|
SIGMA 21 (2025), 026, 14 pages arXiv:2408.16902
https://doi.org/10.3842/SIGMA.2025.026
Contribution to the Special Issue on Basic Hypergeometric Series Associated with Root Systems and Applications in honor of Stephen C. Milne
Zeros of Hook Polynomials and Related Questions
Walter Bridges a, William Craig b, Amanda Folsom c and Larry Rolen d
a) University of North Texas, USA
b) United States Naval Academy, USA
c) Amherst College, USA
d) Vanderbilt University, USA
Received September 03, 2024, in final form April 10, 2025; Published online April 21, 2025
Abstract
We study the zero set of polynomials built from partition statistics, complementing earlier work in this direction by Boyer, Goh, Parry, and others. In particular, addressing a question of Males with two of the authors, we prove asymptotics for the values of $t$-hook polynomials away from an annulus and isolated zeros of a theta function. We also discuss some open problems and present data on other polynomial families, including those associated to deformations of Rogers-Ramanujan functions.
Key words: integer partitions; hook length; zeros of polynomials; zero attractor; asymptotic behavior; theta functions.
pdf (849 kb)
tex (332 kb)
References
- Anderson J., An asymptotic formula for the $t$-core partition function and a conjecture of Stanton, J. Number Theory 128 (2008), 2591-2615.
- Andrews G.E., The theory of partitions, Cambridge Math. Lib., Cambridge University Press, Cambridge, 1984.
- Andrews G.E., Garvan F.G., Dyson's crank of a partition, Bull. Amer. Math. Soc. 18 (1988), 167-171.
- Boyer R.P., Goh W.M.Y., Partition polynomials: asymptotics and zeros, in Tapas in Experimental Mathematics, Contemp. Math., Vol. 457, American Mathematical Society, Providence, RI, 2008, 99-111, arXiv:0711.1373.
- Boyer R.P., Goh W.M.Y., Polynomials associated with partitions: asymptotics and zeros, in Special Functions and Orthogonal Polynomials, Contemp. Math., Vol. 471, American Mathematical Society, Providence, RI, 2008, 33-45, arXiv:0711.1400.
- Boyer R.P., Parry D.T., On the zeros of plane partition polynomials, Electron. J. Combin. 18 (2011), 30, 26 pages.
- Boyer R.P., Parry D.T., Phase calculations for planar partition polynomials, Rocky Mountain J. Math. 44 (2014), 1-18.
- Boyer R.P., Parry D.T., Plane partition polynomial asymptotics, Ramanujan J. 37 (2015), 573-588, arXiv:1401.1893.
- Boyer R.P., Parry D.T., Zero attractors of partition polynomials, arXiv:2111.12226.
- Bridges W., Franke J., Garnowski T., Asymptotics for the twisted eta-product and applications to sign changes in partitions, Res. Math. Sci. 9 (2022), 61, 31 pages, arXiv:2111.04183.
- Bridges W., Franke J., Males J., Sign changes in statistics for plane partitions, J. Math. Anal. Appl. 530 (2024), 127719, 27 pages, arXiv:2207.14590.
- Bringmann K., Gomez K., Rolen L., Tripp Z., Infinite families of crank functions, Stanton-type conjectures, and unimodality, Res. Math. Sci. 9 (2022), 37, 16 pages, arXiv:2108.12979.
- Folsom A., Males J., Rolen L., Equidistribution and partition polynomials, Ramanujan J. 65 (2024), 1827-1848, arXiv:2209.15114.
- Garvan F., New combinatorial interpretations of Ramanujan's partition congruences mod $5$, $7$ and $11$, Trans. Amer. Math. Soc. 305 (1988), 47-77.
- Garvan F., Kim D., Stanton D., Cranks and $t$-cores, Invent. Math. 101 (1990), 1-17.
- Granville A., Ono K., Defect zero $p$-blocks for finite simple groups, Trans. Amer. Math. Soc. 348 (1996), 331-347.
- Griffin M., Ono K., Rolen L., Zagier D., Jensen polynomials for the Riemann zeta function and other sequences, Proc. Natl. Acad. Sci. USA 116 (2019), 11103-11110, arXiv:1902.07321.
- Han G.N., The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications, Ann. Inst. Fourier (Grenoble) 60 (2010), 1-29, arXiv:0805.1398.
- Hardy G.H., Ramanujan S., Asymptotic formulaae in combinatory analysis, Proc. London Math. Soc. 17 (1918), 75-115.
- Heim B., Neuhauser M., On conjectures regarding the Nekrasov-Okounkov hook length formula, Arch. Math. (Basel) 113 (2019), 355-366, arXiv:1810.02226.
- Heim B., Neuhauser M., On the growth and zeros of polynomials attached to arithmetic functions, Abh. Math. Semin. Univ. Hambg. 91 (2021), 305-323, arXiv:2101.04654.
- Heim B., Neuhauser M., Tröger R., Zeros transfer for recursively defined polynomials, Res. Number Theory 9 (2023), 79, 14 pages, arXiv:2304.02694.
- Heim B., Neuhauser M., Weisse A., Records on the vanishing of Fourier coefficients of powers of the Dedekind eta function, Res. Number Theory 4 (2018), 32, 12 pages, arXiv:1808.00431.
- Jin S., Ma W., Ono K., Soundararajan K., Riemann hypothesis for period polynomials of modular forms, Proc. Natl. Acad. Sci. USA 113 (2016), 2603-2608, arXiv:1601.03114.
- Kostant B., Powers of the Euler product and commutative subalgebras of a complex simple Lie algebra, Invent. Math. 158 (2004), 181-226, arXiv:math.GR/0309232.
- Lulov N., Pittel B., On the random Young diagrams and their cores, J. Combin. Theory Ser. A 86 (1999), 245-280.
- Meinardus G., Asymptotische Aussagen über Partitionen, Math. Z. 59 (1954), 388-398.
- Nekrasov N.A., Okounkov A., Seiberg-Witten theory and random partitions, in The Unity of Mathematics, Progr. Math., Vol. 244, Birkhäuser, Boston, MA, 2006, 525-596, arXiv:hep-th/0306238.
- Parry D., A polynomial variation of Meinardus' theorem, Int. J. Number Theory 11 (2015), 251-268, arXiv:1401.1886.
- Pinsky M.A., Introduction to Fourier analysis and wavelets, Grad. Stud. Math., Vol. 102, American Mathematical Society, Providence, RI, 2009.
- Schlosser M.J., Bilateral identities of the Rogers-Ramanujan type, Trans. Amer. Math. Soc. Ser. B 10 (2023), 1119-1140, arXiv:1806.01153.
- Sills A.V., An invitation to the Rogers-Ramanujan identities, Chapman and Hall/CRC Press, New York, 2017.
- Tyler M., Asymptotics for $t$-core partitions and Stanton's conjecture, arXiv:2406.02982.
- Zhu S., Topological strings, quiver varieties, and Rogers-Ramanujan identities, Ramanujan J. 48 (2019), 399-421, arXiv:1707.00831.
|
|