. This generalization is necessary if we want to include modular or
mock modular forms of level N (say on Γ = Γ0(N) or Γ(N)) into our definition, but also for our
knot invariants if the knot has a level > 1, as we found to be the case for the (−2, 3, 7)-pretzel
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knot. Here the power series ϕα(ε) and their completions will have period N rather than 1 with
respect to α, and more importantly, the number v in (5.15) is no longer constant but must be
replaced by a number vα that depends on the Γ-equivalence class (“cusp”) of α. Again we omit
details, since this is not our main subject.

We now return to the functions studied in this paper and to the reason why we introduced
asymptotic functions near Q in the first place. Consider first the tweaking function defined by
equation (3.5). We showed in Lemma 3.1 that the map γ 7→ λγ is a cocycle in the space of
almost-everywhere-defined functions on P1(Q). It is easily checked that it is not a coboundary
in that space. But if we extend λγ to a function near Q by setting λγ(α+ ε) = λγ(α) (constant
power series), then equation (5.14) says that it now is a coboundary: λγ(x) = µ(x) − µ(γx)
where µ is the function near Q defined by µ(α + ε) = 1/den(α)2ε. More interestingly, if for
each σ and σ′ in PK we define a function near Q by Q(K,σ,σ′)(α− ℏ) = Φ̂

(K,σ,σ′)
α (h) and then put

them together as a matrix-valued function Q near Q given by Q(α− ℏ) = Φ̂
(K)
α (h), then using

equation (5.14) again we see that the complicated equation (5.13) can be replaced by the much
simpler equation

Wγ(x) = Q(γx)−1Q(x). (5.16)

Notice that in this equation the (σ, σ′)-entry on the left-hand side is the sum over σ′′ ∈ PK
of the product of the (σ, σ′′)-entry of Q(γx)−1 and the (σ′′, σ′)-entry of Q(x), which belong
to F−κ(σ′′),−v(σ′′) and Fκ(σ′′),v(σ′′), respectively. Thus each of the terms of the sum belongs to F0,0

and we never encounter the problem of having to make sense of sums of asymptotic functions
of different orders of growth. The fact that the entries of Wγ all belong to F0,0 is, of course,
a necessary prerequisite for the final statement that they actually belong to its subring C∞(R).

Equation (5.16) tells us the cocycle γ 7→ Wγ , which was not a coboundary in the space of
almost-everywhere-defined matrix-valued functions on P1(Q) or of piecewise smooth functions
on P1(R), becomes one when we pass to the space of matrix-valued functions near Q. Both
of these can be seen as manifestations of a general phenomenon that one finds in almost all
mathematical contexts where notions of homology or cohomology play a role: even though one
is really only interested in cocycles that are not coboundaries, the cocycles that one studies are
almost always constructed as coboundaries in some bigger space.

5.4 Analyticity

In Section 5.2, we discussed the surprising smoothness properties of the function Wγ on R ∖
{γ−1(∞)}. In this subsection, we come to a point much deeper than the smoothness, namely
analyticity properties of functions defined in a cut plane. These functions are closely related to
state integrals. Such integrals appeared originally in the work of Hikami, Andersen, Kashaev
and others (see, for example, [1, 16, 53]) in relation to the partition function of complex Chern–
Simons theory and to quantum Teichmüller theory, and reappear in our context in [44], the
companion paper to this one. We refer to these papers for details and describe the main points
here in qualitative form only.

State integrals are analytic functions with several key features:

� They are holomorphic for all τ ∈ C′ = C∖ (−∞, 0].

� Their restrictions to C∖R factorize bilinearly as finite sums of products of a q-series and
a q̃-series, where q = e(τ) and q̃ = e(−1/τ); see [4, 30].

� Their evaluation at positive rational numbers also factorizes bilinearly as a finite sum of
a product of a periodic function of τ and a periodic function of −1/τ ; see [29].

They are defined as multidimensional integrals of a product of quantum dilogarithms times the
exponential of a quadratic form. The quantum dilogarithm, invented by Faddeev [19, 20], is
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a remarkable meromorphic function of two variables. The structure of its poles implies that the
state integrals are holomorphic functions of τ in the cut plane C′. The quantum dilogarithm
is also a quasi-periodic function with two quasi-periods, and this has two consequences, one of
which is directly related to the third “feature” above, and the other to the second “feature” and
to the paper [44].

The first consequence is the fact that one can apply the residue theorem to give an exact
formula for the values of the state-integrals at positive rational numbers. Such a formula was
given explicitly for the one-dimensional state integrals considered in [29, equation (1), Theo-
rem 1.1], and those one-dimensional state integrals cover the case of the three knots that we
consider here, namely the 41, 52 and (−2, 3, 7) pretzel knot. It turns out that equation (15)
of [29] applied to the case of (A,B) = (1, 2) gives a function on Q+ which is none other than one
of our four entries of W

(41)
γ when γ = S. To get the other three entries of W

(41)
S one can apply

the proof of [29] to a 2×2 matrix of state-integrals of the 41 knot introduced in [27, Theorem 3].
And finally, to get the full matrix W

(41)
γ for all γ, one can apply the proof of [29] to a 2 × 2

matrix of state-integrals of the 41 knot that depend on a modular version of Faddeev’s quantum
dilogarithm [32].

The second consequence is perhaps even more interesting. Not only is each component of the
state integral matrix a finite sum of products of a q-series and a q̃-series, but this sum precisely
corresponds to matrix multiplication and says that the whole state integral matrix WS(τ), whose
restriction to a real half-line is our functionWS , factors as the product of a matrix of q̃-series mul-
tiplied by a matrix of q-series. More explicitly, WS(τ) factors in the upper and lower complex
half-planes as Qhol(−1/τ)jholS (τ)−1Qhol(τ), where Qhol(τ) is an (r + 1)× (r + 1) matrix with
holomorphic and periodic entries and jholS (τ) is a diagonal matrix of automorphy factors. Further-
more, the equivariant extensionWγ of the state integrals mentioned above is again a holomorphic
function in the cut plane whose restriction to the real half-line is our cocycle Wγ from Section 5.3
and whose restriction to C∖R factors for every γ as Qhol(γ(τ))jholγ (τ)−1Qhol(τ) with the same
periodic functionQhol(τ). The fact that this quotient extends analytically across a half-line, even
though the matrix-valued holomorphic function Qhol(τ) does not, is an example of a (matrix-
valued) holomorphic quantum modular form, a new and quite general context that is discussed
in much more detail in [44, 85], and of which the mock modular forms mentioned in the previous
subsection give another nice example. The fact that Wγ(τ) factors as Q

hol(γ(τ))jholγ (τ)−1Qhol(τ)
is another instance of the general principle (“cocycles are constructed as coboundaries in some
larger space”) mentioned at the end of Section 5.3. So we have now represented the original
cocycle γ 7→ Wγ on the real line as a coboundary in two different worlds: functions defined
in a small open neighborhood of P1(R) ∖ X in P1(C) for some finite set X, and asymptotic
functions near Q. But in fact these two representations Wγ(τ) = Qhol(γ(τ))jholγ (τ)−1Qhol(τ)
and Wγ(x) = Q(γ(x))̃jγ(x)

−1Q(x) are not independent: as we will see in [44], the periodic holo-
moprhic function Qhol has an asymptotic development as one approaches any rational number
from above or below in C ∖ R, and this is a representative of the same asymptotic functions
near Q that we obtained from the Habiro-like functions on P1(Q). It is this manifestation of the
same abstract object in two completely different realizations that we referred to in the opening
paragraph of this paper as an analogue in our context of the notion of motives.

The above discussion explains why one can expect, and in a few cases even prove, the an-
alyticity of the cocycle function Wγ(x). But it also seems worth observing that, once one has
predicted this analyticity, one can check it numerically using only the matrices studied in this
paper, without any reference to either q-series or state integrals. Specifically, Proposition 5.2
gives the Taylor expansion of Wγ at any rational point, and since the coefficients of this series
are effectively computable, we can calculate a large number of them and see experimentally that
the series has a non-zero radius of convergence, as was already done in equation (3.15) for the
special case of the expansion of WS for the 41 knot around x = 1. In fact, the coefficients can
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be computed in two different ways, either by using the refined quantum modularity conjecture
numerically with the help of optimal and smooth truncation of divergent series, as was done in
Section 4, or else by using the exact formulas (when they are available, e.g., for the 41 and 52
knots) for Wγ on Q to compute the values of this function at many rational points near a given
point and then interpolating numerically by the method recalled in “Step 3” of Section 10.1. In
this way, we can verify the predicted real-analyticity to high precision and in a very convincing
way using only the data coming from the Kashaev invariant and its associated functions. The
simplest example is equation (3.15) given in Section 2 for the 41 knot and γ = S. The improve-
ment of convergence in this case is very dramatic: the 150th coefficient of Φ(2πix) (the last one
that we computed) is about 10284, but the 150th coefficient of the bilinear combination of power
series occurring on the right-hand side of (3.15) is only 0.002!

But here we can actually do even more; by changing the variables one gets a new series that
not only again (conjecturally and experimentally) has radius of convergence 1, but that now also
gives numerical confirmation of the prediction that WS(x) extends holomorphically to the whole
cut plane. Specifically, if we make the change of variables 1 + x =

(
1+w
1−w

)2
, under which x = 0

corresponds to w = 0 and the condition 1+x ∈ C′ is equivalent to |w| < 1, then we get a power
series B(w) ∈ R

[[
w2
]]

defined by

B(w) = e−v(41)Φ

(
8πiw

(1− w)2

)
Φ

(
− 8πiw

(1 + w)2

)
− ev(41)Φ

(
− 8πiw

(1− w)2

)
Φ

(
8πiw

(1 + w)2

)
(5.17)

(with Φ(x) ∈ R[[x]] again given by (1.3)) which should have radius of convergence 1. In fact, the
numerical calculation, described in [44], show that the 150th coefficient of B is about −7.5 ·1010,
again far smaller than the original 10284. The fact that this number is much bigger than the
corresponding number 0.002 for the bilinear combination (3.15) is not because the series B(w)
is worse than the one in (3.15), but precisely because it is better: in order to get the full
domain C′ of holomorphy of WS(x) we have had to produce a power series that has singularities
on the entire unit circle rather than at just one point, and the coefficients correspondingly have
much larger growth (namely exponential in the square-root of the index, just as in the Hardy–
Ramanujan partition formula, rather than being only of polynomial growth, or in this case even
of polynomial decay). But in any case, whether we use (5.17) or just (3.15), we see that the
single divergent power series Φ(h), which describes the asymptotic behavior of W

(41,σ1,σ1)
S (x)

near either ∞ or 0, suffices in an explicit manner to determine this function everywhere on
all of R∗. For general knots, the corresponding statement would only hold if we consider the
entire matrix Φ rather than just one entry. In fact, as the whole discussion of Sections 4 and 5
shows, if we assume the whole RQMC, then at least in favorable cases it is probably true that
the single power series Φ

(K)
0 (h) coming from the modularity of the original Kashaev invariant

actually determines everything.

We can summarize this whole subsection as the following conjecture for the cocycle Wγ .

Conjecture 5.4. The function Wγ on Q∖
{
γ−1(∞)

}
extends to a real-analytic function on R∖{

γ−1(∞)
}
, and its restriction to each component of R ∖

{
γ−1(∞)

}
extends to a holomorphic

function on the cut plane consisting of this half-line and C∖ R.

5.5 The non-hyperbolic case

The main thrust of this paper, and all of the examples which we have treated in detail, concern
the case of hyperbolic knots, for which the volume is positive. We expect that matrix-valued
cocycles exist for nonhyperbolic 3-manifolds, with or without boundary, and know that this is so
for the example of the complement of the trefoil [82] (where the corresponding invariant is some-
times known by the name Kontsevich–Zagier series) as well as for WRT invariant of the Poincaré
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homology sphere (a spherical 3-manifold), which was studied by Lawrence and Zagier [62]. In
these examples and many others that have been treated since, the series that occur are Taylor
series of mock modular forms, and we think that this will always happen for manifolds for which
all of the volumes vanish modulo π2Q (e.g., torus knots, Seifert-fibered manifolds or, in the closed
case, spherical manifolds). When it happens, the entries in the Pred

K -part of the matrix are the
product of an elementary exponential term

(
a rational power of eπ

2/h
)
and a rational power of q,

so that the corresponding Φ-series is purely exponential in h, while the entries in the top row of
the matrix (which are again elements of the Habiro ring) still have factorially divergent h-series
as in the hyperbolic case, are now elementary functions, with coefficients that are special values
of Dirichlet L-series and a Borel transform which is simply a trigonometric function. However,
we should emphasize that this simple behavior is not expected for all non-hyperbolic knots or
manifolds, but only for those for which all solutions of the Neumann–Zagier equations are torsion
in the Bloch group, so that all volumes v(σ) are rational multiples of 2πi. Some knots, the like
(2, 1)-cabling of the 41 knot, are non-hyperbolic, so have vanishing volumeV(σ1) modulo 4π2 but
have some V(σ) with non-zero imaginary part, and then one expects to find non-trivial h-series.

Part II. Complements

6 Half-symplectic matrices and their perturbative series

In Section 2, we introduced a finite set PK associated to a knot K and the formal power
series Φ

(K,σ)
α (h) for each α ∈ Q and σ ∈ Pred

K = PK ∖ {σ0}, as defined by Dimofte and the
first author in [14, 15] in terms of the Neumann–Zagier data of a triangulation of the knot
complement. In this section, we provide details and also a somewhat more general construction,
depending on more general data consisting of a “half-symplectic matrix” (defined below), an
integral vector, and a solution of the associated Neumann–Zagier equations. This more general
class has a q-holonomic structure that will be studied in Section 7 and will also include the
formal power series Φ

(K,σ,σ′)
α (h) (σ, σ′ ∈ PK) that we found in Sections 4 and 5, as well as the

asymptotic series of Nahm sums near roots of unity. These half-symplectic matrices give a new
perspective on the classical Bloch group and the extended Bloch group.

6.1 Half-symplectic matrices and the Bloch group

To each knot K and each element σ ∈ PK there is an associated element of the Bloch group (or
third algebraicK-group) of Q that plays a central role for many of the constructions and that can
be described in terms of the Neumann–Zagier data of a triangulation of the knot complement. In
fact, this construction produces an invariant lying in a set defined by “half-symplectic matrices”
(= upper halves of symplectic matrices over Z) which is a refinement of the usual Bloch group
that has several nice aspects and seems not to have been considered in the literature. In this
subsection and the following one, we will describe this set and how one obtains elements in
it from the data of a triangulation. In the final subsection, we will explain how to associate
a formal power series in h to any such element, the two cases of primary interest being the matrix
of power series Φ

(K,σ,σ′)
α (h) associated to a knot and the power series describing the asymptotics

of Nahm sums near rational points.

For each positive integer N , we denote by HN the set of N × 2N half-symplectic matrices,
by which we mean matrices H = (AB) ∈MN×2N (Z) satisfying the two conditions

(i) the 2N columns of H span ZN as a Z-module, and

(ii) the matrix ABt is symmetric.
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The name refers to the fact that such matrices arise as the upper half of symplectic matrices, i.e.,
of matricesM = ( A B

C D ) ∈ GL2N (Z) satisfying
(
A B
C D

)−1
=
(

Dt −Bt

−Ct At

)
. To eachH ∈ HN , we asso-

ciate the generically zero-dimensional variety VH defined as the set of N -tuples z = (z1, . . . , zN )
in
(
A1 ∖ {0, 1}

)N (A1 = affine line
)
satisfying the equations

VH :

N∏
j=1

z
Aij

j = (−1)(ABt)ii

N∏
j=1

(1− zj)
Bij , i = 1, . . . , N. (6.1)

To define the associated power series, we will need both an element of VH(C) and a slightly
stronger discrete datum than H, namely a pair (or triple)

Ξ = (H, ν) = ((AB), ν) with ν ∈ diag
(
ABt

)
+ 2ZN . (6.2)

Equation (6.1) can then be written in abbreviated form as zA = (−1)ν(1− z)B.
We observe that there is a second description of the variety VH as the set of N -tuples

x = (x1, . . . , xN ) satisfying the trinomial equations

1 = (−1)
∑

j Cjiνj

N∏
j=1

x
Aji

j + (−1)
∑

j Djiνj

N∏
j=1

x
Bji

j , i = 1, . . . , N (6.3)

or in abbreviated form 1 = (−1)CtνxA
t
+ (−1)DtνxB

t
, which is isomorphic to VH via the

bijections x 7→ z = (−1)DtνxB
t
= 1− (−1)CtνxA

t
and z 7→ x = z−Ct

(1− z)D
t
. The x are the

Ptolemy coordinates as discussed in Section 6.2 below in the case of knots and their logarithms
are the vectors w used below. Note that the signs (−1)Ctν and (−1)Dtν in (6.3) formulas do not
depend on the choice of ν, since its value modulo 2 is fixed by (6.2). They do depend on the
choice of symplectic completion (CD) of the half-symplectic matrix (AB), but only in a trivial
way: any other choice (C∗D∗) of (CD) has the form (CD) + S(AB) for some symmetric inte-
gral N ×N matrix S (this corresponds to multiplying M =

(
A B
C D

)
on the left by the symplectic

matrix
(
1 0
S 1

)
), and this simply replaces x by (−1)Stνx, i.e., it changes the signs of some of the xi.

To any complex solution z of the system of equations (6.1) one can associate a complex vol-
ume V(z) in C/4π2Z that is defined roughly as the sum of the dilogarithms of the zi plus
a suitable logarithmic correction. More concretely, the imaginary part of V(z) is a well-
defined real number given as

∑
j D(zj), where D(z) = Im

(
Li2(z) + log |z| log(1 − z)

)
is the

Bloch–Wigner dilogarithm, which is single-valued. To define the full value of V(z) mod-
ulo 4π2 requires more work, because the function Li2(z) itself, defined by analytic continuation
from its value

∑
n≥1 z

n/n2 for |z| < 1, is multivalued on C ∖ {0, 1}. However, the function
F (v) = Li2(1− ev) has the derivative v/(e−v − 1), which is meromorphic with residues in 2πiZ.
Hence, F is a well-defined function from C∖2πiZ to C/4π2Z, satisfying the easily checked func-
tional equation F (v + 2πin) = F (v)− 2πin log(1− ev) for n ∈ Z. (See [86].) We can then define

V(z) = VΞ(z) ∈ C/4π2Z

by the formula

V(z) =

N∑
j=1

(
F (vj) +

ujvj
2

+
πiνj
2

(Cu−Dv)j −
π2

6

)
, (6.4)

where uj and vj are any choice of logarithms of zj and 1− zj satisfying Au−Bv = πiν (which
automatically exist as a consequence of the conditions on ν in (6.2) and the condition (i) on H)
and where (CD) is the bottom half of a completion of H to a full symplectic matrix. To see that
this number, which is only well-defined modulo 4π2, is independent of the choice of u and v, we
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observe that any other choice (u∗v∗) of logarithms of z and 1−z satisfying Au∗−Bv∗ = πiν has
the form (u∗v∗) = (uv) + 2πi

(
BtAt

)
n for some n ∈ ZN (this follows easily from the conditions

(i) and (ii)), and then using the functional equation of F , we find

V∗ −V = πint
(
−2Au+Au+Bv + 2πiABtn− πiν

)
= 2π2

(
ntν − ntABtn

)
,

which is 0 modulo 4π2 because ABt is symmetric and integral with diagonal congruent to ν mod-
ulo 2. On the other hand, the expression (6.4) does depend on the choice of the 2N ×N integral
matrix (CD), but only very mildly, by a multiple of π2/2, since changing (CD) to (CD) + S(AB)
for some symmetric integral N ×N matrix S changes the right-hand side of (6.4) by −π2

2 νtSν.
We believe, but have not checked, that it should be possible to lift the formula (6.4) to a for-
mula giving VΞ(z) modulo 4π2 rather than just modulo π2/2 in terms of H alone by adding
to the right-hand side a term rMπ2/2 where e(rM/8) is the 8th root of unity occurring in the
transformation law of Siegel theta series with characteristics under the action of the symplectic
matrix M =

(
A B
C D

)
as given by Igusa [56, Theorem 3, p. 182].

We make two small remarks on the above formulas before proceeding. The first is that the
term π

2 ν
t(Cu−Dv) in (6.4) is needed, not only to make the expression on the right independent

of the choice of logarithms u and v modulo 4π2 (it is already independent of this choice modulo π2

even if this term is omitted), but in order to get the right imaginary part: the imaginary part
of F (v) is D(z) + Im(uv̄)/2 for eu = 1 − ev = z, where D(z) is the Bloch–Wigner dilogarithm
as above, and it is only if we include the term with Cu − Dv in (6.4) that its imaginary part
has the correct value

∑
j D(zj). The other is that the vector w := Dv − Cu whose scalar

product with ν gave the correction term in (6.4) also gives a parametrization of the N × 2
matrix (uv) as

(
BtAt

)
w + iπ

(
Dt, Ct

)
ν.
(
To see this, just write the relationship of (uv) to ν

and w as M( u
−v ) = ( πiν

−w ) and use the formula for M−1.
)
This is simply the logarithmic version of

the alternative characterization of the variety VH given in (6.3), with w = log x. Changing (uv)
by 2πi

(
BtAt

)
n with n ∈ ZN corresponds to taking a different logarithm w of the same x.

We next turn to the relation between half-symplectic matrices and the Bloch group. The latter
is an abelian group B(F ) which is defined for any field F of characteristic zero as the quotient of
the kernel of the map d : Z[F ]→ Λ2(F×) sending [x] to x∧ (1− x) for x ̸= 0, 1 by the subgroup
generated by the 5-term relation of the dilogarithm. But the precise definition varies slightly in
the literature because of delicate 2- and 3-torsion issues arising from the particular definition of
the exterior square (for instance, does one require x ∧ x = 0 for all x or just x ∧ y = −y ∧ x?)
and the particular choice of the 5-term relation, which potentially comes in 56 versions obtained
from one another by replacing each of the 5 arguments by its images under the group generated
by x 7→ 1/x and x 7→ 1 − x. In fact, we will need the extended Bloch group as introduced
by Neumann [66] and studied further by Zickert and others in [46, 88], but here also there are
several versions. We recall the definition from [88] here, and then describe a small refinement
and the relation to half-symplectic matrices.

Denote by Ĉ the set of pairs of complex numbers (u, v) with eu + ev = 1. This is an abelian
cover of C× ∖ {0, 1} via z = eu = 1 − ev, with Galois group isomorphic to Z2. The extended
Bloch group B̂(C) as defined in [46, 88] is the kernel of the map d̂ : Z

[
Ĉ
]
→ Λ2(C), where Λ2(C)

is defined by requiring only x ∧ y + y ∧ x = 0 (rather than x ∧ x = 0, which is stronger by
2-torsion) and where d̂ maps [u, v] := [(u, v)] ∈ Z

[
Ĉ
]
to u ∧ v, divided by the lifted version

of the 5-term relation, namely, the Z-span of the set of elements
∑5

j=1(−1)j [uj , vj ] of Z
(
Ĉ
)

satisfying (u2, u4) = (u1 + u3, u3 + u5) and (v1, v3, v5) = (u5 + v2, v2 + v4, u1 + v4). There is
an extended regulator map from B̂(C) to C/4π2Z given by mapping

∑
[uj , vj ] to

∑
L(uj , vj),

where L(u, v) = F (v) + 1
2uv −

π2

6 , which one can check vanishes modulo 4π2 on the lifted 5-term
relation. One can also define B̂(F ) for any subfield F of C, such as an embedded number field,
by replacing Ĉ by the subset F̂ consisting of pairs (u, v) with eu = 1 − ev ∈ F . The relation
of the Bloch group and the extended Bloch group to algebraic K-theory is that B(F ) for any
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field F is isomorphic up to torsion to the algebraic K-group K3(F ) [71], with the Borel regulator
map from K3(C) to C/π2Q being given at the level of the Bloch group by dilogarithms, while
the extended Bloch group of a number field F ⊂ C is isomorphic to K ind

3 (F ) [88], for which the
Borel regulator lifts to C/4π2Z.

We now extend this group slightly by replacing Z
[
Ĉ
]
by the larger group Z

[
Ĉ
]
⊕ C and d̂

by a map from this group to Λ2(C)/(iπ ∧ iπ), still given on Z
[
Ĉ
]
by [u, v] 7→ u ∧ v but now

also defined on C by d̂(x) = x ∧ (x + πi), which despite appearances is a linear map because
of the antisymmetry of ∧. We then divide the kernel of this new d̂ by a larger set of relations,
namely the same lifted 5-term relation as before (with C component equal to 0) together with
the relations ([u, v] + [v, u]− [u′, v′]− [v′, u′], 0) and ([u, v] + [−u, v− u+ πi], u) for all (u, v) and
(u′, v′) in Ĉ, corresponding to the elements [z] + [1− z] and [z] + [1/z]. The extended regulator
map to C/4π2Z is now defined by mapping

(∑
[uj , vj ], x

)
to
∑
L(uj , vj)− xπi/2, which agrees

with the previous definition when x is 0 and which can be checked to vanish also on the new
relations. The advantage of this further extension of the Bloch group is that the solutions (u, v)
of the logarithmic Neumann–Zagier equations (i.e., the set of (u, v) ∈ C2N with (uj , vj) ∈ Ĉ for

each j and Au−Bv = πiν with ν as in (6.2)) now give an element of B̂(C), namely the class ξ of
the pair

(∑N
j=1[uj , vj ], wν

t
)
, where w = Cu−Dv as before. Using the parametrization (u, v) =(

BtAt
)
w +

(
CtDt

)
νiπ discussed above, we check easily that the image of this in Λ2(C) under

d̂ is
(
νtCDtν

)
(iπ) ∧ (iπ), and its image under the regulator map is precisely the number V(z)

defined in (6.4). When (u, v) comes from a triangulation of a 3-manifold, then the effect of the
extended 5-term relation is precisely that of a (2, 3)-Pachner move (changing one triangulation
to another by replacing two tetrahedra with a common face by three tetrahedra with the same
set of vertices), so that the element ξ ∈ B̂(C) is a topological invariant of the manifold.

We end this subsection by explaining briefly how half-symplectic matrices actually give
a new description of the extended Bloch group as a quotient of Sp∞ by suitable relations.
Here for convenience we are writing SpN rather than Sp2N for the group of symplectic ma-
trices of size 2N × 2N over Z, and Sp∞ for the direct limit of these groups with respect to
the natural inclusions SpN ↪→ SpN+1. It also turns out to be more convenient to define SpN
as the space of matrices M satisfying MJ∗

NM t = J∗
N instead of MJNM t = JN used above,

where JN =
( 0 −1N
1N 0

)
and J∗

N is the block diagonal matrix with N copies of J1 on the diagonal,
in which case the inclusion just sends M to M+ =

(
M 0
0 12

)
, and similarly the lifted 5-term rela-

tions become much simpler with this convention. The relations that we divide by are roughly
as follows. The first is stability (identify [M ] and [M+]). A second is that we identify [M ]
and

[(
1 0
S 1

)
M
]
with S integral and symmetric are equivalent. (This corresponds to working

with half-symplectic rather than full symplectic matrices.) A third is that we identify M ∈ SpN
with

( g 0

0 gt
−1

)
M for any g ∈ GLN (Z). (This corresponds to permuting the N relations (6.1) or

multiplying one of them by a monomial in the others.) A fourth is to identify M with M
(
P 0
0 P

)
for any N × N permutation matrix P , corresponding in the geometric case to changing the
numbering of the N simplices, and yet another (which maybe can be omitted) corresponds to
relabelling the edges so that the shape parameter z goes to z′ or z′′. The main one, of course,
is a symplectic-matrix version of the 5-term relation. This was first discovered in the special
case corresponding to the Nahm sums (6.5) by Sander Zwegers in an unpublished 2011 con-
ference talk and then given in various versions for arbitrary symplectic matrices by Dimofte
and the first author in [14] and in unpublished work by Campbell Wheeler and Michael On-
tiveros (MPIM). The set of equivalence classes becomes an abelian group by setting [M ] + [M ′]
equal to the class of

(
M 0
0 M ′

)
and −[M ] to the class of M−1. To get a map from this group

to the extended Bloch group of C, we have to first enlarge it by looking at equivalence classes,
not just of half-symplectic matrices H (which is enough by the second of the equivalence re-
lations listed above), but of pairs consisting of a half-symplectic matrix H = (AB) together
with a solution (u, v) ∈ C2N of the logarithmic NZ equations Au−Bv = πν with ν as in (6.2),
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with corresponding lifts of the 5-term and of the various other relations. The map from this
larger group to the extended Bloch group is then the one described in the previous paragraph.
It is injective because the 5-terms relations defining the extended Bloch group all lift to corre-
sponding relations at the (half-) symplectic level. It is also surjective, as one can show using
elements of the set SpN,N ′ =

{
M ∈ MN×N ′(Z) | MJ2NM t = J2N ′

}
of “non-square symplectic

matrices” (note that this set is just SpN if N = N ′ and reduces to 0 if N ′ > N) together with
the obvious composition maps SpN,N ′ × SpN ′,N ′′ → SpN,N ′′ , in order to eliminate superfluous
relations. (Roughly speaking, if

∑N
j=1[uj , vj ] is the Z

[
Ĉ
]
-component of an element of B̂(C) as

defined above, then we define N ′ ≤ N as the rank of the group generated by all uj and vj
and obtain an element of SpN,N ′ by writing the u’s and v’s in terms of these generators, which
then always satisfy a collection of NZ equations.) A more detailed discussion of this and of the
whole relationship between half-symplectic matrices and Bloch groups, including our versions of
the 5-term relation lifted to symplectic and half-symplectic matrices, is also given in [43].

This concludes our discussion of half-symplectic matrices and the equations (6.1). These
objects arise in (at least) two different contexts, in 3-dimensional topology and in the study of
special q-hypergeometric series (Nahm sums). The former is of course the one that is of most
relevance for this paper, and will be discussed in more detail in the next subsection, but after
that we will also say something about Nahm sums because they will play a role in the sequel [44]
to this paper and also because they give the most elementary approach to defining the associated
formal power series that are our main subject of interest.

6.2 Ideal triangulations and the Neumann–Zagier equations

In 3-dimensional geometry, the shape of an ideal tetrahedron in H3 is encoded by a complex
number (“shape parameter”) z ∈ C∖ {0, 1}, the tetrahedron being isometric to the convex hull
of the four points 0, 1,∞, z ∈ P1(C) = ∂

(
H3
)
. The shape z has three forms z, z′ = 1/(1 − z)

and z′′ = 1− 1/z, each corresponding to the choice of a pair of opposite edges of the tetrahedron
as shown in Figure 5.

Figure 5. A tetrahedron with shape parameters.

An ideal triangulation of a 3-manifold with torus boundary components give rise to an equa-
tion (6.1), where the variables zi solving the equations (6.1) are the shape parameters of the
tetrahedra and the equations are the “gluing conditions” relating the shape parameters of the
tetrahedra incident on the various edges of the triangulation and on the cusp. These gluing equa-
tions originated in the work of Thurston [72] and further studied in [67], where the key symplectic
property of the matrices (AB) was found. We explain very briefly how this works for 3-manifolds
whose boundary component is a torus, equipped with an ideal triangulation with N tetrahedra.
Each edge of the triangulation gives rise to a gluing equation asserting that the product of the
shape parameters of all tetrahedra incident to that edge equals to 1. Every peripheral curve
(i.e., a curve in the boundary torus of the 3-manifold) also has an equation of this form (often
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called the holonomy equation, following Thurston), obtained by setting the product of the shape
parameters as the curve intersects the triangulated boundary, equal to 1. The product of the
gluing equations corresponding to all edges is identically 1, so one gluing equation is redundant
and can be removed and replaced by the holonomy equation of a nontrivial peripheral curve.
Since there are N edges, this gives a collection of N gluing equations. If one is interested in the
geometric solution that describes the complete hyperbolic structure, where all the shape param-
eters have positive imaginary part, the above gluing equations are replaced by their stronger
logarithmic form, where the right-hand side is now 2πi for each edge and 0 for the peripheral
curve. Using the fact that the three shape parameters z, z′ = 1/(1− z) and z′′ = 1− 1/z satisfy
the relation zz′z′′ = −1, and in logarithmic form log z + log z′ + log z′′ = πi, it follows that we
can eliminate one of the three variables at each tetrahedron (after choosing a pair of opposite
edges for each tetrahedron). Doing so, the logarithmic form of the gluing equations now become
linear equations for log zi and log(1 − zi), whose coefficients give rise to the Neumann–Zagier
matrices A and B, and where right-hand side is a distinguished flattening ν that should satisfy
the mod 2 congruence given in (6.2). (This congruence can presumably be deduced from the
“parity condition” for ideal triangulations proved by Neumann [65], but we have not checked
this.) Neumann–Zagier’s theorem is that the above matrix (A|B) is the upper half of a symplec-
tic matrix with integer entries. Note that the corresponding pairs (H, z) and (Ξ, z) are called
“NZ datum” and “enhanced NZ datum” in [14]. Note also that a different choice of opposite
edges in each tetrahedron cyclically permutes the triple (zj , z

′
j , z

′′
j ) and changes the corresponding

Neumann–Zagier matrices, but does not change the corresponding element of B̂(C).
The connection between gluing equations and symplectic matrices involves not only the shapes

of ideal tetrahedra, but also their Ptolemy variables. The latter is an assignment of nonzero
complex numbers xi at each edge of an ideal triangulation that satisfy the Ptolemy equations,
namely at each tetrahedron we have a quadratic equation x1x2±x3x4±x5x6 = 0 (with suitable
signs). The signs require either ordered triangulations or a choice of a Ptolemy cocycle and
a detailed description is given in [40, equation 12.2] and also in [26, Section 3]. (The equivalence
between the shape and the Ptolemy description of character varieties of surfaces is discussed in
detail by Fock–Goncharov [21].) In the 3-dimensional case of a knot complement, these xj are
exactly the ones introduced in (6.3) (and related to w = Du − Cv by xj = ewj ), which here
becomes a system of quadratic trinomial relations after rescaling because in each of the column
of the gluing equation matrices there are at most six non-zero entries, corresponding to the six
edges of the tetrahedron corresponding to that column.

We mention in passing that the variety defined by just the first N − 1 edge gluing equa-
tions is 1-dimensional (for a suitably chosen triangulation) and that this curve maps to the
PSL2(C)-character variety (via the developing map which assigns a solution to the gluing equa-
tions a PSL2(C)-representation of the fundamental group of the manifold, well-defined up to
conjugation). The PSL2(C)-character variety maps to C∗×C∗ (modulo a Z/22 quotient) and its
image is described by the vanishing of the A-polynomial A(ℓ,m) (where ℓ is the longitude) as
introduced subsequently in [11]. The variety obtained by adding taking the first N − 1 relations
together with the relation mpℓq = 1 for coprime integers p and q corresponds to the compact 3-
manifold obtained by doing a (p, q) Dehn surgery on the knot complement. A detailed discussion
of the choices involved to write down these matrices can be found in [14, Section 2, Appendix A].
All of this data is standard in knot theory, and is computed explicitly for any given knot com-
plement (or more generally, an ideal triangulation of a cusped hyperbolic 3-manifold) by the
computer implementation of SnapPy [12].

Once an ideal triangulation ∆ of a 3-manifold M as above has been fixed, a solution z of its
gluing equations gives rise via a developing map to a representation ρz (i.e., a group homomor-
phism) of π1(M) in PSL2(C), well-defined up to conjugation. If we choose the Neumann–Zagier
equations as above, the representation ρz is boundary-parabolic and gives rise to an element of
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the extended Bloch group [87] and has a well-defined complex volume; see [66] and also [40].
Thus, if ∆ is an ideal triangulation of a the complement of a knot K, we have a map z 7→ ρz
from VH(C) to PK , and the complex volume of ρz ∈ PK coincides with the complex volume
of z, as follows from the work of Neumann [66] and Zickert [88] on the extended Bloch group.

There are, however, several subtleties of the above construction which we should point out.
For instance, there exist triangulations of hyperbolic knots for which the map VH(C)→ Pred

K is
not onto or even for which the complex solutions set VH(C) is empty (this can happen even for
triangulations of the complement of the 41 knot). In this paper, we will ignore these issues and
assume that we are dealing with ideal triangulations for which the map is onto. We will further
restrict our attentions to knots for which the set PK is finite. (There are known to be knots
for which the variety PK has strictly positive dimension, but they are too complicated for the
calculations in this paper to be carried out. We believe that in such cases the right indexing set
of our formal power series would be the set of components of PK or of the variety VH(C).)

An alternative approach to the definition of the set PK comes from the branches of the A-
polynomial curve above the point m = 1, where m is the eigenvalue of the meridian. Even if
the SL2(C) character variety of decorated representations of a knot complement has positive-
dimensional components, its image in C∗ × C∗, as given by the eigenvalue of the meridian and
the longitude, is one-dimensional, and (ignoring any zero-dimensional components) is defined
by the zeros of the A-polynomial of the knot. The A-polynomial is discussed in detail in the
appendix of [8]. We will focus on knots that satisfy the property that the number of parabolic
representations σ coincides with the degree of the A-polynomial of a knot with respect to the
longitude. Note that the Galois group Gal

(
Q/Q

)
acts on the set PK of boundary parabolic

representations. What’s more, in a boundary parabolic representation, the longitude has eigen-
value ±1 and this partitions the set PK into two subsets P±

K , each of which is stable under the
action of Gal

(
Q/Q

)
. The geometric representation lies in P−

K ; see [9, Lemma 2.2].

6.3 Nahm sums and the perturbative definition of the Φ-series

In this final subsection, we describe how to attach to Ξ = ((AB), ν) as in (6.2), a solution z
of the equation (6.1) and a number α ∈ Q a completed formal power series belonging to
eV(z)/den(α)2hC[[h]]. As already stated in Section 2, this was done in [14] (for α = 0) and [15]
(for general α) in the context of knot complements and Neumann–Zagier data. However, there
is a completely different situation where the same formal power series are attached to the same
data (Ξ, z, α), namely the asymptotics near roots of unity of special q-hypergeometric series
called Nahm sums. Since these are a little more elementary we will use them to explain the
derivation of the formal power series.

We begin by recalling what Nahm sums are. The simplest one is defined by

FA,b(q) =
∑

n1,...,nN≥0

q
1
2
ntAn+btn

(q; q)n1 · · · (q; q)nN

∈ Z[[q]], (6.5)

where A is an even positive definite symmetric matrix in MN (Z) and b an element of ZN .
Changing each nj by 1, we see that the stationary points of the summand (i.e., the places where
nearby terms are asymptotically equal, giving the expected main contributions to the whole
sum) are given in the limit q → 1 by qnj = zj + o(1), where z = (z1, . . . , zN ) is a solution of
Nahm’s equation 1 − z = zA (which is the special case B = 1N of (6.1), with (A1N ) being
half-symplectic). Nahm observed that for any solution z of this equation the element

∑
i[zi]

belongs to the Bloch group B(C) and conjectured that FA,b(q) (up to a rational power of q, and
considered as a function of τ with q = e(τ)) can only be a modular function if at least one
solution of the Nahm equation has a trivial class in the Bloch group, and conversely that FA,b
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(again up to a power of q and as a function of τ) is a modular function of τ for some b if all
solutions of the Nahm equation have trivial class in the Bloch group. The first assertion was
proved in [10]; the second is still open.

If we now generalize the Nahm sum to

FΞ(q) =
∑

n∈ZN ,Btn≥0

(−1)νtnq
1
2
(ntABtn+νtn)

(q; q)(Btn)1
· · · (q; q)(Btn)N

=
∑

m,n∈ZN
≥0×ZN

m=Btn

(−1)νtnq
1
2
(ntAm+νtn)

(q; q)m1 · · · (q; q)mN

, (6.6)

with Ξ = ((AB), ν) as in (6.2), which is still a power series in q because of the congruence
condition on ν, then the same consideration as before shows that the stationary points of the
sum correspond via z = qB

tn to the solutions of the equation (6.1). A formal computation of the
contribution of the summands near these stationary point will lead to the perturbative series in h
that we are looking for, where q = e−h with h→ 0, and in some cases one can show that these h-
series actually do describe the radial asymptotics of the Nahm sum (see [42], where this is shown
to be the case for the original Nahm sum (6.5) and the real solution of the Nahm equation), but
in general the calculation is purely formal because unless all zi are between 0 and 1 the series
corresponding to h will not correspond to any subsum of (6.5) or (6.6). We also mention that
there are even more general Nahm sums whose n-th summand

(
n ∈ ZN

)
is the product of a root

of unity, a power of q given by a quadratic function of n, and a product of Pochhammer symbols
(possibly to integer powers) with linear forms in n as arguments, which occur in several places
in quantum topology, e.g., the 3D-index [13] and many of the q-series in [44].

We now explain how to associate to the datum Ξ = (H, ν) and point z on VH a formal power
series Φ

(Ξ,z)
α (h) for each α ∈ Q/Z. We will do this first for the easier case α = 0, and then

discuss how the formula changes in the general case. The calculations for α = 0 were done first
for the simplest Nahm sum (6.5) in [83] and [75] and for general half-symplectic matrices (AB)
(though under the assumption that B is invertible over Q) in the context of knots in [14]. The
power series that were obtained in these two different contexts were syntactically identical, and
this coincidence persisted for general α, with the perturbative series of [15] being syntactically
equal to the asymptotics of Nahm sums at roots of unity [42, Section 5], with the formulas in
all cases being given in terms of (sums of) formal Gaussian integrals. It is for this reason that
we can use the easier Nahm sums to motivate the precise form of the integral to be studied. We
only sketch the argument, referring to the papers above for more details.

We begin by rewriting the first definition in (6.6) in the form

F(AB),ν(q) =
1

(q; q)N∞

∑
n∈ZN

(−1)νtnq
1
2
(ntABtn+νtn)

N∏
j=1

(
q(B

tn)j+1; q
)
∞, (6.7)

where we no longer have to restrict to n with Btn ≥ 0 because
(
qm+1; q

)
∞ vanishes for m ∈ Z<0.

We must assume for now that the symmetric matrix ABt is positive definite to ensure the conver-
gence of the series (6.6) or (6.7), but this is not important at the end since the final formulas will
be purely algebraic and make sense without this assumption. The key point is that if q = e−h

with h small then the sum will be approximated to all orders by the corresponding integral,
with ZN replaced by RN and the summation sign by an integral sign. (This is a consequence of
the Poisson summation formula, which represents the sum over ZN of a sufficiently smooth func-
tion of sufficiently rapid decay as the sum over ZN of its Fourier coefficient, whose constant term
is the integral corresponding to the original sum and whose other terms are of smaller order.) We
then look at the expansion of the integrand around its stationary points and approximate each
by a Gaussian times a power series in a small local variable, as is always done in perturbation
theory. The stationary points are indexed by the complex points z of VH , as already indicated,
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the correspondence being given by q(B
tn)j ∼ zj . On the other hand, for z ∈ C∗, q = e−h with h

tending to 0, and t either fixed or growing more slowly than any power of 1/h, we have the
asymptotic formula

1(
zet

√
h; q
)
∞

∼ exp

( ∞∑
m=0

Bm

(
t/
√
h
)

m!
Li2−m(z)hm−1

)

= exp

(
Li2(z)

h
+

(
t√
h
− 1

2

)
log

(
1

1− z

)
+

t2

2

z

1− z
+ (small)

)
, (6.8)

where Bm(t) denotes the m-th Bernoulli polynomial and “(small)” is an explicit power series
in t and

√
h with no constant term in

√
h. (The first statement is [83, Lemma, p. 53] and the

second follows because all contributions from Bm

(
t/
√
h
)
with m ≥ 2 except for the quadratic

part of the B2-term are small.) Inserting this into the parts near the stationary points of the
integral corresponding to the sum (6.7), we find after some calculation that the total contri-
bution of the stationary part corresponding to a given solution z of (6.1) is eV(z)/h times an
explicit power series in h (initially in

√
h, but then in h because of the parity properties of

Bernoulli polynomials) which is written out in [14]. We only mention here that the power series
obtained has coefficients in Q(z) (and hence in Fσ in our application to knots) except for a pref-
actor det(A+B diag(zj/(1− zj)))

−1/2 coming from the determinant of the quadratic part of
the Gaussian.

When α = a/c is not integral, the calculations, done in [15] in the general case (still with B
invertible) and in [42] for the special Nahm sums (6.5), are much more complicated and we
refer to those papers for the explicit formulas. A key point is that the stationary points of the
integral are now indexed by the c-th roots of the solutions z of (6.1), but with the quadratic
form appearing in the Gaussian depending only on z and not on the choice of c-th root. This
means that each of the formal power series Φ

(Ξ,z)
α (h) has the form of a sum over (Z/cZ)N

(
after

choosing some fixed c
√
z
)
of expressions similar to those occurring for the simpler case c = 1.

The reader can get a feeling for the nature of the formulas appearing by looking at Section 8 of
this paper, where they are carried out in detail for the Kashaev invariant of the 41 knot, this
case however being deceptively simple because of the positivity of all of the terms occurring.

We make one final remark. The specific formulas given in [14, 15] gave only the series Φ
(K,σ)
α

as discussed in Section 2, i.e., only the first column of our matrix Φ(K), because the vector ν
was always assumed to be the one coming from the geometric “flattening”. By varying ν, one
can get the other columns of Φ. This variation produces a q-holonomic system that turns out
to be closely related to the ones for the generalized Kashaev invariants that will be discussed in
Section 7.1. This will be the theme of the next section.

7 Two q-holonomic modules

In Part I we were led by the refined quantum modularity conjecture to find an entire matrix J(K)

of Habiro-like functions generalizing the Kashaev invariant, the first column being the vector of
formal power series found in [14, 15]. In this section, we will study the structure of the other
columns of this matrix and will see that they have a natural “q-holonomic structure” in terms
of an infinite collection of functions that satisfy a recursion of finite length and hence all lie
in a finite-dimensional module. In Section 7.1, we explain this in detail for the case of the 41
knot, where explicit formulas for the entries of J(K) were already given in Part I. In the next
subsection, we give the corresponding formulas for the 52 knot, where the matrix in question
has size 4 × 4 instead of 3 × 3. These are considerably more complicated than for the 41 knot
and have the interesting new feature that Dedekind sums appear. In Section 7.3, we explain
how these formulas could be guessed. This ansatz involves studying the q-hypergeometric series
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defining the original Kashaev invariant via stationary points and formal Gaussian summation,
analogous to what was done in Section 6.3 for Nahm sums and what will be done in Section 8
for the Kashaev invariant of the 41 knot. In the final subsection, we discuss the point already
alluded to at the end of Section 6 that the power series in h studied there have a q-holonomic
structure with the same coefficients as the one associated to the matrix J. This is for the
momenta purely experimental and is one of the many mysteries associated with the subject. In
Section 7.4, we also briefly mention two further conjectural objects associated to knots (or more
generally to half-symplectic matrices) that we believe share the same q-holonomic structure.

7.1 Descendant Habiro-like functions

It turns out that the first row of J and the first row of Φ̂ are basis elements of the span of an
inhomogeneous recursion, and the same holds (but now with the corresponding homogeneous
recursion) for each of the remaining rows of J and of Φ̂ as well as for the matrix of q-series
of [44]. To illustrate how this works, we give the complete formulas for the matrix for the 41
knot. The corresponding formulas for the 52 knot, which are considerably more complicated
and illustrate several further refinements (like the appearance of Dedekind sums), will be given
in Section 7.3.

Collecting together our previous results for the 41 knot for the reader’s convenience, we obtain
that the matrix J = J(41) of periodic functions on Q has the form

J(x) =

1 J (0,1)(x) J (0,2)(x)

0 J (1,1)(x) J (1,2)(x)

0 J (2,1)(x) J (2,2)(x)

 = J (q) =

1 J (0,1)(q) J (0,2)(q)

0 J (1,1)(q) J (1,2)(q)

0 J (2,1)(q) J (2,2)(q)


(with q = e(x) and omitting K as usual), where the elements of the first row are given by

J (0,1)(q) = Q(41)
1 (q) = J (41)(q) =

∞∑
n=0

(q; q)n
(
q−1; q−1

)
n
,

J (0,2)(q) = Q(41)
2 (q) =

1

2

∞∑
n=0

(
qn+1 − q−n−1

)
(q; q)n

(
q−1; q−1

)
n

(7.1)

(equations (2.6) and (4.5)), with Q(41)
i (q) being the elements of the Habiro ring defined and

tabulated in Section 4.3, and that the elements of the other two rows are given by

J (1,1)(q) =
1

√
c 4
√
3

∑
Zc=ζ6

c∏
j=1

∣∣1− qjZ
∣∣2j/c,

J (2,1)(q) =
i

√
c 4
√
3

∑
Zc=ζ−1

6

c∏
j=1

∣∣1− qjZ
∣∣2j/c,

J (1,2)(q) =
1

2
√
c 4
√
3

∑
Zc=ζ6

(
Zq − Z−1q−1

) c∏
j=1

∣∣1− qjZ
∣∣2j/c,

J (2,2)(q) =
i

2
√
c 4
√
3

∑
Zc=ζ−1

6

(
Zq − Z−1q−1

) c∏
j=1

∣∣1− qjZ
∣∣2j/c (7.2)

(equations (3.2), (4.9) and the accompanying text). The syntactical similarity between equa-
tions (7.1) and equations (7.2) is striking, and leads directly to the q-holonomy.

To see this, we rewrite the two formulas in (3.2) as

J (0,1)(q) = H(0)
0 (q), J (0,2)(q) =

1

2

(
qH(0)

1 (q)− q−1H(0)
−1(q)

)
, (7.3)
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where
{
H(0)

m (q)
}
m∈Z is the sequence of elements of the Habiro ring defined by

H(0)
m (q) =

∞∑
n=0

(q; q)n
(
q−1; q−1

)
n
qmn, m ∈ Z. (7.4)

It is easy to see that this sequence satisfies the recursion relation

qm+1H(0)
m+1(q) + (1− 2qm)H(0)

m (q) + qm−1H(0)
m−1(q) = 1, m ∈ Z (7.5)

(a similar, but homogeneous, recursion relation for the descendants of certain q-series associated
to the 41 knot was given in [27, equation (14)] and used in [44]) and also that the Q

[
q±
]
-module

they span is free of rank 3 with the top row of the matrix J as a basis. If we now introduce two
further sequences of functions of q (or periodic functions of x, where q = e(x)) by

H(1)
m (q) =

1
√
c 4
√
3

∑
Zc=ζ6

Zm
c∏

j=1

∣∣1− qjZ
∣∣2j/c,

H(2)
m (q) =

i
√
c 4
√
3

∑
Zc=ζ−1

6

Zm
c∏

j=1

∣∣1− qjZ
∣∣2j/c, (7.6)

then (7.2) says that the non-trivial elements of the second and third rows of J are given by

J (i,1)(q) = H(i)
0 (q), J (i,2)(q) =

1

2

(
qH(i)

1 (q)− q−1H(i)
−1(q)

)
, i = 1, 2.

Furthermore, we see that the first column of the matrix J, trivial though it is, nevertheless
belongs to the same q-holonomic module as the other columns, since as well as equations (7.3)
and (7.6) we also have the relation

J (i,0)(q) = qH(i)
1 (q) +H(i)

0 (q) + q−1H(i)
−1(q), i = 0, 1, 2, (7.7)

as we see by specializing the recursion (7.5) and its counterparts for H(1)
m and H(2)

m to m = 0.
Then the quantitative version of the “syntactical similarity” noted above is that we can write
the formulas (7.1) and (7.2) or (7.6) and (7.7) uniformly and more compactly in matrix form as

J (41)(q) =

H
(0)
−1(q) H

(0)
0 (q) H(0)

1 (q)

H(1)
−1(q) H

(1)
0 (q) H(1)

1 (q)

H(2)
−1(q) H

(2)
0 (q) H(2)

1 (q)


q−1 0 1

2q
1 1 0
q 0 −1

2q
−1

 . (7.8)

Note that none of these equations are unique, since any one of them could be written in infinitely
many other ways by using the q-holonomy property, e.g., we could specialize the recursions to
any value of m other than 0 to get formulas for J (i,0)(q) different from (7.7). Similarly, we could
rewrite (7.8) by taking three other columns (or linear combinations of columns) of the H-matrix
for the first factor on the right, with the corresponding new matrix of Laurent polynomials in
the second factor.

More interesting is that there is also nothing sacred about the particular collection H(i)(q)
of functions of q that we chose to define our q-holonomic system, and that there infinitely many
other collections, even with completely different indexing sets (e.g., Z2 instead of Z) that could be
used instead and that might have been found it we had given a different combinatorial description
of knot. However, the module over Q

[
q, q−1

]
that they generate is at least conjecturally intrinsic

to the knot and is simply the span of the columns of J(K), which therefore constitute a canonical
basis indexed by P. This is one of the most mysterious aspects of our matrix invariants. We
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will return to it in at the end of this section in connection with other possible representations
of the same abstract q-holonomic module.

We end the subsection with a final remark. Despite the apparent similarity in the formulas
for the elements of the first row and all other rows of the matrix J, there is a crucial difference
between formulas like (7.1) or (7.4) for the top rows of our matrix and formulas like (7.2) or (7.6)
for the other rows: the former are sums over the lattice points of a cone and hence satisfy an in-
homogeneous linear q-difference equation, whereas the latter are sums over periodic groups Z/cZ
and hence have no boundary terms and satisfy a homogeneous equation. Another difference,
to which we hope to return in [38] in the context of Habiro rings for general number fields, is
that (7.1) and (7.4) obviously give algebraic integers when q is a root of unity, whereas (7.2)
or (7.6) give algebraic integers in some non-evident way, since it is not obvious (but in fact true)
that the sums in these formulas are divisible by

√
c. We will find exactly the same behavior for

the elements of the J-matrix for the 52 knot in the next subsection.

7.2 The J-matrix for the 52 knot

In this subsection, we describe that analogues of the formulas just given for our second standard
knot 52, because as usual the figure 8 knot has such special properties that some of the interesting
features are obscured.

The Kashaev invariant of the 52 knot is given by

J (52)(q) =
∞∑

m=0

m∑
k=0

q−(m+1)k (q; q)2m(
q−1; q−1

)
k

. (7.9)

(See [59, equation 2.3].) This is manifestly an element of the Habiro ring. We generalize it to
the two-parameter family of elements of the Habiro ring given by

H(0)
a,b(q) =

∞∑
m=0

m∑
k=0

q−(m+1)k+am+bk (q; q)2m(
q−1; q−1

)
k

, a, b ∈ Z. (7.10)

These again form a q-holonomic module in the sense of [77], meaning that they satisfy recur-
sions like (7.5) (though in this case more complicated, and omitted here) and hence generate
a Q

[
q, q−1

]
-module of finite rank. Here the rank is 4 and the q-holonomic module is generated

(as we expect to hold for every knot) by the first row of the matrix J of the knot,

J (0,0)(q) = −H(0)
0,0(q) + q−1H(0)

−1,0(q) +H
(0)
0,−1(q) = 1, J (0,1)(q) = H(0)

0,0(q),

J (0,2)(q) = H(0)
0,0(q)− q−1H(0)

−1,0(q), J (0,3)(q) = 2H(0)
0,0(q)− q−1H(0)

−1,0(q) +H
(0)
−1,1(q).

Just as in the case of the 41 knot, we find that the further three rows are given by the same

linear combinations of three other two-parameter families H(i)
a,b (1 ≤ i ≤ 3) of functions, i.e., we

have

J (i,0)(q) = −H(i)
0,0(q) + q−1H(i)

−1,0(q)−H
(i)
0,−1(q), J (i,1)(q) = H(i)

0,0(q),

J (i,2)(q) = H(i)
0,0(q)− q−1H(i)

−1,0(q), J (i,3)(q) = 2H(i)
0,0(q)− q−1H(i)

−1,0(q) +H
(i)
−1,1(q)

for i = 0, 1, 2, 3. The formulas for the functions for i ̸= 0, whose origin will be indicated in
Section 7.3, are of the same type as the corresponding ones for the 41 knot (equation (7.2)),
though considerably more complicated, but are completely different from (7.10), namely

H(i)
a,b(x) =

1

c
√
3ξi − 2

θc−1
1,i Dζ(ζθ1,i)

2

Dζ

(
ζ−1θ−1

2,i

) ∑
k,m mod c

ζ−(k+1)mθ−m
1,i θ−k

2,i

(ζθ1,i; ζ)
2
k(

ζ−1θ−1
2,i ; ζ

−1
)
m

, (7.11)
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where c = den(x), ζ = e(−x) and θc1,i = −ξ
−3
i and θ2,i = ξ−2

i are any choice of c-th roots of −ξ−3
i

and ξ−2
i and ξ1 (resp., ξ2, ξ3) the complex root of the equation ξ3−ξ2+1 = 0 (as in Section 2.1)

with negative (resp., positive, zero) imaginary part. Here Dζ(x) is the renormalized version of
the cyclic quantum dilogarithm Dζ(x) defined for q = e(a/c) by

Dq(x) = e−2πis(a,c)/2Dq(x) = e−2πis(a,c)/2 exp

(
c−1∑
j=1

j

c
log
(
1− qjx

))
, (7.12)

where s(a, c) is the Dedekind sum (cf. [55, 69]) and where the logarithm is the principal one away
from the cut at the negative real axis and is defined on the cut as the average of the principal
branches just above and just below. The cyclic quantum dilogarithm appears in the expansion
of Faddeev’s quantum dilogarithm at roots of unity (see, for example, [29, 60]) and plays a key
role in the definition of the near units associated to elements of the Bloch group [10].

It is worth mentioning that the formulas (7.2) and (7.6) for the 41 knot can also be written
in terms of the modified cyclic quantum dilogarithm Dq, because

∏c
j=1

∣∣1− qjZ
∣∣2j/c can be

rewritten as Dq(Z)Dq−1

(
Z−1

)
. In fact, we expect formulas of this type, involving multiplicative

combinations of the Dq’s corresponding to the combinations defining the element of the Bloch
group of F corresponding to the knot, to exist for all knots.

7.3 State-sums

In this subsection, we explain where the formulas just given come from. More precisely, we
discuss a heuristic method to discover a formula for the first column of the matrix J(52) given
a formula for its top entry i.e., for the Kashaev invariant of the knot. This method produces
periodic functions similar to the constant term of the formal power series Φ

(σ)
α (h) discussed in

Section 6. It also generalizes to the further columns, by replacing the Kashaev invariant by the
other in its top row (i.e., in the row of the matrix that is expected always to have entries belonging
to the rational Habiro ring), thus producing predictions for the entire matrix J. This is useful
in particular for the numerical confirmation of the generalized quantum modularity conjecture.

Our starting point is the formula (7.9) for the Kashaev invariant of the 52 knot. Let

bk,ℓ(q) = q−(ℓ+1)k (q; q)2ℓ(
q−1; q−1

)
k

denote the summand of the Kashaev invariant of 52 in equation (7.9). The function bk,ℓ(q)
(which is proper q-hypergeometric in the sense of [77]) satisfies the linear q-difference equations

bk+1,ℓ(q)

bk,ℓ(q)
= q−ℓ

(
1− qk+1

)2
,

bk,ℓ+1(q)

bk,ℓ(q)
= q−(k+1) 1

1− q−ℓ−1
, (7.13)

whose right-hand sides are in Q
(
q, qk, qℓ

)
. It follows that for natural numbers r, s we have

bk+r,ℓ(q)

bk,ℓ(q)
= q−rℓ

(
qk+1; q

)2
r
,

bk,ℓ+s(q)

bk,ℓ(q)
= q−(k+1)s 1(

q−ℓ−1; q−1
)

and hence

bk+r,ℓ+s(q)

bk,ℓ(q)
= q−ks−rℓ−(r+1)s

(
qk+1; q

)2
r(

q−ℓ−1; q−1
)
s

.

Setting qk = z1, q
ℓ = z2, q = 1 and equating the ratios of equations (7.13) to 1, we get the

gluing equations for (z1, z2)

z−1
2 (1− z1)

2 = 1, z−1
1

(
1− z−1

2

)−1
= 1. (7.14)
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Although the summation for the Kashaev invariant when q is a primitive N -th root of unity
is a subset of [0, N − 1]2 and when

(
qk, qℓ

)
is near (z1, z2) is outside the summation range, we

will pretend that we have performed analytic continuation. Choose ζ = e(a/c) where (a, c) = 1
and c > 0 and (θ1, θ2) =

(
z
1/c
1 , z

1/c
2

)
. In other words, we choose θi to be arbitrary c-th roots

of zi (i = 1, 2). Then we can define ar,s(θ1, θ2; ζ) by

ar,s(θ1, θ2; ζ) =
bk+r,ℓ+s(q)

bk,ℓ(q)

∣∣
qk=θ1,qℓ=θ2,q=ζ

= ζ−(r+1)sθ−s
1 θ−r

2

(ζθ1; ζ)
2
r(

ζ−1θ−1
2 ; ζ−1

)
s

.

The principle of equipeaked Gaussians in the asymptotics of J(γX) with γ =
(
a b
c s

)
∈ SL2(Z)

(as used in Section 8.2 for the case of the 41 knot) suggests the expression

S(θ1, θ2; ζ) =

c−1∑
r,s=0

ar,s(θ1, θ2). (7.15)

The first observation is that the sum in equation (7.15) is c-periodic, i.e., that r, s ∈ Z/cZ.
This follows from the fact that (z1, z2) satisfy the gluing equations (7.14). A second observa-
tion, which we will not make use of, if the fact that bk,ℓ(q) determines ar,s(θ1, θ2) according
to the above definitions. Conversely, ar,s(θ1, θ2; ζ) determines bk,ℓ(q) by ar,s(1, 1; ζ) = br,s(ζ).
A curious consequence of this is that S(1, 1; ζ) = J(ζ) recovers the Kashaev invariant. The
gluing equations (7.14) can be solved as follows: z1 = −ξ−3, z2 = ξ−2, where ξ3 − ξ2 + 1 = 0.
The three solutions give rise to the three embeddings of the trace field of 52 into the complex
numbers. For ζ = e(a/c), let Fc = F (ζ) and FG,c = Fc(θ1, θ2), giving extensions F ⊂ Fc ⊂ FG,c,
where FG,c/Fc is an abelian Galois (Kummer) extension with group (Z/cZ)2 and S(θ1, θ2) ∈ FG,c.
To find how S(θ1, θ2; ζ) transform under the Galois group, we compute

ar,s(ζθ1, θ2; ζ)

ar+1,s(θ1, θ2; ζ)
= θ2(1− ζθ1)

−2 = a1,0(θ1, θ2; ζ)
−1,

ar,s(θ1, ζθ2; ζ)

ar,s+1(θ1, θ2; ζ)
= ζθ1

(
1− ζ−1θ−1

2

)
= a0,1(θ1, θ2; ζ)

−1

(where the left-hand side of the above equations is independent of r and s hence it must equal
to the right-hand side). Since the sum in equation (7.15) is c-periodic, it follows that

S(ζθ1, θ2; ζ) = S(θ1, θ2; ζ)θ2(1− ζθ1)
−2 = S(θ1, θ2; ζ)a1,0(θ1, θ2; ζ)

−1, (7.16a)

S(θ1, ζθ2; ζ) = S(θ1, θ2; ζ)ζθ1
(
1− ζ−1θ−1

2

)
= S(θ1, θ2)a0,1(θ1, θ2; ζ)

−1. (7.16b)

To fix the Galois invariance of S(θ1, θ2; ζ), we consider the product

P (θ1, θ2; ζ) =

c−1∏
r=0

(
1− ζr+1θ1

)2r c−1∏
s=0

(
1− ζ−s−1θ−1

2

)−s
.

We can rewrite the above product using the cyclic quantum dilogarithm function (7.12) as follows

P (θ1, θ2; ζ) = z−1
1 z−1

2

Dζ(θ1)
2

Dζ−1

(
θ−1
2

) . (7.17)

From the transformation property for the cyclic quantum dilogarithm

Dζ(x)

Dζ

(
ζ−1x

) =
(1− x)c

1− xc
, Dζ(x)Dζ−1(x) = (1− xc)c(1− x)c
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and the fact that (z1, z2) solve the gluing equations (7.14), we obtain that

P (ζθ1, θ2; ζ) = P (θ1, θ2; ζ)
(
θ−1
2 (1− ζθ1)

2
)c

= P (θ1, θ2; ζ)a1,0(θ1, θ2; ζ)
c, (7.18a)

P (θ1, ζθ2; ζ) = P (θ1, θ2; ζ)
(
ζ−1θ−1

1

(
1− ζ−1θ−1

2

)−1)c
= P (θ1, θ2; ζ)a0,1(θ1, θ2; ζ)

c. (7.18b)

Equations (7.16) and (7.18) imply that

P 1/c(θ1, θ2; ζ)S(θ1, θ2; ζ) ∈ ε1/cFc,

where ε is a unit, which in fact coincides with the one constructed in [10].

The expression given in the above equation, after multiplication by a prefactor, coincides with
H(i)

0,0(x) of equation (7.11) if we choose θ1 and θ2 corresponding to the root ξi of ξ
3− ξ2+1 = 0.

In this way, we have succeeded in guessing the entries of the first column of the matrix J(52)

of the 52 knot starting from the formula (7.9) for its Kashaev invariant. All of this seems
to reek a little of “black magic”. But the same method applied to the case of the 41 knot
(whose Kashaev invariant is given in (7.1)) reproduces the formulas given in (7.2). In fact, we
believe that this will work for any knot, giving each entry of the first column of the J-matrix
as a sum of products of cyclic quantum dilogarithms with summands modelled on the solution
of the Neumann–Zagier gluing equations of the knot triangulation in the same way that the
expression (7.17) is modelled on the gluing equations (7.14).

7.4 The q-holonomic module of formal power series

We now explain one of the most mysterious aspects of our story, the appearance of two very
different realizations of the same q-holonomic system in the contexts of state sums and of per-
turbative formal power series. In fact, as we will indicate briefly at the end, we believe that
there are actually four q-holonomic systems, of totally different origins, given by recursions with
the same Laurent polynomials as coefficients.

We begin by recalling the derivation of the perturbative series in h from Nahm sums, as de-
scribed in Section 6.3. The Nahm sums FΞ(q) as defined in (6.6), withH fixed and ν varying over
diag

(
ABt

)
+2ZN , form a module of finite rank over the ring R = Z

[
q±1
]
of Laurent polynomials

in q. For instance, for the original Nahm sums as defined in (6.5), we have the recursions

FA,b(q)− FA,b+ek(q) = q
1
2
etkAek+btekFA,b+Aek(q), k = 1, . . . , N

(here ek denotes the k-th basis vector of ZN ), as one sees by noting that (1− qnk)/(q; q)nk
van-

ishes if nk = 0 and equals 1/(q; q)nk−1 if nk ≥ 1, so that the difference on the left corresponds
simply to shifting the multi-index n by ek. A similar but more complicated calculation (again
corresponding to the shift n 7→ n + ek in the definition of the sum and using the relationship
between Pochhammer symbols with nearby indices) gives a collection of N recursion relations
among the various F((AB),ν) with fixed (AB). This system is always q-holonomic [77], meaning
in particular that the solution space is finite-dimensional.

When we discussed the asymptotic behavior of the Nahm sum (6.6) in Section 6.3, we first
rewrote the sum as in (6.7) and then replace the sum over n ∈ ZN by an integral over x ∈ RN .
It is then clear that exactly the same argument (replacing x by x + ek) shows that the formal
power series arising from Gaussian integrals near the various stationary points of the integral
satisfy the same system of recurrences, and hence also form a q-holonomic module. In favorable
cases, including all the ones we have looked at, the rank of this system will be equal to the
cardinality of PK , because the characteristic variety of the system coincides with the variety VH

as defined in Section 6.1.
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The surprising discovery is that the abstract q-holonomic module that we obtain this way is
the same as the one that we found in the first three subsections of this section from the Habiro-
like functions, i.e., although the functions of q are completely different and are even defined
in different places, the modules in question are spanned by sequences of elements indexed in
the same way and satisfying the same recursions over Q

[
q±1
]
, and moreover that the special

basis indexed by PK is given in both systems by the same linear combination of these elements.
(Compare the discussion at the end of Section 7.1.) We believe that this coincidence of two q-
holonomic structures will hold, not only for the matrix invariants of knot complements, but
more generally for corresponding objects associated to any half-symplectic matrix in the sense
of Section 6. This will be further studied in [38].

However, a big surprise of the sequel [44] to this paper is that the very same q-holonomic
structure actually occurs a third time in terms of the q-series coming from state integrals that
are studied there. We believe that this coincidence holds because these three objects are simply
different realizations of the same “function-near-Q” belonging to a generalized Habiro ring,
with the “nearness” being realized for the Habiro-like functions by approaching a given rational
number through nearby rational numbers of slowly growing height, and in the case of the q-
series by approaching a rational number from above in the upper half-plane (or equivalently,
approaching a root of unity radially in the unit disk). We have checked the agreement of the
relations over Q

[
q, q−1

]
among the columns of the J- and Φ-matrices for both the 41 and 52

knots (although we do not describe that verification in this paper because the specific formulas
that were used for J for these two knots in Sections 7.1 and 7.2–7.3 are not the same as the
ones coming from ideal triangulations and Neumann–Zagier data and are rather complicated),
while the corresponding verification for the q-series for the same two knots is given in [27] and
discussed in [44]. We conjecture that these recursive relations coincide with the ones defined in
current work of Rinat Kashaev and the first author [31] from the colored Jones polynomials.
But we should emphasize that we still have no idea why any of these q-holonomic modules has
a canonical basis indexed by P.

8 Proof of the modularity conjecture for the 41 knot

In this section, we give our proof of the quantum modularity conjecture for the figure 8 knot,
announced several years ago. Another proof was given by [6], as well as proofs of the quantum
modularity conjecture for a few other knots, but we give our proof for completeness and because
the point of view here is somewhat different from the one there.

We denote by J(x) the J-function for the 41 knot, as given explicitly by equation (2.6)
with q = e(x). We have to show that

J

(
aX + b

cX + d

)
∼ (cX + d)3/2J(X)Φ̂a/c

(
2πi

c(cX + d)

)
(8.1)

to all orders in 1/X as X tends to infinity with bounded denominator with γ =
(
a b
c d

)
∈ SL2(Z)

fixed and c > 0, where Φ̂a/c(h) = eV/c
2hΦa/c(h) is the completed version of a formal power

series Φa/c(h) with algebraic coefficients and where

V = Vol
(
S3 ∖ 41

)
= 2.02988 . . .

is the volume of the complement of this knot. We give the proofs separately for the special case
γ = S, α := a/c = 0 and for the general case, since all the main ideas are already visible for the
former and the details are much simpler.



Knots, Perturbative Series and Quantum Modularity 59

8.1 The case of α = 0

We begin with the case α = 0, which makes it clear where the factor J(X) in equation (8.1)
comes from. We use the notation

Pn(x) = |(q; q)n|2,

for q = e(x) with x rational, so that Pn(x) is the n-th summand in the definition of J(x), and
denote by cr (r ≥ 0) the numbers defined by the Taylor expansion

cot
(π
6
− x

2

)
=

∞∑
r=0

cr
xr

r!
,

the first values being given by the table

r 0 1 2 3 4 5 6 7

cr
√
3 2 2

√
3 10 22

√
3 182 602

√
3 6970

Note that these numbers can also be written cr = 2 Im(i−rLi−r(e(1/6))) and hence have a natural
extrapolation backwards by c−1 = 0, c−2 = −V . We want to study J(−1/X) = J(1/X) as X
tends to infinity in the fixed residue class β (mod 1), with β rational. The summands in (1.2)
are all positive (that is what makes this case much easier to treat than the general one), and it is
easy to find their local peaks, which occur near n =

(
m+ 5

6

)
X for 0 ≤ m < den(β), where den(b)

is the denominator of b. (Notice that the terms for larger values of m are 0 anyway, since Pn(x)
vanishes for n ≥ den(x).) The following proposition, which is valid at a fixed peak even for X
real, gives the asymptotic value of the summand Pn(x) for n in each of these peaks. As usual,
Br(x) denotes the r-th Bernoulli polynomial.

Proposition 8.1. Fix an integer m ≥ 0, and set M = m + 5
6 . Then for X tending to infinity

and n an integer of the form MX − ν with |ν| ≪ X we have the asymptotic expansion

logPn

(
1

X

)
∼ V

2π
X + logX + logPm(X) +

∞∑
k=1

ck−1
Bk+1(ν)

(k + 1)!

(
−2π

X

)k

. (8.2)

Note: By the above remark we can omit the first term and sum over k ≥ −1 instead.

Proof. We first note that for q = e(1/X) we have

log

(
Pn(1/X)

Pn−1(1/X)

)
= log

∣∣1− qn
∣∣2 = log

∣∣∣∣1− e

(
1

6
+

ν

X

)∣∣∣∣2 = − ∞∑
k=1

ck−1

k!

(
2πν

X

)k

(here we have used that d
dx log |1 − e(x)|2 = 2π cot(πx)), in agreement with equation (8.2) to

all orders in 1/X since Br+1(ν + 1) − Br+1(ν) = (r + 1)νr. This proves (8.2) up to a power
series independent of n (but depending a priori on α and m). The full assertion uses the shifted
Euler–Maclaurin summation formula; we omit the details. ■

Note that equation (8.2) does not make sense if X is rational and m ≥ den(X), since
then Pn(1/X) and Pm(X) vanish, but we will use it only in the exponentiated form

Pn

(
1

X

)
∼ Pm(X)XeV/h exp

(∑
r≥1

(−1)rcr
Br+1(ν)

(r + 1)!
hr

)
, h =

2π

X
, (8.3)

which holds also in this case. The key point here is that the only dependence on m of the
expression on the right-hand side is the factor Pm(X), which equals Pm(β) if X goes to infinity
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in the fixed class Z+ β modulo 1. Moreover, since B2(ν) = ν2 +O(ν) and Br+1(ν) = O
(
νr+1

)
for r > 2, the exponential factor in equation (8.3) has the form e−

√
3ν2h/2ϕ

(
ν
√
h,
√
h
)
, where

ϕ
(
ε
√
h,
√
h
)
= exp

(√
3

2
h

(
ε− 1

6

)
+
∑
r≥2

(−1)rcr
Br+1(ε)

(r + 1)!
hr
)
.

The contribution to J(1/X) from the m-th peak is equal to Pm(β)XeV/h times the sum of
this exponential factor over all ν with |ν| ≪ X in a fixed residue class ν0 (mod 1), where
ν0 ≡ −MX (mod 1). But by the Poisson summation formula and the fact that the Fourier
transform of a Gaussian decays exponentially, we have that∑

ν≡ν0(mod 1)
|ν|≪X

e−
√
3ν2h/2ϕ

(
ν
√
h,
√
h
)
=

∫ ∞

−∞
e−

√
3ν2h/2ϕ

(
ν
√
h,
√
h
)
dν

=
√
XI√3

[
ϕ
(
t,
√
h
)]
, (8.4)

to all orders in h, where Iλ for λ > 0 denotes the linear map from C[[t]] to C defined by

Iλ
[
ϕ(t)

]
=

1√
2π

∫ ∞

−∞
e−λt2/2ϕ(t)dt, Iλ

[
tn
]
=

{
(n− 1)!!λ−(n+1)/2 if n is even,

0 if n is odd.

Here (n−1)!! as usual denotes the “double factorial” (n−1)×(n−3)×· · ·×3×1. A discussion of
the estimates that prove equation (8.4) is given in [75, 83] and [42]. It follows that the contribu-
tion to J(1/X) from the m-th peak is equal to Pm(β)X3/2eV/hΦ0(h) to all orders, where Φ0(h)
is the power series given by equation (8.5). Hence, J(1/X) itself equals J(β)X3/2eV/hΦ0(h) to
all orders, as claimed. Note that Φ0(h) equals 3

−1/4 times a power series in h with coefficients
in Q

(√
3
)
and leading coefficient 1, since Iλ[ϕ(t)] has coefficients in λ−1/2Q(λ) for any power

series ϕ(t) with rational coefficients. (That it is a power series in h rather than merely
√
h

follows from the fact that Iλ annihilates odd functions.)
This concludes the proof of equation (8.1) when α = 0, with Φ0(h) given by

Φ0(h) = I√3

(
ϕ
(
t
√
h,
√
h
))
. (8.5)

8.2 The general case

We now apply the same analysis to the expansion of J(x) around an arbitrary rational number α.
The second part of the argument, replacing sums by integrals and computing them by using the
functional Iλ, is unchanged, but the analogue of Proposition 8.1 is now slightly more complicated,
since the asymptotic formula for Pn(x) near the m-th peak depends on both m and the residue
class of n modulo the denominator of α. We use the notations given above, i.e., x = aX+b

cX+d
with X tending to infinity in the class β (mod 1) and M = m + 5

6 with 0 ≤ m < den(β), but
now we also fix a residue class r (mod c) and consider n satisfying

n ≡ r +md (mod c), n =
M

ℏ
+ cν

with |ν| ≪ X. (Notice that ν has the opposite sign to the one used for c = 1.)

Proposition 8.2. For fixed m < den(β) and r ∈ Z/cZ and for n and X tending to infinity as
in (5), we have the asymptotic formula

logPn

(
x
)
∼ log

(
1

ℏ

)
+ logPm(β) +

∞∑
k=−1

C
(r)
k (ν)hk, (8.6)
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valid to all orders in h, where C
(r)
k is the polynomial of degree k − 1 defined by

C
(r)
k (ν) = −2Re

[
i−k

(k + 1)!

c∑
j=1

Li1−k

(
ζr+j
α Z

)
Bk+1

(
ν +

j

c

)]
, r ∈ Z/cZ, k ≥ −1 (8.7)

with ζα = e(α) and Z = e(−5/(6c)).

The proof of this proposition, which we omit, is similar to that of Proposition 8.1, the main
point again being that the difference of the right-hand sides of (8.6) for n and n− 1 is given by

∞∑
k=−1

[
C

(r)
k (ν)− C

(r−1)
k (ν − 1)

]
hk = −2Re

[ ∞∑
k=0

Li1−k(ζ
r
αZ)

(−ihν)k

k!

]
= log

∣∣1− ζrαZe−iνh
∣∣2 = log |1− qn|2

= logPn(x)− logPn−1(x),

because

qn = e

(
n

(
α− 1

c(cX + d)

))
= e

(
(r +md)α− m+ 5/6

c
− νℏ

)
= ζrαZe−iνh

and

C
(r)
k (ν)− C

(r−1)
k (ν − 1) = −2Re

[
i−k

(k + 1)!

(
c∑

j=1

−
c−1∑
j=0

)
Li1−k

(
ζr+j
α Z

)
Bk+1

(
ν +

j

c

)]

= −2Re
[
i−kLi1−k(ζ

r
αZ)

Bk+1(ν + 1)−Bk+1(ν)

(k + 1)!

]
= −2Re

[
Li1−k(ζ

r
αZ)

(ν/i)k

k!

]
.

Note that in the above calculation we used that C
(r)
−1(ν) is independent of both ν and r. In fact,

it is given by

C
(r)
−1(ν) = 2 Im

[
c∑

j=1

Li2
(
ζr+j
α Z

)]
=

2

c
Im[Li2(Z

c)] =
V

c
,

where we have used the well-known “distribution” property of the dilogarithm. The correspond-
ing distribution property of the 1-logarithm Li1(z) = − log(1 − z) shows that C

(r)
0 (ν) is also

independent of ν and is given by

C
(r)
0 (ν) =

c∑
j=1

(
ν +

j

c
− 1

2

)
log
∣∣1− ζr+j

α Z
∣∣2 = logEr(α),

where Er(α) is the real algebraic number defined by

Er(α) =

c∏
j=1

∣∣1− ζr+j
α Z

∣∣2j/c, r ∈ Z/cZ. (8.8)

Hence, the exponentiated version of (6) can be written

Pn(x) ∼ Pm(β)
eV/cℏ

ℏ
Er(α) exp

( ∞∑
k=1

C
(r)
k (ν)hk

)
,
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where again the exponential factor at the end has the form e−c
√
3ν2h/2ϕc,r

(
ν
√
h,
√
h
)
with

ϕc,r

(
ε
√
h,
√
h
)
= exp

(
C̃

(r)
1 (ν) +

∑
k≥2

C
(r)
k (ν)hk

)
,

where C̃
(r)
1 (ν) is given by the same formula as the right-hand side of (8.7) (with k = 1) and

with B2(x) = x2 − x + 1/6 replaced by B2(x) − x2. Note that ϕc,r(t, ε) is a power series in ε
with coefficients in Q(ζα, Z)[t] and leading coefficient 1. The same reasoning as for c = 1 now
shows that the sum of the values of Pn(x) for n running over the m-th peak and in the residue
class r + md (mod c) is equal to ℏ−3/2eV/cℏPm(β)Φ

(r)
α (h) for some power series Φ

(r)
a (h) with

leading coefficient Er(α), and summing this over all r gives equation (1.5) for the 41 knot with

Φ(41,σ1)
α (h) = 3−1/4c−1/2

∑
r (mod c)

Φ(r)
α (h).

Note that the formal Gaussian integration formula for the power series Φα(h) requires to expand
the integrand up to order O

(
h3k+1

)
in order to obtain the coefficient of hk in the series Φα(h).

It remains to look at the units Er(α). Write F for Q(e(1/6)), the trace field of the figure 8
knot, and Fc for its cyclotomic extension F (ζα) = Q(Z). We claim that both Er(α)/E0(α)
and

∏
r (mod c)Er(α) belong to Fc. The second claim follows from the first, since it is clear

that E0(α)
c belongs to Fc, and the first claim follows from the calculation

Er(α)

Er−1(α)
=

∏c
j=0

∣∣1− ζr+j
α Z

∣∣2j/c∏c−1
j=0

∣∣1− ζr+j
α Z

∣∣2(j+1)/c
=

∣∣1− ζrαZ
∣∣2∏

n (mod c)

∣∣1− ζnαZ
∣∣2/c = |1− ζrαZ

∣∣2,
from which we get by induction the formula

Er(α) = E0(α)
∣∣(ζαZ, ζα)r∣∣2

for all r. In particular, we can write our asymptotic formula to leading order as

J

(
aX + b

cX + d

)/
J(X) ∼ cE0(α)S(α)

31/4
X3/2 exp

(
V

2π

(
X +

d

c

))
as X →∞ with bounded denominator, where

S(α) =
∑

r (mod c)

Er(α)

E0(α)
=

c−1∑
n=0

∣∣(ζαZ, ζα)n∣∣2 ∈ Fc. (8.9)

It is the factor S(α) which for c = 5 contains the funny prime π29 occurring in [84, p. 14],
while E0(a) is the unit analyzed in [10]. Note that the special properties (9.3) of this unit
are clear from the definition (8.8) since if c is prime to 6 and we denote by σk the Galois
automorphism of Fc over F sending a primitive c-th root of unity to its k-th power, then it is
easy to see from (8) that σk(Er(a/c)

c) = Er(ka/c)
c and that the quotient Er(ka/c)

k/Er(a/c)
belongs to Fc.

For other knots K, there is a similar story, but we can no longer rigorously prove anything,
since the terms in the sum defining JK(x) are no longer positive (or even real) and there is can-
cellation. However, this sum still has the form of an N -dimensional sum of products or quotients
of Pochhammer symbols, where N is the dimension of some terminating q-hypergeometric series
(related to the number of simplices in a triangulation of S3∖K), and we can formally look at the
parts of this sum where the summands are locally constant (“stationary phase”), even if those
“parts” now lie outside of the original domain of summation. This leads to a conjectural, but
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completely explicit, formula of the same general form as (2), and in particular to an asymptotic
formula like (9), but with Er(α) = EK

r (α) now depending on an element r of (Z/cZ)N rather
than just Z/cZ and with the sum in (10) replaced by one over (Z/cZ)N . For the 52 knot and
its sister, the (−2, 3, 7) pretzel knot, we worked out the corresponding expressions and for small
values of c obtained both the units and the pre-factors SK(α) ∈ Fc (F = trace field of K) that
we had previously found numerically. These are, however, much more complicated than in the 41
case; for instance, the factor p29 = 2− ε

(a)
1 + ε

(a)
2 + 2ε

(a)
3 , a prime of norm 29 that occurred for

the 41 knot and c = 5 (see equation (1.7) and the discussion in the next section) is replaced for
the 52 knot by p27p43 if c = 3 and by p9491p1227271 if c = 5, where each pp denotes a prime of
norm p in Q(ξ).

9 Arithmetic aspects

In this section, we discuss the arithmetic properties of the power series Φ
(K,σ)
α (h), in particular

the identification of the number fields in which their coefficients lie and the integrality properties
of these coefficients.

9.1 Algebraic number theory aspects

A detailed study of the power series Φ
(K,σ)
α (h) (or more generally Φ

(K,σ,σ′)
α (h)) reveals several

interesting algebraic number theoretical aspects, especially concerning the field of definition,
transformation under the action of the Galois group, and above all the appearance of non-trivial
algebraic units.

We begin by looking in more detail at the series Φ
(41)
a/5 because this example is quite illumi-

nating. The first few terms of the series were given in [84, p. 670], as

Φ
(41,σ1)
a/5 (h) =

4
√
3

10
√
E(a)

((
2− E

(a)
1 + E

(a)
2 + 2E

(a)
3

)
+

2678− 943E
(a)
1 + 1831E

(a)
2 + 2990E

(a)
3

233252
√
−3

h+ · · ·
)
, (9.1)

where E
(a)
k = 2 cos

(2π(6a−5)k
15

)
and E(a) = E

(a)
2 /

(
E

(a)
1

)3
E

(a)
3 , except that the formula was given

there in terms of log Φ, which introduced spurious denominators in all terms of the expansion.
Actually, this is one of the first insights from the numerical calculations: earlier papers had al-
ways worked with the logarithm, which is what one sees if one does a Feynman diagram expansion
and looks at the contribution of connected graphs only, but (as in many other combinatorial
problems) one gets much simpler numbers by looking at the exponentiated sum, corresponding
to summing over all graphs rather than just the connected ones. In the case at hand, this meant
that the coefficients of h and h2 in [84] contained mysterious powers of the prime

π
(a)
29 = 2− E

(a)
1 + E

(a)
2 + 2E

(a)
3

of Q
(
cos
(
2π
15

))
, which simply disappear as soon as one goes from the logarithm of the series to

the series itself. But the few terms of Φ
(41,σ1)
a/5 (h) given in (9.1) also suffice to illustrate several

other key arithmetic points:

(a) The most striking feature of (9.1) is the appearance of the 10th root of the algebraic
unit E(a) as a prefactor. From this and the corresponding numbers found for other values
of α and for other knots we were led to conjecture the existence of algebraic units in
cyclotomic extensions of any number field determined by elements of the Bloch group of
this field, a prediction that was then confirmed in the joint paper [10] with Frank Calegari.
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(b) The case of the 41 knot has the somewhat misleading special property that the Kashaev
invariant (1.2) is always positive, so that we seem to be seeing elements in the real
part Q

(
cos
(
2π
15

))
of the cyclotomic extension F (ζ5) = Q(ζ15) of the trace field F = F41 =

Q
(√
−3
)
rather than in this cyclotomic extension itself. In particular, as was not observed

in [84], the unit E(a) is, up to sign, the square of an element of F (ζ5), so that its 10 root is,
up to a root of unity, in fact a fifth root of a unit in this larger field. Specifically, we have√

−E(a) =
(
ζ
(a)
15 −

(
ζ
(a)
15

)−1)
E

(a)
2 /E

(a)
1 ,

permitting us to rewrite (9.1) in the form (1.7) given in Section 1. This, too, turned out
to be true for the general case studied in [10], where one associates to a number field F
and an element of its Bloch group the c-th root of a unit (or at least S-unit for a finite
set of primes S independent of c) in F (ζ) for every primitive c-th root of unity ζ, and not
a (2c)-th root. This unit, for F = Fσ and ζ = e(α), is expected to appear as a prefactor
in Φ

(K,σ)
α (h) for every K, σ, and α.

(c) Apart from the unit prefactor
√
−E(a) (which equals εa/5 in the notation of (1.7)), there

is a further prefactor 31/4 that coincides with the torsion δ(41)
−1/2 =

(√
−3
)−1/2

up to
a root of unity and an element of F41 .

(d) After we remove these factors, the remaining power series has coefficients in the cyclotomic
extension F (ζ5) of the trace field.

(e) The denominators of this remaining power series, when we calculate it to many more terms
using the methods described in Section 10.1, have powers of 3 (the ramified prime already
occurring in (c)) and Dn, where

Dn = 23n+v2(n!)
∏

p prime
p>2

p
∑

i≥0[n/p
i(p−2)]. (9.2)

(Note that the exponent vp(Dn) of p > 2 in Dn can be written as r + vp(r!) = vp((pr)!)
where r = [n/(p− 2)].) We will return to this point in the next subsection.

(f) The unit εa/5 occurring in (a) and (b), the term under the square-root sign in (c), and
the coefficients of the “remaining power series” as defined in (d) are not only in F (ζ5),
but transform under the Galois group {ζ 7→ ζr}5∤r of F (ζ5)/F in the “obvious” way, i.e.,
each of these numbers is a polynomial in ζ = e2πia/5 whose coefficients lie in F41 and are
independent of a.

(g) Finally, the unit εa/5 of F (ζ5), considered in the quotient F (ζ5)
×/F (ζ5)

×5, transforms
under the action of the Galois group Gal(F (ζ5)/F ) = (Z/5Z)× in two different ways:

σr(εa/5) = εar/5 = (εa/5)
1/r, r ∈ (Z/5Z)×, (9.3)

where σr is the Galois automorphism defined by σr(ζ5) = ζr5 .

We conjecture that these properties (a)–(g) hold for all hyperbolic knots K, all represen-
tations σ in PK and all roots of unity ζα, with F replaced by the trace field Fσ and 5 by the
denominator of α, as well as a few other small modifications (in particular, that instead of a unit
one may get an S-unit for small finite set S of primes, essentially the ones occurring in the shape
parameters of a triangulation of S3 ∖K, which was empty for 41). In other words, the power
series Φ

(K,σ)
α (h) can be written in the form

Φ(K,σ)
α (h) = µσ,α · (εσ,α)1/c · δ−1/2

σ

∞∑
n=0

Ã(K,σ)
α,n hn, Ã(K,σ)

α,n ∈ Fσ(ζα) (9.4)
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(so that Ã
(K,σ)
α,n is the product of an algebraic number independent of n and the coefficient

denoted A
(K,σ)
α (n) in Section 3.4), where Fσ is defined as in Section 2, µσ,α is an (8c)-th root

of unity, and εσ,α ∈ Fσ(ζα)
× is a near-unit, canonically defined only up to c-th powers, that

transforms up to c-th powers as in (9.3) (with 5 replaced everywhere by c) and that conjecturally
depends only on the element of the Bloch group B(Fσ) determined by σ and in fact coincides
with the near-unit that was constructed in [10], and with the same denominator bound Dn as
in (9.2), independent of K, σ and α.

9.2 Denominators and integrality properties

The universal denominator statement given in formula (9.2) above was found empirically on the
basis of the extensive numerical data for the 41, 52 and the (−2, 3, 7) pretzel knots presented
in the appendix to this paper. In this section, we prove it for the denominators of the power
series defined in terms of Gaussian-type integrals in [15]. This proof only applies to σ ∈ Pred

K ,
since there is no such integral representation for the trivial representation, but the corresponding
denominator statement is true here also and can in fact be strengthened because the power series
in that case come from the Habiro ring, as explained at the end of this section.

Theorem 9.1. For each knot K, representation σ ∈ PK , and number α ∈ Q/Z, we have

DnÃ
(K,σ)
α,n ∈ OS

[
ζα, c

−1
]
,

where Φ
(K,σ)
α (h) is as in [15], Dn is as in (9.2), Ã

(K,σ)
α,n is as in (9.4), c is the denominator

of α, O is the ring of integers of Fσ and S is a finite set of primes of Fσ that depends on K but
not on n or on α.

The first few values of Dn are given by

1, 24, 1152, 414720, 39813120, 6688604160, 4815794995200, 115579079884800,

22191183337881600, 263631258054033408000, 88580102706155225088000,

27636992044320430227456000, 39797268543821419527536640000, . . . .

Campbell Wheeler pointed out to us that the above sequence appears (with no proof) to equal
to the sequence A144618 of the online-encyclopedia of integer sequences [70], the latter related
to Stirling’s formula with half-shift Dn = den(an), where

z! ∼
√
2π(z + 1/2)z+1/2e−z−1/2

∞∑
n=0

an
(z + 1/2)n

, z →∞.

The numbers Dn grow rapidly, for example

D50 = 2197372519711115134173192232291311371411431471

or D50/24
5050! = 5773111131171.

(
In general, Dn/24

nn! is an integer whose nth root tends
to
∏

p≥5 p
2/(p−1)(p−2) = 1.8592481285 . . . .

)
We give the first 50 values of Dn by tabulating the

ratio δn = Dn/3Dn−1 (after removing the power of 2, and omitting the values equal to 1):

n δn n δn n δn n δn n δn n δn
3 3·5 11 13 20 7 27 33 ·5·11·29 35 72 ·37 42 3·5·23
5 7 12 3·5 21 3·5·23 29 31 36 32 ·5·11 44 13
6 3·5 15 3·52 ·7·17 22 13 30 3·52 ·7·17 39 3·5·41 45 32 ·52 ·7·11·17·47
9 32 ·5·11 17 19 24 3·5 33 3·5·13 40 7 48 3·5
10 7 18 32 ·5·11 25 7 34 19 41 43 50 7
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We also remark that Dn1Dn2 |Dn1+n2 for all n1, n2 ≥ 0 and hence that the subgroup

RD[[h]] =

{ ∞∑
n=0

an
Dn

hn
∣∣ an ∈ R for all n

}

of K[[h]] is a subring for every subring R of a field K of characteristic zero.

Proof. We give the proof only for the case α = 0, c = 1, using the formulas in [14]. The general
case can be proved along the same lines using the more complicated formulas in [15], in which
the Bernoulli numbers are replaced by Bernoulli polynomials, but we do not give the details
here. We will also ignore the prime 2 in our proof since it behaves somewhat differently and in
any case can be added to the finite set of excluded primes S in the statement of the theorem.

The power series Φ
(K,σ)
0 (h) attached to a triangulation T of S3 ∖K were defined in [14] as

formal Gaussian integrals ⟨fT ⟩ of the formal power series

fT (x; z) = exp

(
N∑
j=1

∑
r,k≥0

2r+k−2>0

Br

r!

(−xj)k

k!
Li2−r−k(zj)h

r+
k
2−1

)
(9.5)

in a multi-variable x = (x1, . . . , xN ), where z1, . . . , zN are the shape parameters of T and
where ⟨f⟩ = ⟨f(x)⟩Q is the mean value defined by Gaussian integration with respect to a certain
quadratic form Q with coefficients in the field Fσ. This form is essentially the one given by the
symmetric matrix A+B diag(zj/(1−zj)) that occurred in the discussion of (6.7) in Section 6.3,
and the function (9.5) is essentially the product of the functions occurring in (6.8), except that
the terms with r + k = m fixed were combined there into a single Bernoulli polynomial Bm(x)
for m ≥ 3 or B2(x) − x2 for m = 2, and that the normalizations used in [14] were slightly
different from the ones used in Section 6.3.

We now expand the exponential in (9.5) as the product of the exponentials of the monomials in
the sum, and recall that Li2−m(z) ∈ Z[1/(1−z)] for everym ≥ 2, to deduce that Φ

(K,σ)
α (h) = ⟨fT ⟩

is an R-linear combination of Gaussian averages ⟨T ⟩ of terms T of the form

T =

N∏
j=1

∏
r,k≥0

2r+k≥3

1

λj(r, k)!

(
Br

r!

xkj
k!

hr+
k
2−1

)λj(r,k)

(9.6)

with non-negative multiplicities λj(r, k), where R = RT ,σ denotes the ring generated over Z by
the numbers (1− zj)

−1. We write the monomial T as c(T )hnxK/K! with

n =
∑
j,r,k

λj(r, k)

(
r +

k

2
− 1

)
, Kj =

∑
r,k

λj(r, k)k (9.7)

and where for notational convenience have written x and K for the N -tuples (x1, . . . , xN )
and (K1, . . . ,KN ) (thus deviating from the convention in the rest of the paper where boldface
denotes matrices) and xK/K! for the divided power

∏
x
Kj

j /Kj !. To prove the theorem, we have
to bound both the denominators of the numerical coefficient c(T ) and the further denominators
coming from the Gaussian averaging xK/K! 7→

〈
xK/K!

〉
.

We begin with the latter question. For this, we recall first that the Gaussian average ⟨f⟩Q
is given by e∆Q(f)

∣∣
x=0

for any power series f , where ∆Q is the Laplacian associated to Q, and
hence is equal to ∆ℓ

Q(f)/ℓ! if f is a homogeneous polynomial of degree 2ℓ. (For polynomials
of odd degree it of course vanishes trivially.) The Laplacian ∆Q is a quadratic polynomial in
the derivatives ∂i = ∂/∂xi, and we can enlarge the ring R by adjoining to it the coefficients
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of this polynomial, so since the image of any divided factorial under any product ∂ℓ1
1 · · · ∂

ℓN
N is

an integer, we then certainly have that the Gaussian integral
〈
xK/K!

〉
is 1/ℓ! times an element

of R. Unfortunately, it turns out that this estimate is not good enough for our purposes, and
we have to work a little harder.

Writing ∆Q as an R-linear combination of binomials ∂i∂j with 1 ≤ i ≤ j ≤ N , and
applying the multinomial theorem, we see that ∆ℓ

Q/ℓ! is an R-linear combination of terms∏
i≤j(∂i∂j)

mij/mij ! with mij ∈ Z≥0. Define an even symmetric N × N matrix M by setting
Mij = Mji = mij for i < j and Mii = 2mii. Then

∏
i≤j(∂i∂j)

mij =
∏

j ∂
Kj

j with K = M1,
where 1 is the vector consisting of N 1’s, and this sends xK/K! to 1 and all other monomials
to 0. It follows that a universal denominator of

〈
xK/K!

〉
is the number

∆(K) := l.c.m.

{ ∏
1≤i≤N

(Mii/2)!
∏

1≤i<j≤N

Mij !
∣∣∣M = M t ∈MN,N (Z≥0) even, M1 = K

}
.

Notice that this does divide ℓ!, because ℓ is the sum of the diagonal Mii/2 and of the Mij

with i < j, so that this statement refines the bound given above, but ∆(K) is in general much
smaller than ℓ! and this improvement will be needed for the proof. A usually sharper mul-
tiplicative upper bound for ∆(K) is the largest integer S whose square divides the product
of the Kj ! (the proof of this also uses only the integrality of multinomial coefficients), and
then of course ∆(K) also divides the g.c.d. of ℓ! and S, which in general is smaller than ei-
ther one. (For instance, for K = (6, 9, 9, 10) we have ℓ! = 355687428096000, S = 3135283200,
and (ℓ!, S) = S/3.) Either of these two latter upper bounds would be sufficient for our proof, but
in fact there is an easy upper bound that is stronger than either one of them and is extremely
sharp (in particular, it is equal to ∆(K) for all K with N ≤ 4 and max(Kj) ≤ 30), namely

∆∗(K) :=
∏

p prime

pδp(K) with δp(K1, . . . ,KN ) :=
∑
s≥1

1
2

N∑
j=1

[
Kj

ps

] .

To show that ∆(K) divides ∆∗(K), we need
∑

i Vp(Mii/2) +
∑

i<j Vp(Mij) ≤ δp(K) for ev-
ery prime p and every even symmetric matrix M with non-negative entries and row sums K,
where Vp(m) := vp(m!) for any m ≥ 0 denotes the largest power of p dividing m!. In view of the
standard formula Vp(m) =

∑
s≥1[m/ps], it suffices for this to show that

∑
i

[Mii/2q] +
∑
i<j

[Mij/q] ≤
1

2

∑
j

[Kj/q]

for every prime power q, and this follows immediately from the obvious facts [x/2q] = [[x/2]/q]
and [x] + [y] + · · · ≤ [x+ y + · · · ] valid for arbitrary real numbers x, y, . . . .

Now going back to our main problem, we now see that it suffices to show that the prod-
uct ∆∗(K)c(T ) has denominator dividing Dn for all terms T as above, with K = (K1, . . . ,KN )
and n defined by (9.7). We will prove this one prime at a time (ignoring the prime 2), which
is natural in view of the fact that the upper bound ∆∗(K) is defined by its prime power de-
composition. To do this, we will split both the term T and the corresponding numerical coef-
ficient c(T ), and also each of the N factors Tj and c(Tj) of which they are comprised, as the
product of four factors in a way depending on the prime p being studied, labelled “s” (terms
with r = 0 and k smaller than p), “b” (terms with r = 0 and k bigger than or equal to p),
“1” (terms with r = 1), and “≥ 2” (terms with r ≥ 2), with a similar splitting of the indi-
vidual weights Kj into the sum of four pieces K

(s)
j =

∑
3≤k<p λj(0, k)k, K

(b)
j =

∑
k≥p λj(0, k)k,

K
(1)
j =

∑
k≥1 λj(1, k)k, and K

(≥2)
j =

∑
r≥2,k≥0 λj(r, k)k. We also decompose the number n (the
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exponent of h in T ) in (9.7) as ℓ+ n′ − t with

ℓ :=
1

2

N∑
j=1

Kj , n′ :=
∑

1≤j≤N
r≥2,k≥0

λj(r, k)(r − 1), t :=
∑

1≤j≤N
k≥3

λj(0, k)

and also split t as t(s) + t(b) according as 3 ≤ k ≤ p − 1 or k ≥ p in the summation, with each
of t(s) and t(b) splitting into the sum over 1 ≤ j ≤ N of pieces t

(s)
j and t

(b)
j in the obvious way.

The numerical coefficient c(T ) can be decomposed as

c(T ) =
∏

1≤j≤N

Kj !

Pj(T )
·
∏

1≤j≤N
r≥2,k≥0

1

λj(r, k)!

(
Br

r!

)λj(r,k)

(9.8)

with

Pj(T ) =
∏

0≤r≤1,k≥1

λj(r, k)!k!
λj(r,k) ·

∏
r≥2,k≥0

k!λj(r,k),

which we can split up further as P
(s)
j (T )P

(b)
j (T )P

(1)
j (T )P

(≥2)
j (T ). The reason that we have in-

cluded the factor λj(r, k) into the definition of Pj(T ) for 0 ≤ r ≤ 1 but not for r ≥ 2 is that λ!k!λ

divides (kλ)! for all λ ≥ 0 if k is strictly positive but not if k = 0, and the terms with r ≥ 2 can
have k = 0. Then the product P

(b)
j (T )P

(1)
j (T )P

(≥2)
j (T ) divides

(
Kj −K

(s)
j

)
!, while the first fac-

tor P
(s)
j (T ) divides t

(s)
j ! up to a p-adic unit because here k is always less than p and therefore k!

is not divisible by p. (Here we have made repeated use of the integrality of multinomial coeffi-
cients.) On the other hand, by Lemma 9.2 below and the submultiplicativity of Dn, the second
factor in (9.8) has denominator dividing Dn′ . Putting this all together, we deduce that c(T )
is G(T )/Dn′ times a p-adic integer for every p (always different from 2 and not dividing the
denominators of the elements of R), where G(T ) =

∏N
j=1

(
Kj !/t

(s)
j !
(
Kj −K

(s)
j

)
!
)
. Using the sub-

multiplicativity of Dn again, this reduces the problem to showing that δp(K) ≤ vp(Dℓ−tG(T ))
for each p, and in view of the definitions of δp(K) and Dn and of the above-mentioned for-
mula Vp(m) =

∑
s≥1[m/ps] for the p-adic valuation of factorials, this in turn will follow if we

can show that[
1

2

N∑
j=1

[
Kj

q

]]
≤
[
ℓ− t

q∗

]
+

N∑
j=1

([
Kj

q

]
−

[
t
(s)
j

q

]
−

[
Kj −K

(s)
j

q

])
(9.9)

for each prime power q = ps with s ≥ 1, where q∗ := ps−1(p− 2).
For this final step, we first note that

ℓ− t

q∗
=

N∑
j=1

K
(s)
j +K

(b)
j +K

(1)
j +K

(≥2)
j − 2t

(s)
j − 2t

(b)
j

2q∗
≥

N∑
j=1

Kj − 2t
(s)
j

2q

since (
K

(b)
j − 2t

(b)
j

)
q∗

≥
(
1− 2

p

)
K

(b)
j

q∗
=

K
(b)
j

q(
because k ≥ p in the terms defining K

(b)
j and t

(b)
j

)
and q∗ < q. Using that

[
x
2q

]
=
[
1
2

[
x
q

]]
, we

deduce that[
ℓ− t

q∗

]
≥

[
1

2

N∑
j=1

[
Kj − 2t

(s)
j

q

]]
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and hence (since x ≤ y certainly implies [x/2] ≤ [y/2]) the inequality (9.9) will follow if we have
the inequality[

Kj

q

]
≤

[
Kj − 2t

(s)
j

q

]
+ 2

([
Kj

q

]
−

[
t
(s)
j

q

]
−

[
Kj −K

(s)
j

q

])

for every 1 ≤ j ≤ N . But this inequality is trivial, since Kj −K
(s)
j ≤ Kj − 3t

(s)
j ≤ Kj − 2t

(s)
j

(because every k in the definition of K
(s)
j is ≥ 3) and

[
Kj

q

]
≥

[
Kj − 2t

(s)
j

q

]
+ 2

[
t
(s)
j

q

]
.

This completes the proof of Theorem 9.1 modulo that of the following lemma. ■

Lemma 9.2. For any integers r ≥ 2 and λ ≥ 0, we have

1

λ!

(
Br

r!

)λ

∈ 1

Dλ(r−1)
Z. (9.10)

Proof. We prove this one prime at time. By well-known results of von Staudt and Clausen,
the Bernoulli number Br (r > 0) has p-adic valuation −1 if (p− 1)|r and Br/r is p-integral
if p− 1 does not divide r. From this we deduce that the p-adic valuation of the denominator
of Br/r! is bounded above by

[
r

p−1

]
, which is ≤

[
r−1
p−2

]
since r−1

p−2 ≥
r

p−1 if r ≥ p − 1 and both
expressions vanish otherwise. The p-adic valuation of the denominator of 1

λ!

(
Br
r!

)λ
is therefore

bounded above by Vp(λ) + λ
[
r−1
p−2

]
. On the other hand, from the definition of Dn we have

vp(Dn) = m+ Vp(m) = Vp(pm), where m =
[

n
p−2

]
. We must therefore show that

Vp(λ) + λ

[
r − 1

p− 2

]
≤ Vp

(
p

[
λ(r − 1)

p− 2

])
for all λ ≥ 0 and r ≥ 2. For this, we make a case distinction: if 2 ≤ r < p− 1, then

l.h.s. = Vp(λ) = Vp

(
p

[
λ

p

])
≤ Vp

(
p

[
λ

p− 2

])
≤ r.h.s.,

while if r ≥ p− 1, then we set h =
[
r−1
p−2

]
≥ 1 and have instead

l.h.s. = Vp(λ) + λh ≤ λh+ Vp(λh) = Vp(pλh) ≤ r.h.s.

because [λx] ≥ λ[x] for any positive real number x. ■

We end this subsection with several further observations concerning the denominators and
integrality properties of the coefficients of our divergent power series. The first is that the bound
in Theorem 9.1 is not only sharp in the strong sense that it is best possible for every integer n ≥ 0
and not merely that it is attained for some n, but that this optimality is reached in two very
different extreme ways: in the above lemma if r = p − 1 and λ ≥ 0 is arbitrary (in which case
both sides of (9.10) have the same value Vp(pλ)) and again in the calculation (9.9) in the case
when only K

(b)
j occurs and all ki are equal to p, so that K

(b)
j is exactly pt

(b)
j (in other words

whenever the dominating contribution in (9.6) comes from the terms with (r, k) = (p − 1, 0)
or (0, p)). The fact that two completely different mechanisms lead to the same function n 7→ Dn

suggests that this function may be a more fundamental one than appears at first sight and may
have a broader domain of applicability.
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The second observation is that the universal denominator statement given by Theorem 9.1
can be sharpened by considering the series at the logarithmic level, or equivalently, by studying
the denominators of the contributions from connected rather than from all Feynman diagram.
This was motivated by the observation of Peter Scholze that the logarithm of the series Φ

(41)
0 (h)

in (1.3), which we had calculated up to order O
(
h150

)
, had coefficients with smaller denominators

than those of the series itself. Specifically, he found experimentally that the first occurrence
of pk for small primes p (̸= 2, 3) and k ≥ 1 in log Φ

(41)
0 (h) occurred for the coefficient of hn

with n = k(p− 1)− 1 rather than n = k(p − 2) as for the power series Φ
(41)
0 (h) itself. At first

sight this statement seems to contradict the intuition mentioned at the beginning of the section
that the arithmetic of the series Φα(h) is much simpler if one does not take their logarithms. But
in fact both statements are true! The reason is that in general Φα(h) is a linear combination of
finitely many power series corresponding to the stationary points of the function being integrated
(specifically, there are cM such series, where c is the denominator of α and M can be taken to be
the number of tetrahedra in a triangulation of the knot complement), and it is not reasonable
to take logarithms of sums. But for α = 0 there is only one summand, so here it is reasonable
to take the logarithm, and for general α the logarithm of each of the finitely many summands
of Φa(h) coming from the contribution to the state integral near an individual stationary point
is indeed simpler than this summand itself, because it corresponds to a sum over only connected
rather than over all Feynman diagrams. The final statement is given in the following theorem.

Theorem 9.3. For each integer n ≥ 1, define

Dconn
n =

∏
p prime

p[(n+1)/(p−1)].

Then the coefficient of hn in log Φ
(K,σ)
0 (h) for any knot K and any σ ∈ PK has denominator

dividing Dconn
n apart from a finite set of primes depending only on K and σ. More generally,

for any α ∈ Q we have Φ
(K,σ)
α (h) ∈ R⊗ exp

(∑
n≥1Rhn/Dconn

n

)
⊂ RD[[h]].

The first few values of Dconn
n are given by

2, 12, 24, 720, 1440, 60480, 120960, 3628800, 7257600, 479001600, 958003200,

2615348736000, 5230697472000, . . . .

This sequence too appears in the online-encyclopedia of integer sequences [70] under the name
A091137 and with the formula given above, and coincides with the denominator of the Todd
polynomials given in Hirzebruch’s book [54, Lemmas 1.5.2 and 1.7.3] without proof and quoted
from the paper [2].

The proof of the above theorem (which actually implies Theorem 9.1) is similar to the proof
of Theorem 9.1 and is omitted.

Note that the “connected denominators” Dconn
n are considerably smaller than the “additive

denominators” Dn: Dn/n! is an integer growing exponentially like (44.621. . .+o(1))n, as already
mentioned, while Dconn

n /(n+ 2)! is an integer of subexponential growth.
The final remarks concern the relation of the above results with the known integrality prop-

erties of elements of the Habiro ring. The proof of Theorem 9.1 as given above only works
for the power series Φ

(σ)
α with σ ̸= σ0, because the perturbative expansion does not apply

to the case σ = σ0. However, as we know, this remaining case is actually simpler because
it belongs to the Habiro ring and therefore satisfies Φ

(σ0)
0 (h) ∈ Z

[[
eh − 1

]]
, and more gener-

ally Φ
(σ0)
α (h) ∈ Z(e(α))

[[
e(α)e−h − 1

]]
. The corresponding property no longer holds for σ ̸= σ0,

even for α = 0 and the figure 8 knot, and in some sense should not even be expected, because
the “natural” invariant here is the completed power series Φ̂

(41)
0 , which contains a transcenden-

tal factor eV(41)/h. However, if we consider the product
√
3Φ(h)Φ(−h) = −

√
−3Φ(1)(h)Φ(2)(h),
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which would be unchanged if we replaced the power series by their completions, then we do find
experimentally that it belongs to the ring Z[1/3]

[[
e−h − 1

]]
, i.e., after the change of variables

from q = e−h to q = 1+x it becomes a 3-integral power series in x. We expect, and have checked
numerically, that the same is also true for 52 if one multiplies all three series Φ

(52,σi)
0 (i = 1, 2, 3),

and for (−2, 3, 7) for both products of three series corresponding to the two number fields Q(ξ)
and Q(η) corresponding to this knot. These properties are explained by the properties of Habiro
rings for general number fields as being developed in [38].

Finally, we found experimentally that we can obtain a power series that is already integral
(away from 2 and 3) in e−h − 1 from Φ(h) = Φ(41,σ1)(h) without multiplying it by Φ(−h) =
−iΦ(41,σ2)(h) if we multiply instead by E(41,σ1)(h) := exp

(
−
∑∞

r≥1
|Br+1|
(r+1)!Crh

r
)
with Cr as in

Section 8.1. (Notice that this implies the previous statement becomes E(h)E(−h) = 1.) We
expect that there will be a similar correction factor E(K,σ)(h) for any Φ

(K,σ)
α (h) and that the

corrected Φ-series can be seen as the h-deformed versions of the units constructed in [10], and
hope to study this too in [38].

10 Numerical aspects

In this section, we describe how the power series whose existence is predicted by the modularity
conjecture can be computed effectively via a numerical computation of the Kashaev invariant,
extrapolation, and recognition of algebraic numbers in a known number field. We also describe
other methods that are applicable to the power series Φ

(K,σ)
α (h) for σ different from σ1, as well

as the smooth truncation methods of “evaluating” factorially divergent power series at non-zero
arguments that were discussed in Section 4.3. The actual numerical data for several knots will
then be presented in the appendix.

10.1 Computing the power series Φ(K,σ)
α (h)

In this subsection, we explain the various methods that can be used to compute the coefficients
of the power series Φ

(K,σ)
α (h) for all α ∈ Q and σ ∈ PK numerically and then exactly as algebraic

numbers.

Step 1: Computing the colored Jones polynomials. To compute the Kashaev in-
variant ⟨K⟩N of a knot K, we use the Murakami–Murakami formula ⟨K⟩N = JN

(
e2πi/N

)
,

where Jn(q)=JK,n(q) is the n-th colored Jones polynomial, together with a theorem of T.T.Q. Lê
and the first author [35] that asserts the existence of a recursion relation for the polynomi-
als Jn(q). This reduces the problem to that of computing/guessing this recursion relation con-
cretely for a given knot. This in turn has been solved for several knots in joint work of the first
author, X. Sun and C. Koutschan [33, 34, 39]. The solution required a modulo p computation
of the N -th colored Jones polynomial (for several primes p and several thousand values of N),
together with a careful guess of the supporting coefficients of such a recursion. In particular,
the recursion was computed in [39] for the twist knots Kp with |p| ≤ 15, was guessed in [33]
for the (−2, 3, 3 + 2p) pretzel knots with |p| ≤ 5, and was computed (when p = 2) or guessed
(when p = 3, 4, 5) in [34] for the double twist knots Kp,p with 2 ≤ p ≤ 5.

Step 2: Computing the Kashaev invariant for large N . In order to get numerical infor-
mation about the asymptotics of the Kashaev invariant ⟨K⟩N , we need to be able to compute it
numerically to high precision for large values of N , say of the order of N = 5000. Although both
the Kashaev invariant and the colored Jones polynomial are given by finite-dimensional termi-
nating q-hypergeometric sums, and the latter have been programmed in Mathematica [3], these
programs can only give the value of the colored Jones polynomial and of the Kashaev invariant
for modest values of N , say, up to N = 20, which is far less than we need for the numerical ex-
trapolation. By using the recursion, we can compute Jn(ζN ) numerically to high precision for N
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large and 0 < n < N . (This is far faster than computing the colored Jones polynomials Jn(q) for
these values of n and substituting q = ζN at the end.) However, this does not give the Kashaev
invariant ⟨K⟩N = JK,N (ζN ) because the recursion gives P (q, qn)Jn(q) as a linear combination of
a bounded number of previous values Jn−i(q), where P (q, x) is a fixed polynomial that is always
divisible by 1 − x. To overcome this, we use the recursion relation and its first r derivatives,
where (1−x)r∥P (q, x), to get a recursion for the length-r vector

(
Jn(q), J

′
n(q), . . . , J

(r)
n (q)

)
. We

can the use the recursion to compute the whole vector numerically for q = ζN and 0 < n < N ,
and the single value Jn(q) for n = N . It follows that

Proposition 10.1. The Kashaev invariant ⟨K⟩N of a knot K can be computed in O(N) steps.

This linear-time algorithm, which seems to be new even for the Kashaev invariant, can be
used equally well to compute J(γN) for γ =

(
a b
c d

)
∈ SL2(Z) fixed and N tending to infinity, or

even J(γX) with γ =
(
a b
c d

)
fixed and X tending to infinity with fixed fractional part, since this

simply the value of Jn(γX) with n equal to the denominator of γX and can be calculated by
the same trick. Note that the computation takes time O(N) numerically and O

(
N3
)
if we work

over Q[ζN ].
Step 3: Computing Φ(K,σ1)

α (h). Once we know how to compute J(γN) for large integersN
(or even J(γX) for large X with bounded denominator), we can we can obtain the first few
coefficients of the power series Φ

(K,σ1)
α (h) numerically for a fixed rational number α = γ(∞) by

combining the quantum modularity conjecture (1.5) (or (1.6)) together with the extrapolation
method of the second author (as described in detail in [47] or the appendix of [41]) or the closely
related Richardson transform [5, Chapter 8]. This is quite effective and gives, for instance,
the first hundred coefficients of the series (1.3) or forty coefficients of the series (1.4) in only
a few minutes of computing time. We should mention, however, that this extrapolation method
requires either exact numbers or else very high precision (often several hundred or even thousand
decimal digits in the calculations we did.)

Step 4: Recognizing the coefficients exactly. Given that the coefficients of Φ
(K,σ1)
α (h)

are conjecturally algebraic numbers in a specific number field, we can then test numerically
by using the standard LLL (Lenstra–Lenstra–Lovasz) algorithm to approximate the numerically
computed coefficients by rational linear combinations of a basis of this field. If this works to high
precision with coefficients that are not too large and have only small primes in the denominator,
then we have considerable confidence that the approximate equality is an exact one. The method
is self-verifying in the sense that the success at each stage requires the correctness of the answer
guessed at the previous stage.

Step 5: Computing Φ(K,σ0)
α (h). In this step, we explain how to compute the expansion

of the element of the Habiro ring at a root of unity, in linear time. More precisely, we have:

Proposition 10.2. The series Φ
(K,σ0)
α (h) +O(h)N+1 is computable in O(N) steps.

This follows from the fact that the expansion of the Habiro element at q = ζαe
h up to O(h)N+1

requires cN terms of the cyclotomic polynomial ofK, which is a linear combination of the first cN
colored Jones polynomials of K. An alternative formula, inspired by Mahler’s ideas on p-adic
interpolation, gives the following expansion of the Habiro element:

Φ(K,σ0)
α (h) =

cn∑
k=1

ĴK
n

(
ζαe

h
)
+O

(
hn+1

)
, (10.1)

where c is the denominator of α, ζα = e(α) and

ĴK
n (q) =

n∑
k=1

(−1)n−k

(
n

k

)
q

q
k(k−1)

2 JK
n−k+1(q)q

−n(n+1)
2
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and
(
n
k

)
q
= (q; q)n/((q; q)k(q; q)n−k) is the q-binomial symbol and (q; q)n = (1 − q)

(
1 − q2

)
· · ·

(1− qn) is the q-Pochhammer symbol. The right-hand side of (10.1) gives a well-defined formal
power series since ĴK

cn

(
ζαe

h
)
lies in hnQ[[h]].

Step 6: Computing the remaining power series. Once we have the leading term in the
original QMC, we can obtain the numerical terms by successively subtracting the corrections
coming from the values of σ different from σ1 as explained in Sections 4.1 (using “optimal
truncation”) and 4.3 (using the more precise “smooth truncation” described in Section 10.2 and
in more detail in [45]), where numerical examples were also given.

Step 7: Alternative methods. In Steps 2 and 3, we discussed how to obtain the coefficients
of Φ

(K,σ1)
α (h) from the original QMC together with the high-speed high-precision computation of

Jones polynomials at roots of unity and numerical extrapolation; in Steps 4 and 5 we explained
how to get the series Φ

(K,σ)
α (h) for σ Galois conjugate to σ1 and for σ = σ0, respectively; and in

Step 6 we described how to obtain the remaining series by using the refined quantum modularity
conjecture together with optimal truncation. However, there are at least two other ways to get
these other series that are of interest and are sometimes more efficient.

The first way is to use the formal Gaussian integration of Section 6 and [14, 15]. This method
uses exact arithmetic and allows the computation of few terms A

(K,σ)
α (k) (in practice k ≤ 5) as

exact algebraic numbers for many knots (such as those with ideal triangulations with up to 15
ideal tetrahedra). See also [37].

The other, which is completely different, is based on the asymptotics near roots of unity of the
holomorphic functions in the upper half plane (generalized Nahm sums) that we study in [44].
Since Nahm sums converge quadratically, the values of those functions at τ = α + i/N can be
computed in O

(√
N
)
steps and after extrapolation give a numerical computation of the algebraic

numbers A
(K,σ)
α (k). This method, when applicable, is not only much faster (time O

(√
N
)

rather than O(N)), but also has the major advantage of allowing the simultaneous numerical
computation of A

(K,σ)
α (k) for all α of a fixed denominator and for all σ in a Galois orbit which

(after multiplication byDk and by a suitable S-unit) reduces the problem of recognizing the list of
coefficients A

(K,σ)
α (k) as algebraic numbers to the problem of recognizing numerically computed

integers, albeit of growth k!2Ck. This allowed us to compute, for instance, 100 coefficients of
the series Φ

(K,σ)
α (h) for the 52 knot for α = 0 and a = 1/2 and for all three representations σ

in the Galois orbit of the geometric representation, and it allowed us to compute 37 terms of
the series of the (−2, 3, 7) pretzel knot for α = 0 and for both Galois orbits (each of size 3)
of nontrivial representations σ. It is remarkable that this method allows the computation of
series for representations not Galois conjugate to the geometric one, though not for the trivial
representation σ0.

Orientation conventions. Finally, we have to discuss an annoying technical point, namely,
the choice of a consistent set of conventions for the two classical invariants (namely the trace
field and the complex volume of a knot) and the two quantum invariants (namely the col-
ored Jones polynomial and the Kashaev invariant of a knot). These conventions are espe-
cially important since the tables of knots rarely distinguish a knot from its mirror, and (for
instance) the name 52 of the unique hyperbolic 5-crossing knot does not convey this distinc-
tion.

On the other hand, replacing a knot K by its mirror K∗ reverses the orientation of the knot
complement MK = S3 ∖K, which implies that

� FK∗ = FK and v(K∗) = v(K).

� JK∗,N (q) = JK
(
q−1
)
and ⟨K∗⟩N = ⟨K⟩N and JK∗

(x) = JK(−x) = JK(x).

Thus, a random orientation convention forK might not match the asymptotics whose coefficients
are in a fixed subfield of the complex numbers, and not on its complex conjugate subfield.
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The Jones (hence, also the colored Jones) polynomial JK(q) ∈ Z
[
q±1
]
of a knot (or a link) K

is uniquely determined by the following skein-relation [57]

qJ( )(q)− q−1J( )(q) =
(
q1/2 − q−1/2

)
J( )(q), Junknot(q) = 1. (10.2)

In particular, for the left-hand trefoil 31, we have: J31(q) = −q4+q3+q1. Moreover, the colored
Jones polynomial JK,N (q) ∈ Z

[
q±1
]
is normalized to be 1 at the unknot, and to equal to the

Jones polynomial when N = 2.
Note that the SnapPy program [12] for computing the Jones polynomial agrees with (10.2),

whereas the Mathematica program KnotAtlas [3] polynomial differs by replacing q by 1/q:

L = Link(braid_closure=[-1,-1,-1]) Jones[BR[2, {-1, -1, -1}]][q]

L.jones_polynomial() -q^-4 + q^-3 + q^-1

-q^4 + q^3 + q^1

We will be using the consistent orientation convention forMK of the SnapPy program (whenK
is given as the closure of a braid, or via a planar projection, or via an augmented DTcode or
Gauss code), which has the added advantage that it also gives shapes of tetrahedra corresponding
to the hyperbolic structure (exactly or numerically), as well as the trace field (exactly) and the
complex volume v(K) (exactly or numerically).

10.2 Optimal truncation and smoothed optimal truncation

One of the main numerical aspects concerns smoothed optimal truncation, which was originally
an appendix to an earlier draft of this paper but has now been relegated to a planned independent
publication [45] because the methods are applicable to many problems outside the realm of
quantum topology. This is a method for the numerical summation of factorially divergent series
when only a finite number of coefficients are known and we do not have information about the
possible analytic continuation of the Borel transform, which is the method usually used.

We already explained in Section 4.1 the naive optimal truncation, Φ(h)opt of a factorially
divergent series Φ(h) =

∑∞
n=0Anh

n, defined simply as
∑N

n=0Anh
n where N is the approxi-

mate value of n at which the term Anh
n takes on its minimum absolute value, given explicitly

by N = |B/h| if An grows like n!B−n. The idea of smoothed optimal truncation is very sim-
ply to replace Φ(h)opt by a “smoothed” version Φ(h)smooth which is defined as Φ(h)opt + εN (h)
where the exponentially small correction term εN (h) depends on the cutoff parameter N in such
a way that Φ(h)smooth does not jump when one changes N by 1. This means simply that we
require εN−1(h)− εN (h) = Anh

n. Of course, if we knew how to solve this equation exactly, then
the function Φ(h)smooth would be completely independent of N and would give us a canonical
way to lift the power series Φ(h) to an actual function. This is not the case, but if An has a known
asymptotic expansion, which is true for all of the series in this paper (see Section 3.4) then we
can define εN (h) asymptotically as the product of e−N and a power series in 1/n chosen in such
a way that the desired equality εN−1(h) − εN (h) = Anh

n is true asymptotically to all orders
in 1/n. The details of how to do this if An has the asymptotic form B−n

∑∞
ℓ=0 cℓΓ(n+κ− ℓ) for

some real number κ and some numerical coefficients cℓ (as in equations (3.16), (3.17) or (3.18))
are given in [45] and will not be repeated here. The only thing that is of importance to us here
is that the result of the smoothing gives an evaluation of Φ(h) that is independent of all choices
(and hence gives a predicted “right” definition of the corresponding function) up to an error
that is exponentially small with a better exponent than that given by naive optimal truncation.
Specifically, the new error is e−N (1+ |C|)−N rather than simply e−N as before if, as is always the
case for us, the coefficients cℓ themselves grow factorially like ℓ!C−ℓ. Examples of this dramatic
numerical improvement were given in Section 4.3, where in one case the error in evaluating
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a series Φ(h) was of the order of 10−29 using naive optimal truncation but of the order of 10−56

using smoothed optimal truncation.

A Numerical data for five sample knots

In this appendix, we present numerical data that support the quantum modularity conjecture for
a choice of knots. Initially, we hoped that pairs of geometrically similar knots (that have identical
trace fields and equal elements in the Bloch group, modulo torsion—henceforth called “sisters”)
might have identical or nearly identical series Φ

(K,σ1)
α . With this in mind, and having already

performed the computations for the 41 knot, we were led to consider its sister, the m003 census
manifold. The latter is not a knot complement (it is the complement of a knot in a lens space),
but its 5-fold cyclic cover is the complement of the (twisted) 5-chain link, with a computable
Kashaev invariant, to be compared with the 5-th power of the Kashaev invariant of the 41 knot.
No relation between the series Φ

(K,σ1)
α was found for this pair, but the units ε(K)α did match

(up to roots of unity). We then tried the 52 knot, whose sister is the (−2, 3, 7) pretzel knot.
Here again the series Φ

(K,σ1)
α were different, but the units ε(K)α matched. The final example

of the 61 knot was chosen because its Bloch group has rank 2 and its SL2(C)-character variety
is more complicated, making the verification of the QMC, the Galois invariance property (9.3)
and the match with the unit of [10] more subtle, but again all three were verified numerically.
For this knot we did not make any “sister” computations.

Recall the coefficients A
(K,σ)
α (k) of the power series Φ

(K,σ)
α (h) are algebraic numbers. In this

appendix, we present the numerically obtained data for A
(K,σ)
α (k) written in the form

A(K,σ)
α (k) = C(K,σ)

α Ã(K,σ)
α (k), (A.1)

where C
(K,σ)
α = µσ,α · (εσ,α)

1
c · δ−

1
2

σ is given in (9.4). Note however that C
(K,σ)
α and Ã

(K,σ)
α (k) are

not canonically defined numbers, only their product is. (Since we are focusing on the geometric
representation σ1, and we are fixing the knotK, we omit the superscript (K,σ) from the notation
in the right-hand side of the above equation.) We will further specify a choice of an algebraic
number λc such that λk

cDkÃα(k) ∈ OF (ζα) is an algebraic integer, where c is the denominator
of α, F is the trace field of the knot and Dn is the universal denominator (9.2). Using a basis of
the free abelian group OF (ζα), we can represent the above algebraic integers by lists of integer
numbers.

A.1 The figure eight knot

In this appendix, we discuss the numerical aspects of the quantum modularity conjecture for
the simplest hyperbolic 41 knot, for which we currently know how to prove the modularity
conjecture. (The proof was presented in Section 8.) Needless to say, the numerically obtained
results agree with the exact computation of the expansion coefficients given in Section 8. Some
information about the numerical aspects of the Kashaev invariant of the 41 knot were already
presented in the introduction, but we give some additional data (e.g., for the expansion near
seventh roots of unity), since this is the most accessible knot numerically and also to illustrate
the formulas occurring in the proof.

Since the knot is fixed in this section, and so is the geometric representation σ1, we will
suppress them from the notation. As mentioned in Section 1, the trace field of the 41 knot
is Q

(√
−3
)
and the torsion is δ =

√
−3. Some terms of the series Φα(h) when c = 1 or c = 5

were given in equations (1.3) and (9.1), respectively. The numerical method allows us to compute
and identify the power series Φa/c(h) to any desired precision. Although the coefficients of the
series Φa/c(h), divided by the constant term, is an element of the number field Q(ζ3c) (when c is
coprime to 3) or Q(ζc) when 3 divides p, a judicious choice of the constant Ca/c, combined with
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the Galois invariance of the coefficients allows us to list the coefficients Ãa/p(k) for p ̸= 3 prime
and for a = 1, . . . , p−1 by giving a p−1 tuple of elements in the trace field Q(ζ3) = Q

(√
−3
)
of

the knot. Furthermore, since the knot is amphicheiral, it follows that Ãa/p(k) is real or purely
imaginary (for k odd or even, respectively), and combined with the above discussion, allows to
list the vector of coefficients

(
Ã1/p(k), . . . , Ã(p−1)/p(k)

)
by a (p−1)-dimensional vector of rational

numbers. Our numerical extrapolation method allows us to compute this tuple efficiently, and
what is more, our code is self-correcting in several ways: if a wrong denominator for Ãα(k) is
guessed for some k, its factorization in primes involves prime larger than k+1, and the precision
of the computation drops in the next step by a factor of two. As a result, we were able to
compute 100 terms of the series Φ0(h) when c = 1, and the results agree with the computations
given in [16] as well as computations obtained by a different method by the first author.

In addition to this, we computed the constant term Φα(0) for all α with denominator a prime
less than 100, and confirmed that its norm agrees with the predictions of [15, Section 4.1]
for c ≤ 19. We also computed 20 terms of the series Φα(h) for all α with denominator a prime
less than 100.

To present a sample of our computations, we start with the special case of c = 1, 2, 3, 6, where
the c-th root of unity is in the trace field Cα and λα

α 0 1/2 1/3 2/3 1/6 5/6

Cα 3−1/4 31/4 2 · 3−1/12 37/12 22 · 31/12 317/12

λc 72
√
−3 72

√
−3 24

√
−3 36

√
−3

it turns out that λk
cDkÃα(k) are integers being given by

k λk
1DkÃ0(k) λk

2DkÃ1/2(k) λk
3DkÃ1/3(k) λk

3DkÃ2/3(k) λk
6DkÃ1/6(k) λk

6DkÃ5/6(k)

0 1 1 1 1 1 1

1 11 41 37 25 579 201

2 697 12625 7785 6449 1224117 782865

3 724351 48022429 21535937 18981677 39903107571 29648832381

4 278392949 72296210981 24220768661 21569737445 535664049856461 412895509718949

5 244284791741 252636824949503 63245072194611 56749680285647 16693882665527364525 13164162601119392223

When c = 4 and a = ±1 mod 4, with the choice Ca/4 = ±
(
3
(
2±
√
3
))−1/4

and λ4 = 6
√
−3,

we can write

λk
4DkÃ±1/4(k) = B̃1/4(k)± B̃−1/4(k)i,

where B4(k) =
(
B̃1/4(k), B̃−1/4(k)

)
∈ Z2 with the first six values are given by

B4(0) ⟨1, 2⟩
B4(1) ⟨365, 370⟩
B4(2) ⟨311785, 420386⟩
B4(3) ⟨4219048201, 6325027802⟩
B4(3) ⟨24805519728725, 38098972914250⟩
B4(4) ⟨340419470401244075, 531593492940700894⟩
B4(5) ⟨25036998069742932352139, 39557220304220645794918⟩

Finally, when c = p is a prime different from 3, we found out for that for the primes less
than 100, the constant Cα of (A.1) can be taken to be

Cα = 3(−2±1)/4p1/2(εα)
1/p for p = ±1 mod 6,
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where

εα =
∏

|k|≤ p−1
2

(ε(p′kα))k, p′ = ∓1/4 mod p, ε(x) = 2 cos 2π(x− 1/3).

Note that the unit εα in Q(ζ3p) that appears in the choice of Cα agrees, up to p-th powers
of units, with the theoretically computed unit from equation (8.8) (for r = 0) below. With
the above choice of Cα, the numbers Aα(k) lie in the field Q(ζ3p), satisfy the Galois invari-
ance described in detail in the introduction, and this allows them to be expressed in terms of
vectors Bp(k) =

〈
B̃1/p(k), . . . , B̃(p−1)/p(k)

〉
∈ Zp−1 as follows:

λk
pDkÃa/p(k) =

p−1∑
b=1

η(ab/p)B̃b/p(k), η(x) = 2 sin(2π(x− 1/3)),

where λp = 3p2
√
−3/2. The vectors Bp(k) for k ≤ 20 and p a prime less than 100 were

numerically obtained and for p = 5 and p = 7 are given by

B5(0) ⟨−1,−4,−4,−6⟩
B5(1) ⟨−55,−5140,−7660,−9690⟩
B5(2) ⟨−7586065,−48629140,−58401700,−81382470⟩
B5(3) ⟨−1066837647875,−5818148628500,−6620399493500,−9407838821250⟩
B5(4) ⟨−51952598327049125,−274293246490488500,−309180073069692500,−440171876888046750⟩
B5(5) ⟨−5814113396376116334625,−29960825153926862627500,−33500926926525556664500,−47835527737950677253750⟩

and

B7(0) ⟨−20, 7, 2, 5,−14,−8⟩
B7(1) ⟨−98140, 8267,−19670, 27937,−39214,−16576⟩
B7(2) ⟨−2199415652, 426208447,−172006030, 524259533,−1237405358,−619260152⟩
B7(3) ⟨−676432728043100, 166452454682479,−15638648253886, 168799271208365,−406506539584838,−215671594628336⟩
B7(4) ⟨−86350611733284233860, 22591735955847949331,−702673247614974230, 21808440520527403561,

−52829131820839184902,−28340444966866544008⟩
B7(5) ⟨−25671367091358132079572196, 6928168872402051353797277, 10873595841062215161670,

6492789075493742592974935,−15896921084389159954206466,−8579075179324647599719264⟩

A.2 The sister of the figure eight knot

Its quotient by Z/5Z, which is a knot in the lens space L(5, 1) rather than the 3-sphere, is the
sister of the 41 knot, with the same trace field and same Bloch group invariant. We therefore
expect to find similarities between the asymptotic power series associated to K1 and to K2.

Next, we discuss the case of the sister of the 41 knot, the manifold m003 in the hyperbolic
knot census [12], which is not the complement of a knot in the 3-sphere, but is the complement
of a nullhomologous knot in the Lens space L(5, 1). This complicates things since the sister knot
has no Jones (hence, no colored Jones) polynomial, and although it has a Kashaev invariant,
a formula for it is not available to us. However, the 5-fold cyclic cover of the sister of the 41 knot
is the 5-chain link L in S3

(
denoted by 1053 and also by L10n113

)
. This is a famous link because

virtually every census manifold is a Dehn filling on it [17]. The link L has a colored Jones
polynomial JL,N (q) (with all components colored by the same N -dimensional representation)
with a formula available from [74] and a Kashaev invariant. More precisely, we have

JL,N (q) = − 1

1− qN

N−1∑
n=0

(
qn+1 − q−n

)
c(N,n)(q)2c(N,n)

(
q−1
)3
,

where

c(N,n)(q) =
q−Nn

(q; q)n

N−n−1∑
k=0

q−Nk
n+k∏

j=k+1

(
1− qN−j

)(
1− qj

)
.
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The above formula is O
(
N2
)
can be rewritten in terms of an O(N) formula that has a re-

cursion relation. However the latter has the disadvantage that the middle term of the sum-
mand (k = N/2) now vanishes when evaluated at e(1/N). To overcome this, we compute the
sum from both sides by differentiation. Having done so, we tested the QMC and no suprises
were found. We computed 10 terms of the series ΦL

α(h) when α = 0 (given below) and 8 terms
when α = 1/2.

We now give the data for α = 0. The trace field of L is Q
(√
−3
)
, same as for the 41 knot.

The complex volume of L is given by

V(L) = 5V(41)− 3π2

and its torsion is given by

δ(L) = 27
√
−3.

Since L is a link, in (1.1), we should replace the exponent 3/2 by 5/2. With these changes, and
with the notation of equation (A.1) we get algebraic integers 12kDkA

L
0 (k) in the ring Z

[√
−3
]

and the first 10 are given as follows:

k 12kDkÃ
K2
0 (k)

0 1

1 −115
√
−3 + 279

2 −49050
√
−3 + 53286

3 −112270440
√
−3 + 163969920

4 −131463532440
√
−3 + 2948624280

5 4388324675760
√
−3− 163377997734672

6 −155232475000358400
√
−3 + 1614884631367642560

7 −456051590815208713920
√
−3− 409415976078904226880

8 1201424680509251029718400
√
−3− 2426468490157451971144320

9 280843674420360230423881689600
√
−3 + 767958533539384912591107225600

However, we failed to find any relation between the series for the 41 knot and for the 5-fold
cover of its sister.

A.3 The 52 knot

The pair of the 41 knot and its sister from the previous section in unsatisfactory in two ways.
For one, the quantum modularity conjecture is proven for the 41 knot. Moreover, the sister of 41
(and its 5-fold cover) is not a knot. The next simplest hyperbolic knot after 41 is the 52 knot,
whose sister is the mirror of the (−2, 3, 7) pretzel knot. Sister (or geometrically similar) knots
have a decomposition into a finite number of congruent ideal tetrahedra, hence they have the
same trace field and equal elements in the Bloch group, modulo torsion.

A formula for the Kashaev invariant of the 52 knot was given in [59, equation (2.3)],

J52(x) =
N−1∑
m=0

m∑
k=0

q−(m+1)k (q; q)2m(
q−1; q−1

)
k

, q = e(x), (A.2)

where N is the denominator of x ∈ Q. After multiplication of the above by e(x), it agrees
with the evaluation of the colored Jones polynomial J52,N (e(x)), where the Jones polynomial
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of 52 is J52(q) = q − q2 + 2q3 − q4 + q5 − q6. The formula (A.2) allows a computation of the
Kashaev invariant in O

(
N2
)
steps, and a simplification of it was found by one of the authors [16,

Section 4.1]

J52(x) =
N−1∑
m=0

(q; q)2m

((
q−1; q−1

)
m

m∑
k=0

q−k2(
q−1; q−1

)2
k

)
, q = e(x)

that allows an O(N)-step computation of the Kashaev invariant. An alternative computation
of the latter in O(N)-steps can be performed using the recursion relation for the colored Jones
polynomial of 52 [39].

As mentioned in Section 2.1, the trace field of 52 is F = Q(ξ), where

ξ3 − ξ2 + 1 = 0, ξ = 0.877438833 . . .− 0.74486176661 . . . i. (A.3)

The trace field has three embeddings labeled by σj for j = 1, 2, 3 (as discussed in Section 2.1)
and their volumes are given by

V(σ1) = −3R(ξ1) +
2π2

3
= 3.0241283 . . .+ 2.8281220 . . . i,

V(σ2) = −3R(ξ2) +
2π2

3
= 3.0241283 . . .− 2.8281220 . . . i,

V(σ3) = 3R(ξ3/(1− ξ3))−
π2

3
= −1.1134545 . . . ,

where R(x) denotes the Rogers dilogarithm defined by

R(x) = Li2(x) +
1

2
log(x) log(1− x)− π2

6
for x ∈ C∖

(
(−∞,−1] ∪ [1,∞)

)
.

The torsion of the 52 knot is given by δ(52) = 3ξ − 2.

• Modularity at 0: We choose ε(52)0 = 1, and with the notation of equation (A.1) the first
eleven terms are given as follows:

k
(
23ξ5(3ξ − 2)3

)k
DkÃ

52
0 (k)

0 1

1 −12ξ2 + 19ξ − 86

2 −1343ξ2 − 12052ξ + 14620

3 1381097ξ2 + 36300408ξ − 10373787

4 −939821147ξ2 − 7647561573ξ − 5587870829

5 114451233224986ξ2 − 51239666382079ξ − 6305751988731

6 −2263527400987641127ξ2 − 631762147829071739ξ − 1298875409805289208

7 −757944502306007361580ξ2 + 1425054483652604079482ξ + 2654782623273180246011

8 16785033822956024557916646ξ2 − 2226340168480665471705515ξ

−14930684354870794067096358
9 −3735848035153601836654158090473ξ2 − 3510831690088210470322102227368ξ

−449224959824265576892987954854
10 −34345984964128841574873487072878291ξ2 + 25085231887789675521906921078089414ξ

+52364404634270110370401111089362065
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• Modularity at 1/2: We choose ε(52)1/2 = ξ−5 and with the notation of equation (A.1) the
first six terms are given as follows:

k
(
2ξ5(3ξ − 2)3

)k
DkÃ

52
1/2(k)

0 ξ + 2

1 307ξ2 − 138ξ − 628

2 −573109ξ2 − 168712ξ + 457975

3 2096955561ξ2 + 5077310601ξ + 1165885531

4 6470888990010ξ2 − 5414463743327ξ − 10380246225743

5 289484322041800655ξ2 − 138373378538474483ξ − 156775910252412286

• Modularity at 1/3: Here, the constant term Φ52
1/3(0) was numerically computed to high

precision

Φ52
1/3(0) = −1.3478490468923913068 . . .− 1.5706460265356353326 . . . i

but was not initially recognized. To identify it, we used the formula (A.2) for the Kashaev
invariant and performed a theoretical computation analogous to the constants S(α) and E0(α)
(given in (8.8) and (8.9)) of the 41 knot which produced the primes

p7 =
(
ξ2 − 1

)
ζ6 − ξ + 1, p43 = 2ξ2 − ξ − ζ6

of norm 7 and 43 respectively in the number field F3 = Q(ξ, ζ3). Note that the same primes
appear in [15, Section 6.2]. In addition, the above constant involves δ(52)

−1/2 and a number
whose third power is in F3. After some experimentation, we concluded that

Φ52
1/3(0) = e(1/36)

1√
3ξ − 2

p27p43.

It follows that a representative of the unit at α = 1/3 is given by

ε(52)1/3 = e(1/12).

It was a bit of a surprise to find that the unit is torsion although the Bloch group of F61 has
rank 1. On the other hand 3 (as well as 2 and a few other primes) are exceptional ones in the
work [10].

Once the constant term was recognized, it turned out that we needed to separate one factor
of p7 in the constant term Φ52

1/3(0) from the remaining terms, in order to avoid spurious denom-
inators. With the choice of C1/3 = e(1/36)(3ξ − 2)−

1
2 p7p43 and the notation of (A.1), the first

seven terms were found to be as follows:

k
(
ξ5(3ξ − 2)3

)k
DkÃ

52
1/3(k)

0
(
−ξ2 + 2ξ − 2

)
ζ6 +

(
2ξ2 − 4ξ

)
1
(
717ξ2 − 822ξ + 947

)
ζ6 +

(
−2226ξ2 + 1856ξ + 106

)
2
(
−680145ξ2 + 1283633ξ − 1844797

)
ζ6 +

(
4731470ξ2 − 1215426ξ + 785050

)
3
(
−4879664798ξ2 − 15547118437ξ + 26771206405

)
ζ6

+
(
−20691193336ξ2 − 35194065214ξ − 73160959238

)
4
(
237593851209955ξ2 − 123624865686699ξ + 65688152000880

)
ζ6

+
(
−455730563794746ξ2 + 258640669065738ξ + 244974132213716

)
5
(
−8559119253981428654ξ2 + 9164193255880569642ξ − 8506396294603249043

)
ζ6

+
(
−8914434881967188748ξ2 − 7549553228397039176ξ + 21232362162256499338

)
6
(
1206971041591026374138836ξ2 − 1471979903142920023426465ξ + 1526039068996370402375484

)
ζ6

+
(
2034143372251380409655636ξ2 + 5390411863643322238842526ξ − 935392258601663466664696

)
where ζ6 = e(1/6).
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A.4 The (−2, 3, 7) pretzel knot

Next, we discuss the case of a sister the 52 knot, namely the (mirror of) the (−2, 3, 7) pretzel
knot. Note that the trace fields of 52 and (−2, 3, 7) coincide, which allow us to use the notation
of (A.3).

Unlike the case of the 41 and 52 knots, the Kashaev invariant of (−2, 3, 7) can only be
computed via the recursion of the colored Jones polynomial which was guessed in [33], with
the convention that the Jones polynomial of (−2, 3, 7) is given by J (−2,3,7)(q) = q−5 + q−7 −
q−11+q−12−q−13. The above inhomogeneous recursion has order 6, maximal degree (6, 58, 233)
with respect to the shift variable, the qn and the q variables, and contains a total of 90 terms,
which can be found in [25]. In contrast, the A-polynomial of the (−2, 3, 7) knot has maximal
degree (6, 55) with respect to the (L,M) variables and contains 12 terms. In addition, we
multiply the Kashaev invariant of (−2, 3, 7) by q−4.

Since (−2, 3, 7) is a sister of the 52 knot, they have a common trace field Q(ξ) given in (A.3).
The trace field has three embeddings labeled by σj for j = 1, 2, 3 (as discussed in Section 2.1)
and their complex volumes are given by

V(σ1) = −3R(ξ1) +
π2

3
= 4.6690624 . . .+ 2.8281220 . . . i,

V(σ2) = −3R(ξ2) +
π2

3
= 4.6690624 . . .− 2.8281220 . . . i,

V(σ3) = 3R(ξ3/(ξ3 − 1)) +
π2

3
= 0.5314795 . . . .

The torsion of (−2, 3, 7) are given by δ((−2, 3, 7)) = −2(3ξ − 2)ξ−2.

• Modularity at 0: Using the notation of (A.1), we write((
2ξ2 − 6

)3
/ξ5
)k
DkÃ

(−2,3,7),σ1

0 (k) =
(
1, ξ, ξ2

)
·B(−2,3,7),σ1

0 (k),

where B
(−2,3,7),σ1

0 (k) ∈ Z3 is a vector of integers with the first 11 values given by

k B
(−2,3,7),σ1
0 (k)

0 ⟨1, 0, 0⟩
1 ⟨−33, 128,−90⟩
2 ⟨79245,−104172, 50944⟩
3 ⟨333329999,−597644460, 317584318⟩
4 ⟨−12580573862099, 16160668928488,−9152599685200⟩
5 ⟨275061075796915969,−366241217321535656, 209464837107544698⟩
6 ⟨−21464059785100413194817, 28432876033981872108244,−16179201892533998639888⟩
7 ⟨39552725057509518276438631,−52341801268123421363828580, 29838036942620515077356206⟩
8 ⟨249767901145868199725688538645,−330081248453503483229302323376, 187971265625750854805584690976⟩
9 ⟨−3700925786017810109833640742259950499, 4903075033684898536256604949931358320,

−2794204143666309730641613915747239310⟩
10 ⟨392518725914904741935043787434245408953117,−519977480066306945985500543478969169892188,

296298336548750157536627179710807871873120⟩

• Modularity at 1/2: If we choose ε1/2((−2, 3, 7)) = 2ξ5, with the notation of (A.1), the first
four terms are given by

k
(
4ξ(3ξ − 2)3

)k
DkÃ

((−2,3,7),σ1)
1/2 (k)

0 1

1 −225ξ2 + 404ξ − 249

2 87535ξ2 − 158073ξ + 123948

3 1981731163ξ2 − 3465695160ξ + 2508787814

• Modularity at 1/3: Here the constant term and the next two coefficients of the power
series Φ

(−2,3,7)
1/3 (h), Φ

(−2,3,7)
2/3 (h) were computed to high precision, and using as a guidance the
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appearance of primes of norm 373 (conjectured in [14, Section 6.2]), we identified the constant
terms

Φ
(−2,3,7)
1/3 (0) = e(2/9)

√
− 27

2(3ξ − 2)
p373, Φ

(−2,3,7)
2/3 (0) = e(5/9)

√
− 27

2(3ξ − 2)
p′373,

where p373 = ξ2 + 2ξζ6 + 1 and p′373 = ξ2 + 2ξ(1− ζ6) + 1 are primes in Q(ξ, ζ6) of norm 373. It
follows that the unit at α = 1/3 is given by

ε((−2, 3, 7))1/3 = e(2/3).

The units of 52 and (−2, 3, 7) at α = 1/3 match up to a 24-th root of unity.
As mentioned in Section 2.1, the (−2, 3, 7) pretzel knot has 6 parabolic nonabelian represen-

tations that come in two Galois orbits of size 3 each: one is defined over the trace field (the
cubic field of discriminant −23 discussed above), and another defined over the real field Q(η),
the abelian field of discriminant 49. At first glance, the latter three parabolic representations
(which are SL2(R) representations of zero volume) are not seen by the Kashaev invariant. Yet,
one can detect them using the asymptotics of the coefficients of the former three representations
as explained in Section 10.2.

In the subsequent paper [44], we used the 6 pairs of q-series associated the (−2, 3, 7) pretzel
knot and their asymptotics to compute 37 terms of all six series Φ

((−2,3,7),σj)
0 (h) for j = 1, . . . , 6.

Below, we give the first 11 terms of the series associated to the abelian number field Q(η)
given in Section 2.1. Consider the embeddings σ3+j of the above field for j = 1, 2, 3 given in
Section 2.1 which send η to 2 cos(2πj/7) and let C

((−2,3,7),σ3+j)
0 =

√
(ηj − 2)/14. The complex

volumes of σ3+j are given by

V(σ4) = −
1

21
π2, V(σ5) =

1

14
π2, V(σ6) = −

1

42
π2

and the torsion equals to δ((−2, 3, 7), σ3+j) = 14/(ηj−2). Using the notation of (A.1), we write

7kDkÃ
((−2,3,7),σ3+j)
0 (k) =

(
1, ηj , η

2
j

)
·B((−2,3,7),σ3+j)

0 (k),

where B
((−2,3,7),σ3+j)
0 (k) ∈ Z3 is a vector of integers with the first 11 values given by

k B
((−2,3,7),σ3+j)

0 (k)

0 ⟨1, 0, 0⟩
1 ⟨43, 0,−21⟩
2 ⟨3928, 63,−1491⟩
3 ⟨−9658210,−2570400, 8759835⟩
4 ⟨−12802855375, 9661452255, 660110430⟩
5 ⟨−42833879089694, 5736063757095, 23026249581258⟩
6 ⟨−360522404258392495,−58094689166990595, 278695629206010765⟩
7 ⟨108480519886094978165, 114336214602228319050,−161431920455740612440⟩
8 ⟨420957357301236147078125,−601694281205047856100870, 211820529501946639071105⟩
9 ⟨276051903390093831791757795950,−105329146895536652560323534375,−93062298372659896456977171525⟩
10 ⟨3837169849511929903158156720021580, 1712034755788650551262940860512280,

−3840647130863172583813306383456135⟩

A.5 The 61 knot

In this appendix, we look at one further knot (this time without a sister), the 61 knot, for two
reasons. Firstly, the trace field is F61 = Q(ξ), a number field of discriminant 257 (a prime)
where

ξ4 + ξ2 − ξ + 1 = 0, ξ = 0.5474 . . .+ 0.5856 . . . i.

The trace field has two complex embeddings, so its Bloch group has rank two, giving a nontrivial
test for the unit ε(61)α. Secondly, the SL2(C) character variety (and the corresponding A-
polynomial) is a curve whose quotient modulo the involution ι : (M,L) 7→

(
M−1, L−1

)
is not
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a rational curve. It was observed by Borot that his recent work with Eynard [7] suggested
a mechanism (based on the topological recursion) that could explain at least a weak part of the
modularity conjecture, namely that the asymptotics of JK(ϵ) (as ϵ tends to zero through rational
numbers with bounded denominators), is always given by the same series ΦK

0 (ϵ) up to a constant
factor, not predicted by their model. However, Borot could make this argument precise only in
the case where the space of holomorphic differentials of the corresponding spectral curve was
anti-invariant under the involution ι : (M,L) 7→

(
M−1, L−1

)
. This condition is equivalent to the

statement to the rationality of the quotient of the spectral curve by ι. This led us to conduct
a final experiment for the 61 knot. The question here was whether the modularity conjecture
itself might fail, or had to be modified in the context where the argument based on the work of
Borot–Eynard no longer applied. Fortunately, however, we found no anomalies.

To fix conventions, the 61 knot is the closure of the braid word [1, 2, 3, 2,−4,−1,−3, 2,−3, 4,−3, 2]

where j (respectively, −j) corresponds to the standard generator sj
(
respective, s−1

j

)
of the

braid group in 4 stands, and with Jones polynomial q−4 − q−3 + q−2 − 2q−1 + 2 − q + q2. The
complex volume is given by

V(61) = −(2R1 +R2 +R3)−
4

3
π2 = −3.0788629 . . .+ 3.1639632 . . . i

where

R1 = R
(
−ξ2

)
− 1

2
πi log

(
−ξ2

)
+ πi log

(
1 + ξ2

)
,

R2 = R
(
1− ξ3

)
− πi log

(
1− ξ3

)
+

1

2
πi log

(
ξ3
)
, R3 = R(1− ξ).

The torsion, a prime in F61 of norm 257 is given by

δ(61) = 1 + ξ + 4ξ2 + ξ3.

Here, the Kashaev invariant of the 61 knot was not computed using the formula given in [59,
equation (24)], since the latter is an O(N3) computation, but rather in O(N) steps using the
recursion relation of the colored Jones polynomial. The rather complicated inhomogeneous
recursion has order 4, has maximal degree (4, 15, 31) with respect to the shift variable, the qn

and the q variables, and contains a total of 346 terms, which can be found in [24, 39]. In
contrast, the A-polynomial of the 61 knot has maximal degree (4, 8) with respect to the (L,M)
variables and contains 21 terms. Due to the complexity of the recursion, we were forced to use
precision 3000 in pari when N = 1000. The first three coefficients of Φ61

0 (h) were numerically
computed at α = 0, and using the prediction of [14] and the notation of‘(9.4), those algebraic
numbers were identified as follows:

Φ61
0 (h) =

1√
δ

(
1 +

194ξ3 − 331ξ2 + 207ξ − 245

23 · 3 · δ(61)3
h

+
−154734ξ3 − 34354ξ2 + 127399ξ − 119864

27 · 32 · δ(61)6
h2 +O

(
h3
))

.
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