Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 025, 54 pages      arXiv:2310.06669      https://doi.org/10.3842/SIGMA.2025.025

Yangians, Mirabolic Subalgebras, and Whittaker Vectors

Artem Kalmykov ab
a) Department of Mathematics, Massachusetts Institute of Technology, Cambridge MA, 02139, USA
b) Saint Petersburg University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia

Received March 26, 2024, in final form April 04, 2025; Published online April 18, 2025

Abstract
We construct an element in a completion of the universal enveloping algebra of $\mathfrak{gl}_N$, which we call the Kirillov projector, that connects the topics of the title: on the one hand, it is defined using the evaluation homomorphism from the Yangian of $\mathfrak{gl}_N$, on the other hand, it gives a canonical projection onto the space of Whittaker vectors for any Whittaker module over the mirabolic subalgebra. Using the Kirillov projector, we deduce some categorical properties of Whittaker modules, for instance, we prove a mirabolic analog of Kostant's theorem. We also show that it quantizes a rational version of the Cremmer-Gervais $r$-matrix. As application, we construct a universal vertex-IRF transformation from the standard dynamical $R$-matrix to this constant one in categorical terms.

Key words: Whittaker modules; Yangian; extremal projector; vertex-IRF transformation.

pdf (746 kb)   tex (56 kb)  

References

  1. Adámek J., Rosický J., Locally presentable and accessible categories, London Math. Soc. Lecture Note Ser., Vol. 189, Cambridge University Press, Cambridge, 1994.
  2. Arakawa T., Introduction to W-algebras and their representation theory, in Perspectives in Lie Theory, Springer INdAM Ser., Vol. 19, Springer, Cham, 2017, 179-250, arXiv:1605.00138.
  3. Asherova R.M., Smirnov Yu.F., Tolstoy V.N., Projection operators for simple Lie groups, Theoret. and Math. Phys. 8 (1971), 813-825.
  4. Balog J., Dąbrowski L., Fehér L., Classical $r$-matrix and exchange algebra in WZNW and Toda theories, Phys. Lett. B 244 (1990), 227-234.
  5. Baxter R.J., Exactly solved models in statistical mechanics, Academic Press, Inc., London, 1989.
  6. Bernstein J.N., Gelfand S.I., Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras, Compositio Math. 41 (1980), 245-285.
  7. Bezrukavnikov R., Finkelberg M., Equivariant Satake category and Kostant-Whittaker reduction, Mosc. Math. J. 8 (2008), 39-72, arXiv:0707.3799.
  8. Brandenburg M., Chirvasitu A., Johnson-Freyd T., Reflexivity and dualizability in categorified linear algebra, Theory Appl. Categ. 30 (2015), 808-835, arXiv:1409.5934.
  9. Buffenoir E., Roche P., Terras V., Quantum dynamical coboundary equation for finite dimensional simple Lie algebras, Adv. Math. 214 (2007), 181-229, arXiv:math.QA/0512500.
  10. Buffenoir E., Roche P., Terras V., Universal vertex-IRF transformation for quantum affine algebras, J. Math. Phys. 53 (2012), 103515, 53 pages, arXiv:0707.0955.
  11. Cherednik I., Lectures on Knizhnik-Zamolodchikov equations and Hecke algebras, in Quantum Many-Body Problems and Representation Theory, MSJ Mem., Vol. 1, Mathematical Society of Japan, Tokyo, 1998, 1-96.
  12. Cremmer E., Gervais J.L., The quantum group structure associated with nonlinearly extended Virasoro algebras, Comm. Math. Phys. 134 (1990), 619-632.
  13. Deligne P., Catégories tannakiennes, in The Grothendieck Festschrift, Vol. II, Progr. Math., Vol. 87, Birkhäuser Boston, Boston, MA, 1990, 111-195.
  14. Drinfeld V.G., Degenerate affine Hecke algebras and Yangians, Funct. Anal. Appl. 20 (1986), 58-60.
  15. Drinfeld V.G., Quantum groups, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2, American Mathematical Society, Providence, RI, 1987, 798-820.
  16. Endelman R., Hodges T.J., Generalized Jordanian $R$-matrices of Cremmer-Gervais type, Lett. Math. Phys. 52 (2000), 225-237.
  17. Etingof P., On the dynamical Yang-Baxter equation, in Proceedings of the International Congress of Mathematicians, Vol. II, Higher Education Press, Beijing, 2002, 555-570, arXiv:math.QA/0207008.
  18. Etingof P., Gelaki S., Nikshych D., Ostrik V., Tensor categories, Math. Surveys Monogr., Vol. 205, American Mathematical Society, Providence, RI, 2015.
  19. Etingof P., Schiffmann O., Lectures on the dynamical Yang-Baxter equations, in Quantum Groups and Lie Theory, London Math. Soc. Lecture Note Ser., Vol. 290, Cambridge University Press, Cambridge, 2001, 89-129, arXiv:math.QA/9908064.
  20. Etingof P., Schiffmann O., Lectures on quantum groups, 2nd ed., Lect. Math. Phys., International Press, Somerville, MA, 2002.
  21. Etingof P., Varchenko A., Exchange dynamical quantum groups, Comm. Math. Phys. 205 (1999), 19-52, arXiv:math.QA/9801135.
  22. Felder G., Elliptic quantum groups, in XIth International Congress of Mathematical Physics, International Press, Cambridge, MA, 1995, 211-218, arXiv:hep-th/9412207.
  23. Gerstenhaber M., Giaquinto A., Boundary solutions of the classical Yang-Baxter equation, Lett. Math. Phys. 40 (1997), 337-353, arXiv:q-alg/9609014.
  24. Gerstenhaber M., Giaquinto A., Schack S.D., Quantum symmetry, in Quantum Groups, Lecture Notes in Math., Vol. 1510, Springer, Berlin, 1992, 9-46.
  25. Gervais J.L., Neveu A., Novel triangle relation and absence of tachyons in Liouville string field theory, Nuclear Phys. B 238 (1984), 125-141.
  26. Ginzburg V., Kazhdan D., Differential operators on $G/U$ and the Gelfand-Graev action, Adv. Math. 403 (2022), 108368, 48 pages, arXiv:1804.05295.
  27. Hodges T.J., On the Cremmer-Gervais quantizations of ${\rm SL}(n)$, Internat. Math. Res. Notices 1995 (1995), 465-481, arXiv:q-alg/9506018.
  28. Jimbo M., A $q$-difference analogue of $U({\mathfrak{g}})$ and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63-69.
  29. Kalmykov A., Geometric and categorical approaches to dynamical representation theory, Ph.D. Thesis, University of Zurich, 2021, available at https://drive.google.com/file/d/1P4_nBC9DS52pTYHQ0SN67ypho9_Dffoi/view?usp=sharing.
  30. Kalmykov A., Safronov P., A categorical approach to dynamical quantum groups, Forum Math. Sigma 10 (2022), e76, 57 pages, arXiv:2008.09081.
  31. Khoroshkin S.M., Extremal projector and dynamical twist, Theoret. and Math. Phys. 139 (2004), 582-597.
  32. Khoroshkin S.M., Ogievetsky O., Mickelsson algebras and Zhelobenko operators, J. Algebra 319 (2008), 2113-2165, arXiv:math.QA/0606259.
  33. Khoroshkin S.M., Stolin A.A., Tolstoy V.N., Deformation of Yangian $Y({\rm sl}_2)$, Comm. Algebra 26 (1998), 1041-1055, arXiv:q-alg/9511005.
  34. Kirillov A.A., Infinite-dimensional unitary representations of a second-order matrix group with elements in a locally compact field, Dokl. Akad. Nauk SSSR 150 (1963), 740-743.
  35. Kirillov Jr. A.A., Lectures on affine Hecke algebras and Macdonald's conjectures, Bull. Amer. Math. Soc. 34 (1997), 251-292, arXiv:math.QA/9501219.
  36. Kostant B., On Whittaker vectors and representation theory, Invent. Math. 48 (1978), 101-184.
  37. MacLane S., Categories for the working mathematician, Grad. Texts in Math., Vol. 5, Springer, New York, 1971.
  38. Molev A., Yangians and transvector algebras, Discrete Math. 246 (2002), 231-253, arXiv:math.QA/9811115.
  39. Molev A., Yangians and classical Lie algebras, Math. Surveys Monogr., Vol. 143, American Mathematical Society, Providence, RI, 2007.
  40. Molev A., Nazarov M., Olshanskii G., Yangians and classical Lie algebras, Russian Math. Surveys 51 (1996), 205-282, arXiv:hep-th/9409025.
  41. Sage Developers, SageMath, the Sage Mathematics Software System, Version 10.5, 2025, available at https://www.sagemath.org.
  42. Sevostyanov A., Quantum deformation of Whittaker modules and the Toda lattice, Duke Math. J. 105 (2000), 211-238, arXiv:math.QA/9905128.
  43. Zhelobenko D.P., Extremal cocycles of Weyl groups, Funct. Anal. Appl. 21 (1987), 183-192.
  44. Zhelobenko D.P., An introduction to the theory of $S$-algebras over reductive Lie algebras, in Representation of Lie Groups and Related Topics, Adv. Stud. Contemp. Math., Vol. 7, Gordon and Breach, New York, 1990, 155-221.

Previous article  Next article  Contents of Volume 21 (2025)