Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 035, 22 pages      arXiv:2501.07756      https://doi.org/10.3842/SIGMA.2025.035

A Pile of Shifts II: Structure and $K$-Theory

Shelley Hebert a, Slawomir Klimek b, Matt McBride a and J. Wilson Peoples c
a) Department of Mathematics and Statistics, Mississippi State University, 175 President's Cir. Mississippi State, MS 39762, USA
b) Department of Mathematical Sciences, Indiana University Indianapolis, 402 N. Blackford St., Indianapolis, IN 46202, USA
c) Department of Mathematics, Pennsylvania State University, 107 McAllister Bld., University Park, State College, PA 16802, USA

Received January 16, 2025, in final form May 06, 2025; Published online May 12, 2025

Abstract
We discuss $C^*$-algebras associated with several different natural shifts on the Hilbert space of the $s$-adic tree, continuing the analysis from [Banach J. Math. Anal. 19 (2025), 32, 30 pages, arXiv:2412.00854] and in particular we describe their structure and compute the $K$-theory groups.

Key words: crossed products by endomorphims; $K$-theory; $s$-adic integers.

pdf (481 kb)   tex (28 kb)  

References

  1. Antonevich A.B., Bakhtin V.I., Lebedev A.V., Crossed product of a $C^*$-algebra by an endomorphism, coefficient algebras, and transfer operators, Sb. Math. 202 (2011), 1253-1283, arXiv:math.OA/0502415.
  2. Blackadar B., $K$-theory for operator algebras, Math. Sci. Res. Inst. Publ., Vol. 5, Springer, New York, 1986.
  3. Boyd S., Keswani N., Raeburn I., Faithful representations of crossed products by endomorphisms, Proc. Amer. Math. Soc. 118 (1993), 427-436.
  4. Bunce J.W., Deddens J.A., $C^{\ast} $-algebras generated by weighted shifts, Indiana Univ. Math. J. 23 (1973), 257-271.
  5. Bunce J.W., Deddens J.A., A family of simple $C^{\ast} $-algebras related to weighted shift operators, J. Funct. Anal. 19 (1975), 13-24.
  6. Coburn L.A., The $C^{\ast} $-algebra generated by an isometry, Bull. Amer. Math. Soc. 73 (1967), 722-726.
  7. Cuntz J., Simple $C^*$-algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173-185.
  8. Cuntz J., $K$-theory for certain $C^{\ast} $-algebras, Ann. of Math. 113 (1981), 181-197.
  9. Cuntz J., Li X., $C^\ast$-algebras associated with integral domains and crossed products by actions on adele spaces, J. Noncommut. Geom. 5 (2011), 1-37, arXiv:arXiv:0906.4903.
  10. Davidson K.R., $C^*$-algebras by example, Fields Inst. Monogr., Vol. 6, American Mathematical Society, Providence, RI, 1996.
  11. Exel R., A new look at the crossed-product of a $C^*$-algebra by an endomorphism, Ergodic Theory Dynam. Systems 23 (2003), 1733-1750, arXiv:math.OA/0012084.
  12. Hebert S., Klimek S., McBride M., A pile of shifts I: crossed products, Banach J. Math. Anal. 19 (2025), 32, 30 pages, arXiv:2412.00854.
  13. Hebert S., Klimek S., McBride M., Peoples J.W., Noncommutative geometry of the Hensel-Steinitz algebra, arXiv:2401.08494.
  14. Higson N., Roe J., Analytic $K$-homology, Oxford Math. Monogr., Oxford University Press, Oxford, 2000.
  15. Katznelson Y., An introduction to harmonic analysis, 3rd ed., Cambridge Math. Lib., Cambridge University Press, Cambridge, 2004.
  16. Klimek S., McBride M., Peoples J.W., Aspects of noncommutative geometry of Bunce-Deddens algebras, J. Noncommut. Geom. 17 (2023), 1391-1423, arXiv:2112.00572.
  17. Klimek S., McBride M., Rathnayake S., A $p$-adic spectral triple, J. Math. Phys. 55 (2014), 113502, 16 pages, arXiv:1403.7263.
  18. Klimek S., McBride M., Rathnayake S., Sakai K., Wang H., Unbounded derivations in Bunce-Deddens-Toeplitz algebras, J. Math. Anal. Appl. 474 (2019), 988-1020, arXiv:1807.10402.
  19. Klimek S., Rathnayake S., Sakai K., A note on spectral properties of the $p$-adic tree, J. Math. Phys. 57 (2016), 023512, 14 pages, arXiv:1503.03053.
  20. Klimek S., Rathnayake S., Sakai K., Spectral triples for nonarchimedean local fields, Rocky Mountain J. Math. 49 (2019), 1259-1291, arXiv:1612.03460.
  21. Lebedev A.V., Odzievich A., Extensions of $C^\ast$-algebras by partial isometries, Sb. Math. 195 (2004), 951-982, arXiv:math.OA/0209049.
  22. Murphy G.J., Crossed products of $C^*$-algebras by endomorphisms, Integral Equations Operator Theory 24 (1996), 298-319.
  23. Pearson J., Bellissard J., Noncommutative Riemannian geometry and diffusion on ultrametric Cantor sets, J. Noncommut. Geom. 3 (2009), 447-480, arXiv:0802.1336.
  24. Pimsner M.V., A class of $C^*$-algebras generalizing both Cuntz-Krieger algebras and crossed products by ${\bf Z}$, in Free Probability Theory, Fields Inst. Commun., Vol. 12, American Mathematical Society, Providence, RI, 1997, 189-212.
  25. Raeburn I., Graph algebras, CBMS Reg. Conf. Ser. Math., Vol. 103, American Mathematical Society, Providence, RI, 2005.
  26. Robert A.M., A course in $p$-adic analysis, Grad. Texts in Math., Vol. 198, Springer, New York, 2000.
  27. Rørdam M., Larsen F., Laustsen N., An introduction to $K$-theory for $C^*$-algebras, London Math. Soc. Stud. Texts, Vol. 49, Cambridge University Press, Cambridge, 2000.
  28. Schochet C., Topological methods for $C^{\ast} $-algebras. II. Geometric resolutions and the Künneth formula, Pacific J. Math. 98 (1982), 443-458.
  29. Stacey P.J., Crossed products of $C^\ast$-algebras by $\ast$-endomorphisms, J. Austral. Math. Soc. Ser. A 54 (1993), 204-212.
  30. Williams D.P., Crossed products of $C{^\ast}$-algebras, Math. Surveys Monogr., Vol. 134, American Mathematical Society, Providence, RI, 2007.

Previous article  Next article  Contents of Volume 21 (2025)