|
SIGMA 21 (2025), 024, 36 pages arXiv:2402.16704
https://doi.org/10.3842/SIGMA.2025.024
Twisted Post-Hopf Algebras, Twisted Relative Rota-Baxter Operators and Hopf Trusses
José Manuel Fernández Vilaboa ab, Ramón González Rodríguez ac and Brais Ramos Pérez ab
a) CITMAga, 15782 Santiago de Compostela, Spain
b) Departamento de Matemáticas, Facultade de Matemáticas, Universidade de Santiago de Compostela, 15771 Santiago de Compostela, Spain
c) Departamento de Matemática Aplicada II, Universidade de Vigo, E.E. Telecomunicación, 36310 Vigo, Spain
Received November 19, 2024, in final form April 06, 2025; Published online April 15, 2025
Abstract
The present article is devoted to studying the categorical relationships between the categories of Hopf trusses, weak twisted post-Hopf algebras, introduced by Wang (2023), and weak twisted relative Rota-Baxter operators. The latter objects are a generalisation of the relative Rota-Baxter operators defined by Li-Sheng-Tang (2024), where the Rota-Baxter condition is modified through a cocycle. Under certain conditions, this work shows that the three aforementioned categories are equivalent.
Key words: braided monoidal category; Hopf algebra; Hopf truss; weak twisted post-Hopf algebra; weak twisted relative Rota-Baxter operator.
pdf (2325 kb)
tex (1183 kb)
References
- Alonso Álvarez J.N., Fernández Vilaboa J.M., González Rodríguez R., On the (co)commutativity class of a Hopf algebra and crossed products in a braided category, Comm. Algebra 29 (2001), 5857-5878.
- Alonso Álvarez J.N., Fernández Vilaboa J.M., González Rodríguez R., Crossed products of crossed modules of Hopf monoids, Theory Appl. Categ. 33 (2018), 867-897.
- Angiono I., Galindo C., Vendramin L., Hopf braces and Yang-Baxter operators, Proc. Amer. Math. Soc. 145 (2017), 1981-1995, arXiv:1604.02098.
- Baxter G., An analytic problem whose solution follows from a simple algebraic identity, Pacific J. Math. 10 (1960), 731-742.
- Brzeziński T., Trusses: Between braces and rings, Trans. Amer. Math. Soc. 372 (2019), 4149-4176, arXiv:1710.02870.
- Drinfeld V.G., On some unsolved problems in quantum group theory, in Quantum Groups (Leningrad, 1990), Lecture Notes in Math., Vol. 1510, Springer, Berlin, 1992, 1-8.
- Faria Martins J.a., Crossed modules of Hopf algebras and of associative algebras and two-dimensional holonomy, J. Geom. Phys. 99 (2016), 68-110, arXiv:1503.05888.
- Fernández Vilaboa J.M., González Rodríguez R., Ramos Pérez B., Categorical isomorphisms for Hopf braces, Hacet. J. Math. Stat., to appear, arXiv:2311.05235.
- Ferri D., Sciandra A., Matched pairs and Yetter-Drinfeld braces, arXiv:2406.10009.
- Frégier Y., Wagemann F., On Hopf 2-algebras, Int. Math. Res. Not. 2011 (2011), 3471-3501, arXiv:0908.2353.
- Goncharov M., Rota-Baxter operators on cocommutative Hopf algebras, J. Algebra 582 (2021), 39-56, arXiv:2011.14390.
- González Rodríguez R., Rodríguez Raposo A.B., Categorical equivalences for Hopf trusses and their modules, arXiv:2312.06520.
- Guarnieri L., Vendramin L., Skew braces and the Yang-Baxter equation, Math. Comp. 86 (2017), 2519-2534, arXiv:1511.03171.
- Joyal A., Street R., Braided tensor categories, Adv. Math. 102 (1993), 20-78.
- Kassel C., Quantum groups, Grad. Texts in Math., Vol. 155, Springer, New York, 1995.
- Li Y., Sheng Y., Tang R., Post-Hopf algebras, relative Rota-Baxter operators and solutions to the Yang-Baxter equation, J. Noncommut. Geom. 18 (2024), 605-630, arXiv:2203.12174.
- Li Z., Wang S., Rota-Baxter systems and skew trusses, J. Algebra 623 (2023), 447-480, arXiv:2210.14569.
- Li Z., Wang S., Rota-Baxter systems of Hopf algebras and Hopf trusses, arXiv:2305.00482.
- López López M.P., Villanueva Nóvoa E., The antipode and the (co)invariants of a finite Hopf (co)quasigroup, Appl. Categ. Structures 21 (2013), 237-247.
- Mac Lane S., Categories for the working mathematician, 2nd ed., Grad. Texts in Math., Vol. 5, Springer, New York, 1978.
- Majid S., Physics for algebraists: Noncommutative and noncocommutative Hopf algebras by a bicrossproduct construction, J. Algebra 130 (1990), 17-64.
- Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995.
- Majid S., Strict quantum 2-groups, arXiv:1208.6265.
- Molnar R.K., Semi-direct products of Hopf algebras, J. Algebra 47 (1977), 29-51.
- Rota G.-C., Baxter algebras and combinatorial identities. I, Bull. Amer. Math. Soc. 75 (1969), 325-329.
- Rump W., Braces, radical rings, and the quantum Yang-Baxter equation, J. Algebra 307 (2007), 153-170.
- Schauenburg P., On the braiding on a Hopf algebra in a braided category, New York J. Math. 4 (1998), 259-263.
- Sciandra A., Yetter-Drinfeld post-Hopf algebras and Yetter-Drinfeld relative Rota-Baxter opertors, arXiv:2407.17922.
- Wang S., (Weak) twisted post-groups, skew trusses and rings, arXiv:2307.10535.
|
|