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Abstract. We introduce twisted triple crossing diagram maps, collections of points in
projective space associated to bipartite graphs on the cylinder, and use them to provide ge-
ometric realizations of the cluster integrable systems of Goncharov and Kenyon constructed
from toric dimer models. Using this notion, we provide geometric proofs that the penta-
gram map and the cross-ratio dynamics integrable systems are cluster integrable systems.
We show that in appropriate coordinates, cross-ratio dynamics is described by geometric
R-matrices, which solves the open question of finding a cluster algebra structure describing
cross-ratio dynamics.
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1 Introduction

A widely studied class of discrete systems which are integrable both in the algebro-geometric
sense and in the Liouville sense is the cluster integrable systems of Goncharov and Kenyon [23].
Cluster integrable systems are constructed from the dimer model on bipartite graphs on the
torus coming from statistical mechanics. The class of cluster integrable systems was shown to
contain many other integrable systems [14], several of which have geometric origins as moduli
spaces of points in projective space. The most prominent example of such an integrable system
is the pentagram map, discovered by Schwartz [44]. However, proofs of the coincidence of such
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a geometric integrable system with some cluster integrable system are essentially algebraic; they
involve constructing isomorphisms between the two integrable systems using coordinates.

The main idea of this paper is that one can actually provide a more geometric identification
by making use of a generalization of the recently introduced triple crossing diagram maps (TCD
maps) [1, 2], which we call twisted TCD maps. We develop the general theory of twisted TCD
maps and show that any cluster integrable system can be realized as a geometric integrable
system. A key role is played by the monodromy matrix, which provides a robust and system-
atic way to compute the conserved quantities (Hamiltonians and Casimirs) of these geometric
integrable systems and relate them to the conserved quantities of cluster integrable systems.

We then use the theory to show that the pentagram map and the cross-ratio dynamics inte-
grable system of [4] are cluster integrable systems. For cross-ratio dynamics, this is a completely
new result and this answers an open question asked in [4]. For the pentagram map, its cluster
algebra structure was identified with that of a dimer model in [1]. In this paper, we illustrate
the power of the framework of twisted TCD maps by providing a new derivation of the Hamil-
tonians and Casimirs of the pentagram map. This new derivation is faster than the classical
ones [41, 46] once we have the theory of twisted TCD maps. We expect that the geometric
integrable systems arising from twisted TCD maps should encompass a large part (if not all) of
the class of Y-meshes of [21], which is one of the broadest generalizations of the pentagram map.

1.1 Twisted TCD maps

The phase space of the cluster integrable system is an X cluster variety constructed from bipartite
graphs in the torus as follows (see Section 2 for more details). Let Γ be a bipartite graph in
the torus T := R2/Z2 satisfying a certain minimality condition. Associated to Γ is the space
LΓ := H1(Γ,C×) of weights on it, where a weight [wt] is a cohomology class assigning to
every homology class [L] ∈ H1(Γ,Z) a nonzero complex number [wt]([L]). Two such graphs
are move-equivalent if they are related by the two moves shown on the left and middle of
Figure 4. Move-equivalence classes of (minimal) bipartite graphs are classified by convex integral
polygons N in the plane; if Γ is in the move-equivalence class of N , we write N(Γ) = N . Each
move Γ→ Γ′ induces a birational map of weights LΓ → LΓ′ ; for the spider move, the map is
given by the mutation formula for cluster X-variables [13] or y-variables [15] depending on the
authors. Gluing all the LΓ in the move-equivalence class, we get the X cluster variety XN .
Goncharov and Kenyon identified a Poisson structure on XN , generalizing the cluster Poisson
structure of [16]. Associated to (Γ, [wt]) is a periodic finite-difference operator K(z, w) called
the Kasteleyn matrix whose determinant P (z, w) is a bivariate polynomial whose coefficients
are weighted enumerations of dimer covers with prescribed homology. The curve defined by this
polynomial is called the spectral curve. Goncharov and Kenyon showed that XN is a Liouville
integrable system whose Hamiltonians and Casimirs are coefficients of the polynomial defining
the spectral curve. We will henceforth call them the GK Poisson structures, Casimirs and
Hamiltonians.

A twisted TCD map lives in the infinite cylinder Â := R2/Z(0, 1). By using the contraction-
uncontraction move, we may assume that every black vertex in Γ has degree 3. Let ΓÂ denote
the infinite periodic graph that is the preimage of Γ under the quotient map Â→ T. A TCD
map is a function P : W

(
ΓÂ
)
→ CPd assigning to every white vertex in ΓÂ a point in CPd

such that for every black vertex b incident to white vertices w1, w2, w3, the points Pw1 , Pw2

and Pw3 are contained in a line CP1 ⊆ CPd [2]. These maps are a version of the vector-relation
configurations of [1] better adapted to geometric dynamics. A TCD map P is called twisted if
there is an M ∈ PGLd+1, called the monodromy matrix, such that Pw+(1,0) = M(Pw), where
w+ (1, 0) denotes the translate of w. A twisted TCD map defines a weight [wt] on Γ as follows.
Let L be a closed loop in Γ such that [L] ∈ {0} × Z, i.e., which has zero homology in the
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horizontal direction. Let L̃ = w1 → b1 → w2 → b2 → · · · → wn → bn → w1 denote any lift of L
to ΓÂ such that wi ̸= wi+1 for every i. Let w′

i denote the third white vertex incident to bi that
is not in {wi,wi+1}. Then,

[wt]([L]) := ±mr
(
Pw1 , Pw′

1
, Pw2 , Pw′

2
, . . . , Pwn , Pw′

n

)
,

where ± denotes an explicit sign, and

mr(P1, . . . , P2m) :=

m∏
i=1

(P2i−1 − P2i)

m∏
i=1

(P2i − P2i+1)

is a PGLd+1-invariant generalizing the cross-ratio called the multi-ratio. Note that PGLd+1-
invariance of the multi-ratio and the twisted condition imply that [wt]([L]) is independent of
the choice of lift L̃. The two moves in Figure 4 induce transformations of TCD maps that give
rise to the birational maps of weights described above; see Figure 9.

In Section 3.1, we construct from a weighted bipartite graph on the torus (Γ, [wt]) a ma-
trix Π(w). In Section 4.1, we use Kasteleyn theory in the cylinder to construct from (Γ, [wt])
and a choice of zig-zag path a TCD map P on Â. Our first main result is the following.

Theorem 1.1 (cf. Theorem 4.6). The TCD map P is a twisted TCD map with monodro-
my −Π(1).

In other words, the construction of [wt] from a twisted TCD map by taking multi-ratios
has a (left) inverse. Hamiltonians and Casimirs in geometric integrable systems are typically
constructed as invariants of the monodromy matrix M [16, 34, 41, 46]. By definition, the GK
Hamiltonians and Casimirs are coefficients of the spectral curve. Therefore, the following theo-
rem turns out to be the key to proving that Hamiltonians and Casimirs in geometric integrable
systems coincide with their GK counterparts.

Theorem 1.2 (cf. Theorem 3.6). The spectral curve of the dimer model on an arbitrary minimal
graph Γ on the torus is given by{

(z, w) ∈ (C×)2 | det(zI +Π(w)) = 0
}
.

The matrix −Π(w) is closely related to the boundary measurement matrix for networks on
cylinders of [16, 18], as detailed in Remark 3.3. In a recent preprint of which we learned during
the completion of this work, Izosimov [28] made precise the connection between the integrable
systems of [23] and [16]. In particular, his main result provides a representation of the dimer
spectral curve similar to Theorem 1.2. We note that analogous representations have appeared
in physics in the special case of the periodic Toda chain [11] and in mathematical physics via
representation-theoretic arguments [14].

1.2 The pentagram map

Our first application is to the pentagram map, a discrete dynamical system discovered by Richard
Schwartz [44], proved to be Liouville and discrete integrable in [41, 42] and algebro-geometric
integrable in [46]. Glick [20] discovered an underlying cluster algebra structure (see also [45]).
Gekhtman, Shapiro, Tabachnikov and Vainstein [16] generalized the pentagram map and related
it to the integrable systems associated to weighted networks in a torus [18]. The pentagram map
was further generalized to the noncommutative setting [40] and to general algebraically closed
fields [49].
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p1 p̃1

p1 p̃1

p2 p̃2

p2 p̃2

p3 p̃3

p3 p̃3

p4 p̃4

p4 p̃4

p5 = M(p1)

p5 = M(p1)

Figure 1. Twisted TCD map for the pentagram map with n = 4, where p̃i := pi−1pi ∩ pi+1pi+2.

A twisted n-gon in CP2 is a pair (p,M) where p : Z → CP2 and M ∈ PGL3 is a projective
transformation called monodromy such that pi+n = M(pi) for all i ∈ Z. The phase space of the
pentagram map is the moduli space Tn of twisted n-gons satisfying a nondegeneracy condition.
The rational map T : Tn → Tn defined by (p,M) 7→ (q,M), where qi = pi−1pi+1∩pipi+2 is called
the pentagram map.

In Section 5, we construct a twisted TCD map on a bipartite torus graph denoted Ξn for
the pentagram map (see Figure 1 for the twisted TCD map when n = 4). The coordinates of
Schwartz [45] and Glick [20] can be obtained from the twisted TCD map by taking weights of
appropriate cycles. Using the correspondence between twisted TCD maps and the X cluster
variety XΞn associated to the graph Ξn, we show the following.

Theorem 1.3 (cf. Proposition 5.3 and Theorem 5.6). The map sending the twisted TCD map P
to the twisted n-gon p induces a Poisson birational map πn : X λ

NΞn
→ Tn that restricts to a bira-

tional isomorphism between symplectic leaves on the two sides. The GK Hamiltonians are the
pullbacks of the pentagram map Hamiltonians by πn.

Here, X λ
NΞn

is a level set of XNΞn
where we set a GK Casimir equal to λ ∈ C× and by

a birational isomorphism, we mean a birational map that preserves the symplectic structure.
Almost all of Theorem 1.3 is well known; see [14, 16, 22]. However, the precise correspondence
between the OST Hamiltonians and GK Hamiltonians for general n has not been clarified before;
the case n = 5 appears in [22]. Our motivation for including it is that twisted TCD maps give
a quick proof, and the same type of argument will be used to prove the analogous results for
the cross-ratio dynamics integrable system for which these results are new.

1.3 Cross-ratio dynamics

p2 p3 p4

p1 p2 p3

q1
q2 q3 q4

p4

p1

M(p1)

M(q1)

M(p1)

p1

q1

p3

q3

q2

q2

p2

q4

q4

p4

M(p1)

M(q1)

Figure 2. Twisted TCD maps for cross-ratio dynamics when n = 4. The graph on the left is ∆4 and

the one on the right is Γ4.

Let (αj)j∈Z be a bi-infinite sequence of elements of C× and consider maps f : Z2 → CP1 such
that for every (i, j) ∈ Z2, we have

(fi,j − fi+1,j)(fi+1,j+1 − fi,j+1)

(fi+1,j − fi+1,j+1)(fi,j+1 − fi,j)
= αj , (1.1)
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where we denote by fi,j the value taken by f at (i, j) ∈ Z2. Such a map is a special case of
a discrete version of the Schwarzian KdV equation [39], or a special case of a discrete isothermic
surface [6] restricted to the sphere S2. In both cases it was shown that these maps are a discrete
integrable system in the sense that they admit a discrete Lax representation. An interesting
question is: Given all the αj , what is the space of solutions of (1.1)? To answer this, consider
each column i of Z2 as a discrete curve fi : Z → CP1. The discrete curve corresponding to
two adjacent columns fi and fi+1 are called α⃗-related, where α⃗ is the vector of all αj . In the
case when αj is independent of j, the curve fi+1 is called a Darboux transform [24] of fi in
the discrete differential geometry community, see also [8]. If we know fi and one point of fi+1,
then equation (1.1) determines all of fi+1. As a consequence, there is a complex one-parameter
freedom for each additional column of Z2.

However, this changes if one considers periodic maps, that is maps Z × Z/nZ → CP1 that
satisfy equation (1.1) for some n ∈ N. These periodic discrete curves can be seen as closed
n-gons in CP1. In this case, if we know fi then there are only two possible solutions for fi+1,
because fi+1 has to be periodic as well. Thus if we know both fi−1 as well as fi and assume
that fi+1 ̸= fi−1, then fi+1 is determined uniquely. Special attention has been paid to the case
that αj does not depend on j. In this case, periodic solutions to equation (1.1) have been studied
as periodic discrete conformal maps [25] with respect to algebro-geometric integrability. Also in
this case, the map (fi−1, fi) 7→ (fi, fi+1) is called cross-ratio dynamics [4]. Cross-ratio dynamics
can also be generalized from closed n-gons to twisted n-gons, that is curves fi : Z → CP1 such
that fi(j + n) = M(fi(j)) for all j ∈ Z and for some length n ∈ N and monodromy M ∈ PGL2.

We now transition to the notation of [4]. Let pi := f0(i) and qi := f1(i) for i ∈ Z. The phase
space of the cross-ratio dynamics integrable system is the moduli space Un,α⃗ of pairs (p, q) of
α⃗-related nondegenerate twisted n-gons modulo PGL2. Arnold, Fuchs, Izmestiev and Tabach-
nikov [4] identified a Poisson structure on Un,α⃗ and proved integrability in the sense of Liouville.
Indeed, they provide Poisson brackets that are preserved by the dynamics as well as integrals
of motion that are Casimirs and Hamiltonians. We will henceforth call them the AFIT Poisson
structures, Casimirs and Hamiltonians.

In Section 7, we give two different constructions of twisted TCD maps for cross-ratio dynam-
ics, one on a hexagonal lattice denoted ∆n and the other on a square lattice denoted Γn (see
Figure 2 for the case n = 4). The map sending the twisted TCD map to the pair of twisted
n-gons (p, q) induces a birational map πα⃗ : X λ

NΘn ,α⃗
→ Un,α⃗, where X λ

NΘn ,α⃗
denotes a closed sub-

variety of the space of dimer weights for Θn, where Θ ∈ {Γ,∆}. We summarize several results
of Section 7 in the following theorem.

Theorem 1.4. Let n ≥ 2, let α⃗ ∈ (C \ {0})n, and let Θ ∈ {Γ,∆}. The map πα⃗ is a Poisson
birational map from X λ

NΘn ,α⃗
to Un,α⃗ that restricts to a birational isomorphism between symplec-

tic leaves on the two sides. The GK Hamiltonians are related to the pullbacks of the AFIT
Hamiltonians by πα⃗ by an invertible linear transformation.

An explicit geometric bridge between cross-ratio dynamics and the dimer model is given by
the following result.

Theorem 1.5 (cf. Theorems 7.9 and 7.14). Let n ≥ 2, let α⃗ ∈ (C \ {0})n, and let Θ ∈ {Γ,∆}.
Pairs of α⃗-related twisted polygons of length n arise as twisted TCD maps on Θn,A taking values
in CP1 and cross-ratio dynamics arises as an explicit sequence of local moves on these twisted
TCD maps.

An important note regarding Theorem 1.5 is that the first local move in the sequence de-
pends on a parameter and that parameter depends globally on the initial pair of α⃗-related
twisted polygons. In this sense, the sequence of transformations could be termed a semi-local
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transformation. Furthermore, combining Theorem 1.4 with Theorem 1.5, we obtain an alterna-
tive proof of the conservation of the AFIT Hamiltonians (stated as Corollary 7.10), since the
dynamics on TCD maps is conjugated to the dimer integrable dynamics of [23]. A more explicit
statement of Theorem 1.5 is given by Theorem 7.9.

As a first corollary of Theorem 1.5, we find that the evolution of certain coordinates un-
der cross-ratio dynamics is given by a so-called geometric R-matrix transformation. Geomet-
ric R-matrices have been introduced in representation theory in relation with geometric crys-
tals [5, 12, 30, 32] and are so named because they are birational maps that tropicalize to com-
binatorial R-matrices [31]. They first received an interpretation in terms of semi-local transfor-
mations of electrical networks [35, 36, 37] then in terms of semi-local transformations for dimer
models [9, 19, 26, 27]. Transforming our graphs Γn, we recover the graphs of [26] whose semi-
local transformation is described by a geometric R-matrix transformation, hence the following
result.

Corollary 1.6 (cf. Proposition 6.2). The evolution of some coordinates under cross-ratio dy-
namics is given by a geometric R-matrix transformation.

Recently, it was observed that another geometric dynamics, polygon recutting, was also
governed by geometric R-matrices [29].

As a second corollary, we answer an open question of [4] asking for an interpretation of cross-
ratio dynamics in terms of cluster algebras. Indeed, all but the first and the last operations for
TCD maps of Theorem 1.5 have a cluster algebra interpretation [1, 2]. Actually, Inoue–Lam–
Pylyavskyy showed in [27] that this sequence of operations, including the first and the last one,
could be interpreted as cluster algebra mutations provided one considers a decorated version of
the bipartite graph.

Corollary 1.7. The evolution of some coordinates under cross-ratio dynamics can be written
as an explicit composition of cluster algebra mutations.

Geometric R-matrix transformations give rise to the class of generalized cluster transforma-
tions that were systematically studied in [19]. In Section 7.3, we describe explicitly the group
of all generalized cluster transformations associated with the Newton polygon ∆n.

As noted by [4], cross-ratio dynamics bears a lot of resemblances with the pentagram map.
There is however a notable difference with cross-ratio dynamics. For the pentagram map and
its generalizations, the dynamics is local in the sense than one can construct a point of the
twisted n-gon q knowing only a bounded number of points of the twisted n-gon p. For cross-
ratio dynamics the dynamics is global, one needs to know all the points of p to construct any
given point of q.

We end the introduction by remarking that it is mysterious to us that cross-ratio dynamics can
be realized as a cluster integrable system in at least two different ways. The two realizations have
different Casimirs and reveal different symmetries of the system. We believe this phenomenon
deserves further study.

Organization of the paper

In Section 2, we recall the Goncharov-Kenyon integrable system [23] associated with the dimer
model on the torus. In Section 3, we consider the dimer model on the cylinder, construct the
matrix Π(w) and prove Theorem 1.2. We introduce in Section 4 the notion of twisted TCD maps
associated to a bipartite graph on the cylinder. In Section 5, we realize the pentagram map as
a twisted TCD map and show that it coincides with a cluster integrable system. In Section 6,
we provide the necessary background on cross-ratio dynamics and its integrability following
mostly [4]. In Section 7, we realize the cross-ratio dynamics integrable system as a cluster



Integrable Dynamics in Projective Geometry 7

integrable system in two different ways, and describe the sequence of local moves for twisted
TCD maps that realize cross-ratio dynamics, as stated in Theorem 1.5. Section 7.2 shows
Corollary 1.6 on the relation with geometric R-matrices. Finally Appendix A presents some
results used in Sections 3 and 4 related to the classical notion of Schur complement.

2 The cluster integrable system

In this section, we recall the integrable system associated with the dimer model on a weighted
graph on a torus. For further details, see [23].

2.1 The dimer model in a torus

Let Γ = (B ∪W,E) be a bipartite graph embedded in a torus T such that |B| = |W | and such
that the faces of Γ, that is, the connected components of the complement of Γ, are topological
disks. We denote by F the set of faces of Γ. An edge weight on Γ is a function wt: E → C×. Two
edge weights wt1 and wt2 are said to be gauge equivalent if there is a function g : B ∪W → C×

such that for every edge e = bw with b ∈ B, w ∈ W , we have wt2(e) = wt1(e)g(w)g(b)
−1.

Let LΓ denote the space of edge weights modulo gauge equivalence and denote by [wt] the gauge
equivalence class of the weight wt.

To rephrase the above in the language of algebraic topology, we consider the graph Γ to be
a cell complex whose 0- and 1-cells are B∪W and E, respectively. Considering each edge e = bw
to be oriented from b to w, we have the nonzero cellular chain groups

C0(Γ,Z) = ZB ⊕ ZW, C1(Γ,Z) = ZE,

with boundary homomorphism ∂ : C1(Γ,Z)→ C0(Γ,Z) given by ∂(e) = w−b, so thatH1(Γ,Z) =
ker ∂. Dually, we have cellular cochain groups Cq(Γ,C×) := HomZ(Cq(Γ,Z),C×), for q ∈ {0, 1},
with coboundary homomorphism δ : C0(Γ,C×) → C1(Γ,C×) given by δ(g)(e) = g(w)

g(b) . Since an
edge weight is a 1-cochain and two edge weights are gauge equivalent if and only if they differ
by a 1-coboundary, we have

LΓ = H1
(
Γ,C×) := C1

(
Γ,C×)/δ(C0

(
Γ,C×)).

Then, [wt] is the cohomology class represented by the cochain wt.

For [L] ∈ H1(Γ,Z), we denote by [wt]([L]) the result of evaluating the cohomology class [wt]
on the homology class [L] yielding an alternating product of edge weights around L (the product
is alternating due to our choice of orientation of edges from b to w). Explicitly, if the L is the

1-cycle w1
e1−→ b1

e2−→ w2
e3−→ b2

e4−→ · · · e2n−2−−−→ wn
e2n−1−−−→ bn

e2n−−→ w1 ∈ H1(Γ,Z), we have

[wt]([L]) =
n∏

i=1

wt(e2i)

wt(e2i−1)
.

Since LΓ = HomZ(H1(Γ,Z),C×) is an algebraic torus, the algebra OLΓ
of regular functions

on LΓ is generated by the characters χ[L] for [L] ∈ H1(Γ,Z) defined by χ[L]([wt]) := [wt]([L]).

We now give a description of OLΓ
in terms of a basis. For a face f of Γ, let ∂f denote the

counterclockwise oriented cycle given by the walk along the boundary of f and define the face
weight Xf := χ[∂f ]. Let a and b denote two cycles in Γ such that their homology classes [a]
and [b] generate H1(T,Z). Then

OLΓ
= C

[
X±1

f , χ±1
[a] , χ

±1
[b]

]
/
(
1−

∏
f∈FXf

)
,
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where the relation
∏

f∈F Xf = 1 comes from the relation
∑

f∈F [∂f ] = 0 in H1(Γ,Z). While this
set of generators is natural, both from the point of view of cluster algebras and topology, we
will see in the examples of the pentagram map and cross-ratio dynamics that other generators
are often more convenient to work with.

Zig-zag paths and the Newton polygon. A zig-zag path in Γ is a path that turns
maximally left at white vertices and maximally right at black vertices. Let Z denote the set of
zig-zag paths of Γ. Each zig-zag path β ∈ Z defines a homology class [β] ∈ H1(T,Z). Label the
zig-zag paths β1, β2, . . . , β|Z| so that the [βi] regarded as vectors in H1(T,Z) ⊗ R ∼= R2 are in
counterclockwise order. We construct a closed convex integral polygon N(Γ) (or just N when Γ
is clear from the context) by placing the [βi] such that the head of [βi] is the tail of [βi+1]. Each
edge of Γ is contained in two zig-zag paths that traverse the edge in opposite directions, so we
have

∑
β∈Z [β] = 0, which shows that N constructed as above is a closed polygon. N is unique

up to translation and is called the Newton polygon of Γ. The name Newton polygon will be
justified at the end of this section by the fact that this polygon arises as the Newton polygon of
the characteristic polynomial of the dimer model on Γ.

A graph Γ is said to be minimal if any lift of a zig-zag path to the universal cover of T has
no self intersections and any lifts of two zig-zag paths to the universal cover of T do not form
parallel bigons (pairs of zig-zag paths oriented the same way intersecting twice). Hereafter,
when considering a graph Γ in T, we assume that it is minimal unless stated otherwise. By
construction, the set of primitive edge vectors of the Newton polygon of a minimal graph Γ is
in bijection with Z, but this bijection is not canonical when there is more than one zig-zag path
with a given homology class.

v

1
2

v

1

v

0

v

0

Figure 3. Local rules for computing ϵΓ. L1 and L2 are the blue and red cycles, respectively.

Conjugate surface and Poisson structure. Thickening the edges of Γ, we obtain a ribbon
graph. Equivalently a ribbon graph is a graph along with the data of a cyclic order of edges
around each vertex. The ribbon graph obtained from Γ has the cyclic order induced from the
embedding in T. Let Γ̂ be the ribbon graph obtained from Γ by reversing the cyclic order
at all black vertices. The boundary components of Γ̂ are in bijection with the zig-zag paths
of Γ. Gluing in disks along these boundary components of Γ̂, we obtain a surface Ŝ, called
the conjugate surface, along with an embedding of Γ in Ŝ. Let ϵ

Ŝ
denote the intersection form

on H1

(
Ŝ,Z

)
defined as follows. If L1 and L2 are two cycles on Ŝ intersecting transversely, then

ϵ
Ŝ
([L1], [L2]) :=

∑
p∈L1∩L2

ϵp(L1, L2),

where ϵp(L1, L2) is the local intersection index, with sign chosen so that it is positive if L2

crosses L1 at p from its right side to its left side. Note that the definition of ϵ
Ŝ
([L1], [L2]) is in-

dependent of the choice of cycles representing [L1] and [L2]. The embedding ι : Γ ↪→ Ŝ induces
the homomorphism of homology groups ι∗ : H1(Γ,Z) → H1(Ŝ,Z). We define the alternating
form ϵΓ on H1(Γ,Z) by ϵΓ([L1], [L2]) := ϵ

Ŝ
(ι∗[L1], ι∗[L2]). The pairing ϵΓ has the follow-

ing local description which is useful for computations (see [23, Appendix]): ϵΓ([L1], [L2]) =∑
v∈B ϵv(L1, L2)−

∑
v∈W ϵv(L1, L2), where ϵv(L1, L2) is defined in Figure 3. In particular, if f

and f ′ are two faces having a single edge in common and f lies to the left of that edge when
traversed from its black endpoint to its white endpoint, then ϵΓ([∂f ], [∂f

′]) = 1.
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For [L1], [L2] ∈ H1(Γ,Z), define the Poisson bracket

{χ[L1], χ[L2]}Γ := ϵΓ([L1], [L2])χ[L1]χ[L2].

By linearity and Leibniz’s rule, we obtain a Poisson bracket on OLΓ
. The faces of Γ in Ŝ become

the zig-zag paths of Γ in T, so we have {χ[L1], χ[L2]} = 0 for all [L2] ∈ H1(Γ,Z) if and only
if [L1] ∈

⊕
β∈Z Z · [β]. Therefore, the center of the Poisson algebra OLΓ

is the subalgebra

C
[
C±1
β

]
/

(
1−

∏
β∈Z

Cβ

)
,

generated by the functions Cβ := χ[β], β ∈ Z. Elements of the center of a Poisson algebra are
called Casimirs.

2.2 Local and semi-local transformations

There are two local modifications of bipartite graphs called elementary transformations. An ele-
mentary transformation s : Γ→ Γ′ induces a unique up to isotopy homeomorphism of conjugate
surfaces ŝ : ŜΓ → ŜΓ′ [23, Lemma 4.1], which in turn induces an isomorphism ŝ∗ : H1(Γ,Z) →
H1(Γ

′,Z). For [L′] ∈ H1(Γ
′,Z), let [L] = (ŝ∗)

−1([L′]). Associated to the elementary transforma-
tion s is a Poisson birational map of weights µs : LΓ → LΓ′ :

1. The spider move s at face f : We define

µ∗
s(χ[L′]) =

{
X−1

f if [L] = [∂f ],

χ[L]

(
1 +X

−sign ϵΓ([L],∂f)
f

)−ϵΓ([L],∂f) otherwise.

This is illustrated on the left side of Figure 4.

2. Contracting/expanding degree two vertices: We define µ∗
s(χ[L′]) = χ[L]. This is illustrated

in the middle of Figure 4.

In other words, the spider move at f inverts the face weight at f and multiplies the face weights
of a face f ′ adjacent to f by some power of 1+Xf or of

(
1 +X−1

f

)−1
. Such a transformation on

face weights corresponds to the mutation rule for coefficient variables in cluster algebras [13, 15]
and indeed one can associate a cluster algebra to a dimer model on a torus [23]. Contract-
ing/expanding degree two vertices does not change the face weights.

Elementary transformations do not change homology classes of zig-zag paths, and therefore
the Newton polygon. Gluing the Poisson affine varieties LΓ for all Γ minimal with N(Γ) = N
using these Poisson birational maps, we obtain the Poisson space XN called the dimer cluster
Poisson variety associated to N . XN is a cluster Poisson variety as defined by Fock and Gon-
charov [13], and will be the phase space of the cluster integrable system. Each LΓ such that Γ
is minimal with N(Γ) = N is Zariski-dense inside XN .

Inserting/removing a bigon. The right side of Figure 4 shows the insertion of a bigon
between vertices w ∈ W and b ∈ B belonging to a common face f , with parameter u. This
divides f into three new faces, the bigon fb and the face fl (resp. fr) to the left (resp. right)
of fb when traversing the bigon from w to b. Let Γb denote the graph obtained. The embedding
ib : Γ ↪→ Γb induces a homomorphism (ib)∗ : H1(Γ,Z)→ H1(Γb,Z). We define the induced map
of weights µu : LΓ → LΓb

on a basis as follows: If [L] is topologically nontrivial in H1(T,Z) or is
the boundary of a face of Γ set µ∗

u(χ(ib)∗[L]) = χ[L]. Define also µ∗
u(Xfl) = u and µ∗

u(Xfb) = −1.
Note that the second equation implies that in any cocycle, the weights of the two edges of the
bigon sum to zero. On the other hand, if we have a bigon with Xfb = −1, we may remove it.
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←→ ←→

b

w

f ←→

b

w

fb frfl

Figure 4. On the left, the spider move. In the middle, contracting/expanding a degree two vertex. On

the right, adding/removing a bigon inside a face.

This induces a map of weights µ′
b : {Xfb = −1} → LΓ given by

(
µ′
b

)∗
(χ[L]) = χ(ib)∗[L], where

{Xfb = −1} denotes the subvariety in LΓb
. In other words, the insertion of a bigon with

parameter u inside a face f assigns to the faces fl, fb and fr the respective weights u, −1
and −Xf

u , while the deletion of a bigon fb with face weight −1 assigns to the resulting face the
product of the weights of the three faces that got merged.

a2a1 a3
Φ

−1fl fr
×

×

a′2a′1 a′3

−1

×

Figure 5. The sequence of operations corresponding to the geometric R-matrix transformation when

n = 3. For each of the six pictures, the left and right sides are identified. Here we have k = 2, so that we

add the bigon in the second hexagon. The red crosses indicate the faces at which we perform the next

spider move. The face weights are depicted in blue.

Geometric R-matrices. We now recall the dimer interpretation of geometric R-matrix
transformations given in [26, Section 11] as a composition of bigon insertion/removal and spider
moves. We call this a semi-local move, because the choice of the parameter u associated with
the bigon insertion is a function of weights of faces that may be arbitrarily far away from the
bigon. Consider a bipartite graph embedded on a surface, which possesses a cyclic chain of n
hexagons (see the first picture of Figure 5 for an example with n = 3). The two edges of each
hexagon which separate it from the neighboring hexagons must form an opposite pair of edges.
Denote by a1, . . . , an the face weights of the hexagons. Fix k between 1 and n and add a bigon
between the two vertices of the kth hexagon that are not part of the neighboring two hexagons.
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We impose the weight of the bigon to be −1 and we denote by fr and fl = −ak
fr

the weight of the
two newly created quadrilaterals, as on the right picture of Figure 4. For now fr is an unknown.
We then perform a sequence of n spider moves, starting at the face of weight fr and moving in
the direction of increasing values of k. At the end of this sequence of spider moves, we come back
to a situation where the kth hexagon has a bigon. It follows from [26] that the closing condition
for the weight of this bigon to be −1 is linear in fr. We set fr to be the unique solution of this
equation. We finally delete the bigon, obtaining again a cyclic chain of n hexagons, the weights
of which we denote by a′1, . . . , a

′
n. Formulas (11.1) and (11.2) of [26] lead to the following result.

Theorem 2.1 ([26]). With the setting defined above, the values a′1, . . . , a
′
n are independent of

the choice of the starting position k and are given for every 1 ≤ i ≤ n by

a′i =

n−1∑
t=0

t−1∏
s=0

ai+s

n∑
t=1

t∏
s=1

ai+s

, (2.1)

where indices are taken modulo n.

We point out that the formula we stated above slightly differs from the one obtained from [26]
in that our indices are increasing while theirs are decreasing (i+ s instead of i− s). This comes
from having the opposite convention for mutation rules, which results from different convention
in the definitions of zig-zag paths and of dimer face weights. We also note that the framework
of [26] was a bit more restrictive than the one we are considering, since they were assuming that
on each side of the cyclic chain of hexagons there were other chains of hexagons. Here we are
only assuming that no face immediately above or below the cyclic chain of n hexagons may be
one of these n hexagons. The proof of [26] holds verbatim in this framework. Finally, we point
out that the map sending (a1, . . . , an) to

(
a′1, . . . , a

′
n

)
is an involution [26]. We denote this map

by Φ.

2.3 Dimer covers and Kasteleyn theory

γz

γw

w2

w1

b2

b1

w3

w3

w4

w2

w1

b4

b3

z

aw

d

z

h

e

1

−bw

c

1

−f

g

Figure 6. Edge weight, Kasteleyn sign, cochain ϕ and M0 (thick edges) on Γ2.

A dimer cover M of Γ is a subset of E such that each vertex of Γ is incident to exactly one
edge in M . Let M denote the set of dimer covers of Γ. If we fix a reference dimer cover M0,
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then we can associate to each dimer cover a homology class

M 7→ [M −M0] ∈ H1(T,Z),

where, as before, we orient e = bw from b to w. Given [wt] ∈ LΓ, each dimer cover also gets
a weight [wt](M −M0). If Γ is minimal, we can describe the Newton polygon in terms of dimer
covers.

Proposition 2.2 ([23, Theorem 3.12]). For a minimal bipartite graph Γ in T, we have

N(Γ) = Convex-hull{[M −M0] |M is a dimer cover of Γ},

up to a translation.

Let R be a fundamental rectangle of T and let γz, γw be cycles in T such that [γz], [γw] generate
H1(T,Z). We choose γz, γw parallel to the sides of R as shown in Figure 6. Isotoping if necessary,
we assume that the edges of Γ intersect γz, γw transversely. Applying HomZ(·,C×) to the surjec-
tion H1(Γ,Z) → H1(T,Z), we get an inclusion H1(T,C×) ↪→ H1(Γ,C×). Let [ϕ′] ∈ H1(Γ,C×)
be in the image of H1(T,C×). In other words, Xf ([ϕ

′]) = 1 for all f ∈ F . We choose a cochain ϕ
representing [ϕ′] as follows: Let z := [ϕ′]([γz]), w = [ϕ′]([γw]), and define

ϕ(e) := z(e,γw)w(e,−γz),

where (·, ·) is the intersection index, i.e., the sum of the local intersection indices defined in the
previous subsection.

The cohomology class [κ] ∈ H1(Γ,C×) is called a Kasteleyn sign if the following conditions
hold:

(1) X[L]([κ]) = ±1 for all [L] ∈ H1(Γ,Z);
(2) Xf ([κ]) = (−1)

|∂f |
2

+1 for all f ∈ F , where |∂f | is the number of edges in ∂f .

Let κ : E → C× be a cochain representing the Kasteleyn sign [κ]. We define the Kasteleyn
matrix

K(z, w) : C
[
z±1, w±1

]B → C
[
z±1, w±1

]W
by

K(z, w)w,b :=
∑

e=bw∈E
wt(e)κ(e)ϕ(e),

where the sum is over edges between b and w.

Theorem 2.3 ([33]). We have

1

wt(M0)κ(M0)ϕ(M0)
detK(z, w) =

∑
M∈M

sign([M −M0])[wt]([M −M0])[ϕ]([M −M0]),

where sign([M − M0]) is a sign that depends on [κ] and on the homology class [M − M0]
in H1(T,Z) and that is irrelevant for our purposes.

Moreover,

P (z, w) :=
1

wt(M0)κ(M0)ϕ(M0)
detK(z, w)

is called the characteristic polynomial and Σ :=
{
(z, w) ∈ (C×)2 | P (z, w) = 0

}
is called the

spectral curve of (Γ, [wt]). Although K(z, w) depends on the choice of cochains representing [wt]
and [κ], the spectral curve is independent of these choices. MoreoverN(Γ) is the Newton polygon
of P (z, w), that is, the convex hull of the pairs (i, j) ∈ Z2 such that ziwj has a nonzero coefficient
in P (z, w).
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Example 2.4. Consider the graph Γ2 with edge weights, Kasteleyn sign, ϕ and reference dimer
cover M0 chosen as in Figure 6. The Kasteleyn matrix is

K(z, w) =

b1 b2 b3 b4


1 0 z 0 w1

0 1 0 z w2

g −bw h aw w3

−f c e d w4

,

and the spectral curve is

P (z, w) =
1

bfz2w

(
− dh+ (dg + ch)z − cgz2 + aew + (be+ af)zw + bfz2w

)
. (2.2)

Hamiltonians. Let N◦ denote the interior of N . For [γ] ∈ N◦ ∩H1(T,Z), let

H[γ] :=
∑

M∈M:[M−M0]=[γ]

[wt]([M −M0])

denote the coefficient of [ϕ]([γ]) (up to a sign) in P (z, w).

A space equipped with a Poisson bracket is a Liouville integrable system if the generic level
sets of the Casimirs are symplectic leaves of some dimension 2m, which possess m mutually
Poisson-commuting Hamiltonians which are functionally independent.

Proposition 2.5 ([23, Theorem 1.2]). The generic level sets of the Casimirs are symplectic
leaves of XN . The quantities H[γ] for [γ] ∈ H1(T,Z) ∩ N◦ mutually Poisson-commute, making
these symplectic leaves into Liouville integrable systems with Hamiltonians H[γ].

3 The dimer model in a cylinder

In this section, we consider balanced cylinder graphs, which are bipartite graphs on a cylinder
satisfying certain conditions. In Section 3.1, we construct a matrix Π(w) from a dimer model
on a balanced cylinder graph. Then in Section 3.2, we prove Theorem 1.2 relating the spectrum
of Π(w) to the spectral curve of the dimer model on the torus graph obtained by gluing the
two boundaries of the balanced cylinder graph. Finally, in Section 3.3, we show that this result
holds for a large class of torus graphs, namely minimal graphs.

Let ΓA = (B ∪W,E) be a bipartite graph embedded in a cylinder A satisfying the following
conditions:

1. Every vertex on the boundary of A is white and of degree 1.

2. Let S and T denote the boundary white vertices on the two components of the boundary
of A, called the source and target vertices, respectively. Let Wint = W \ (S ∪ T ) denote
the set of internal white vertices. We assume that |S| = |T | and |B| = |W | − |S|.

3. ΓA has a dimer cover M0 that uses all the vertices in S and none of the vertices in T .

4. The faces of ΓA (including boundary faces) are topological disks.

Here by a dimer cover of ΓA, we mean a matching that uses all the vertices in B and in
a |B|-element subset of W exactly once. Note that assumptions 1 and 3 imply that the black
vertices incident to the white vertices in S are all different.

We call graphs ΓA satisfying these conditions balanced cylinder graphs.
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An edge weight on ΓA is a function wt: E → C×. Two edge weights wt1 and wt2 are gauge
equivalent if there is a function g : B∪W → C× satisfying g(w) = 1 for all w ∈ S∪T such that for
every edge e = bw with b ∈ B, w ∈W , we have wt2(e) = g(b)−1wt1(e)g(w). In other words we
only allow gauge transformations at interior vertices. The space of edge weights modulo gauge
transformations is the relative cohomology group H1(ΓA, S ∪ T,C×). This relative cohomology
group is generated by functions of cycles in ΓA and of paths in ΓA starting and ending at S ∪T .
As before, we denote by [wt] the cohomology class represented by wt.

Let M denote the set of dimer covers of ΓA. For M ∈ M, we define its weight to be
wt(M) =

∏
e∈M wt(e). For M ∈M, let ∂M denote the set of boundary white vertices incident

to M . For example, ∂M0 = S.

3.1 Kasteleyn theory in A

Suppose ΓA is a balanced cylinder graph. Let γz be a simple path connecting the two boundaries
of the cylinder and directed from the boundary containing T towards the boundary containing S.
Write h = |S| = |T |. Denote by w1, . . . ,wh the vertices of T labelled consecutively and by
w′
1, . . . ,w

′
h the vertices of S labelled consecutively. The orientations of the boundaries induced

by these labelings are prescribed to be compatible with the orientation of the cylinder. We also
prescribe that γz starts between wh and w1 and ends between w′

h and w′
1. For any face f ∈ F ,

denote by Tf (resp. Sf ) the subset of i ∈ {1, . . . , h} such that the boundary segment wiwi+1(
resp. w′

iw
′
i+1

)
is adjacent to f .

An element [κ] ∈ H1(ΓA, S∪T,C×) is called a Kasteleyn sign if the following conditions hold:

(1) χ[L]([κ]) = ±1 for all [L] ∈ H1(ΓA, S ∪ T,Z);

(2) there exists (σ1, . . . , σh) ∈ {0, 1}h such that for every f ∈ F ,

Xf ([κ]) = (−1)
|∂f |
2

+1+
∑

i∈Tf

σi+
∑

i∈Sf

1−σi

.

As an example of the second condition, if all the σi are zero and |Sf | ≤ 1 for every f ∈ F (see,
for example, Figure 6), then Xf ([κ]) = (−1)

|∂f |
2 if f is adjacent to the boundary containing S,

otherwise Xf ([κ]) = (−1)
|∂f |
2

+1. The existence of a Kasteleyn sign is shown in [10, Proposi-
tion 2.1]. Note that this definition of Kasteleyn signs for balanced cylinder graphs makes them
compatible with concatenation or with gluing the two boundaries to obtain a torus graph. The
signs are admittedly complicated but they can mostly be ignored for the purposes of this paper.

We define the Kasteleyn matrix of ΓA:

KA(w) : C[w±1]B → C[w±1]W , KA(w)w,b :=
∑

e=bw∈E
wt(e)κ(e)w(e,−γz).

We have the following version of Kasteleyn’s theorem.

Theorem 3.1 ([10, Theorem 2.4]). Let I ⊂ S∪T such that |I| = |S|, and let KA,I(w) denote the
submatrix of the Kasteleyn matrix with rows indexed by white vertices in I ∪Wint and columns
indexed by black vertices in B. Then we have

1

wt(M0)κ(M0)w(M0,−γz)
detKA,I(w) =

∑
∂M=I

sign([M −M0])[wt]([M −M0])w
([M−M0],−γz),

where [M − M0] is the relative homology class in H1(A, ∂A,Z) defined by the relative cycle
M −M0 and sign([M −M0]) is a sign that depends on [κ] and on the relative homology class
[M −M0] and that is irrelevant for our purposes.
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Let BS denote the set of black vertices incident to S. We denote by bi the black vertex in BS

that is connected to the white vertex w′
i in S. BS is matched to S byM0. Up to performing gauge

transformations at BS to ensure that the edges connecting BS to S have κ = 1, the Kasteleyn
matrix KA(w) of ΓA has the block matrix form

KA(w) =

BS B \BS[ ]I 0 S
K1 K2 T
K3 K4 Wint

. (3.1)

For generic [wt] and for generic w ∈ C×, the submatrix K4 is invertible using Theorem 3.1
with I = S, since M0 is a dimer cover with ∂M0 = S that will appear as a summand in
detK4 = detKA,S(w). We will now resort to the notion of Schur complement and we refer the
reader to Appendix A for some background on this. Define the Schur complement

L := KA(w)/K4 =

[
I
K1

]
−
[
0
K2

]
K−1

4 K3 =

[
I

Π(w)

]
, (3.2)

where Π(w) := K1 −K2K
−1
4 K3. To get an explicit formula for the entries of Π(w), notice that

for w′
i ∈ S, wj ∈ T , the square submatrix LS\{w′

i}∪{wj} of L with rows indexed by S \ {w′
i} ∪ {wj}

is the Schur complement KA,S\{w′
i}∪{wj}(w)/K4. Using detK4 = detKA,S(w) and Theorem A.1,

we have

Π(w)wj ,bi = (−1)|S|−i detLS\{w′
i}∪{wj} = (−1)|S|−i

detKA,S\{w′
i}∪{wj}(w)

detKA,S(w)
. (3.3)

The Π(w) matrix has the following multiplicativity property which will be very useful later
for computations.

Proposition 3.2. Suppose ΓA is a balanced cylinder graph obtained by gluing balanced cylinder
graphs Γi for i = 1, . . . , n from left to right, so that S(Γi) is identified with T (Γi+1). Assume
that the Kasteleyn signs on the Γi induce a Kasteleyn sign on ΓA (which is the case if they use
the same (σ1, . . . , σh) for their definition). Then,

Π(ΓA)(w) = (−1)n−1Π(Γ1)(w)Π(Γ2)(w) · · ·Π(Γn)(w).

Here, S(Γi) and T (Γi+1) denote the source vertices of Γi and target vertices of Γi+1, respectively.

Proof. We may assume that n = 2, the general case will follow by induction. For i ∈ {1, 2},
denote by Bi

S , B
i, Si, T i and W i

int the sets of vertices associated with Γi. Then we have the
following form for the Kasteleyn matrices of Γ1 and Γ2:

K(Γ1)(w) =

B1
S B1 \B1

S[ ]I 0 S1

K1 K2 T 1

K3 K4 W 1
int

, K(Γ2)(w) =

B2
S B2 \B2

S[ ]I 0 S2

K ′
1 K ′

2 T 2

K ′
3 K ′

4 W 2
int

.

Observing that S1 = T 2, we have the following Kasteleyn matrix for ΓA:

K(ΓA)(w) =

B2
S B1

S B2 \B2
S B1 \B1

S


I 0 0 0 S2

0 K1 0 K2 T 1

K ′
1 I K ′

2 0 T 2

K ′
3 0 K ′

4 0 W 2
int

0 K3 0 K4 W 1
int

.
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Thus,

−Π(ΓA)(w) =
[
K1 0 K2

]  I K ′
2 0

0 K ′
4 0

K3 0 K4

−1 K ′
1

K ′
3

0

 .

Since  I K ′
2 0

0 K ′
4 0

K3 0 K4

−1

=

 I −K ′
2K

′−1
4 0

0 K ′−1
4 0

−K−1
4 K3 K−1

4 K3K
′
2K

′−1
4 K−1

4

 ,

we conclude that −Π(ΓA)(w) = Π(Γ1)(w)Π(Γ2)(w). ■

When w = 1, we abbreviate KA(1) (resp. Π(1)) to KA (resp. Π).

Remark 3.3. The matrix Π(w) is related to the boundary measurement matrix of [16] con-
structed from networks on cylinders. The reference dimer cover M0 makes ΓA into a directed
network N as follows. Orient each edge e = bw contained in M0 from w to b, and assign it
weight 1

wt(e) , and each edge not contained in M0 from b to w and assign it weight wt(e). Each
directed path in N gets a weight that is the product of weights of all edges appearing in it.
Then using Theorem 3.1 and formula (3.3), we have for w′

i ∈ S, wj ∈ T ,

Π(w)wj ,bi = (−1)|S|−i
detKA,S\{w′

i}∪{wj}(w)

detKA,S(w)

= (−1)|S|−iwt(M0)κ(M0)w
(M0,−γz)

detKA,S(w)

detKA,S\{w′
i}∪{wj}(w)

wt(M0)κ(M0)w(M0,−γz)

= (−1)|S|−iwt(M0)κ(M0)w
(M0,−γz)

detKA,S(w)

×
( ∑

∂M=S\{w′
i}∪{wj}

sign([M −M0])[wt]([M −M0])w
([M−M0],−γz)

)
. (3.4)

Notice that if M is a dimer cover with ∂M = S \ {w′
i} ∪ {wj}, then M −M0 is the union of

some directed cycles and a single directed simple path in N from w′
i to wj . The multiplicative

factor is ±1 if M0 is the only dimer cover M ′ with ∂M ′ = S. If there is another dimer cover M ′

with ∂M ′ = S, then M ′ −M0 is a collection of directed cycles in N that can be attached to
any directed path from w′

i to wj to get a new directed path from w′
i to wj . Expanding the

multiplicative factor

wt(M0)κ(M0)w
(M0,−γz)

detKA,S(w)

=
sign([0])

1 +

( ∑
M ′ ̸=M0

∂M ′=S

sign([M ′ −M0]) sign([0])[wt]([M ′ −M0])w([M ′−M0],−γz)

)

as a geometric series, we see that on the right-hand side of equation (3.4), we have a (signed)
partition function for (not necessarily simple) directed paths from w′

i to wj along with collections
of directed cycles. The boundary measurement matrix of [16] is also a matrix whose entries are
signed partition functions for directed paths from w′

i to wj . Therefore, the matrix Π(w) is the
boundary measurement matrix of [16] up to signs. A careful choice of κ is required to make the
signs match up; this was worked out recently in [28]. This is the reason for calling S and T the
source and target vertices, respectively.
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γz

w1 w′
1

w

w

b1
b2

1

−b

1
c/w

a

γz

w1 w′
1

w

w

b1
b2

b

1
c/w

1
a

1

Figure 7. On the left, a bipartite graph ΓA on a cylinder with the dimer cover M0 in bold. On the

right, the associated network N .

Example 3.4. Consider the bipartite graph shown in Figure 7. We compute

KA(w) =

b1 b2[ ]1 0 w′
1

0 1 w1

−b a+ c
w w

, Π(w) =
[
− b

a+ c
w

]
.

There are two dimer covers with ∂M = {w′
1} with weights a and c

w , respectively. Notice that
w′
1 → b1 → w → b2 → w1 is a directed simple path from w′

1 to w1 with weight b
a and that

w → b2 → w is a directed cycle in N with weight c
aw . Moreover, any directed path from w′

1

to w1 is obtained by attaching a finite number of copies of the cycle to the simple path at b2.
Therefore, we see that

Πw1,b1(w) = −
(

1

1 + c
aw

)
b

a
= − b

a

∑
k≥0

(−1)k
(

c

aw

)k

is the (signed) partition function for all paths from w′
1 to w1.

Example 3.5. Let Γ2,A denote the balanced cylinder graph obtained by gluing the top and
bottom sides of the rectangle on Figure 6 (here we should take z = 1 on the picture). Gluing
also the left and right sides yields the torus graph Γ2. The targets are the two white vertices w1

and w2 on the left boundary, while the sources are their copies on the right boundary that we
denote by w′

1 and w′
2. The set BS is {b3, b4}. The Kasteleyn matrix (with blocks as in (3.1)

and with w = 1) is

KA =

b3 b4 b1 b2


1 0 0 0 w′

1

0 1 0 0 w′
2

0 0 1 0 w1

0 0 0 1 w2

h a g −b w3

e d −f c w4

,

and

Π =
1

bf − cg

[
ch+ be ac+ bd
eg + fh dg + af

]
. (3.5)
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3.2 Spectral curve of a torus graph constructed from a cylinder graph

We now show how the spectral curve of the torus graph obtained by gluing the two boundaries
of a balanced cylinder graph can be obtained from the Π matrix of the cylinder graph.

Theorem 3.6. Let ΓA be a balanced cylinder graph and assume that by gluing the two boundaries
of ΓA we obtain a torus graph Γ. Write Π(w) for Π(ΓA)(w). Then Σ =

{
(z, w) ∈ (C×)2 |

det(zI +Π(w)) = 0
}
is the spectral curve.

Due to the construction of Section 3.3 this result holds in particular when ΓA is obtained
from an arbitrary minimal torus graph Γ cut along a zig-zag path.

Proof. In Γ, split the white vertices that are in the image of S and T under the projection
of ΓA to T, so that we now have two copies of these white vertices which we identify with S
and T , respectively, connected by degree two black vertices. Let ΓST denote the torus graph
obtained. Let BST denote the newly created degree two black vertices. Perturb γw so that it
goes transversely through all the edges connecting BST with T (see the right picture of Figure 8).
We extend the Kasteleyn sign κ on Γ to ΓST by defining κ(e) = 1 if e is an edge between BST

and T and κ(e) = −1 if e is an edge between BST and S. The Kasteleyn matrix K(z, w) of ΓST

has the block matrix form

K(z, w) =

B(ΓA) BST[ ]−I S
KA(w) zI T

0 Wint

.

Defining K4(w) to be the square submatrix of K(z, w) with rows indexed by Wint and columns
indexed by B(ΓA) \BS , we have the Schur complement

K(z, w)/K4(w) =

BS BST[ ]
I −I S

Π(w) zI T
.

By Theorem A.1, we get detK(z, w) = detK4(w) det (zI +Π(w)). ■

Example 3.7. Consider again the graph Γ2 from Figure 6 for which we have

Π(w) =
1

−cg + bfw

[
ch+ bew (ac+ bd)w
eg + fh dg + afw

]
from (3.5). We have

det(zI +Π(w)) =
1

−cg + bfw

(
− dh+ (dg + ch)z − cgz2 + aew + (be+ af)zw + bfz2w

)
,

which agrees with (2.2).

3.3 Torus to cylinder

In this subsection, we show that Theorem 3.6 actually applies to any minimal bipartite graph
on the torus. We outline a general procedure to construct a balanced cylinder graph ΓA from
a minimal graph Γ in a torus T. This procedure is a generalization of Example 3.5, in which the
balanced cylinder graph Γ2,A is obtained from the minimal torus graph Γ2 by cutting along the
vertical side of the fundamental rectangle, which is parallel to the zig-zag path ζ2.
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β γw β

TS

γw β

TS BSTBS

Figure 8. On the left is a zig-zag path β on a torus graph Γ. In the middle is the graph resulting from

splitting the black vertices on β. On the right is the torus graph ΓST obtained from further splitting the

white vertices lying on γw. Removing the shaded region from ΓST , we get the cylinder graph ΓA.

Let β be a zig-zag path in Γ. Without loss of generality, we assume that there are no
2-valent black vertices in β. Changing the fundamental domain if necessary, we can assume
that [β] = [γw]. Split each black vertex in β to create a 2-valent white vertex, in such a way that
one of the newly created black vertices is trivalent, having as neighbors the newly created white
vertex as well as the two white vertices on β that were adjacent to the black vertex before the
split. See the left and middle pictures of Figure 8. The homology class [γw] has a representative
cycle γw in T that goes through each of the newly created 2-valent white vertices and does not
intersect Γ anywhere else. Cutting T along γw, we obtain a cylinder A and a graph ΓA embedded
in it. The 2-valent white vertices become S and T , where T is connected to β (see the middle
picture of Figure 8). We label the vertices of T in clockwise order as w1, . . . ,wh, where h = |T |.
Since |B(Γ)| = |W (Γ)|, we have |B(ΓA)| = |W (ΓA)| − |S|. Since Γ is minimal, there is a dimer
cover M0 in Γ that contains half the edges in β (see, for example, [23, Theorem 3.12]), which
becomes a dimer cover in ΓA such that ∂M0 = S. For every 1 ≤ i ≤ h let fi be the face
of ΓA adjacent to the boundary segment wiwi+1 on the T side. The Kasteleyn signs κ on Γ
induce Kasteleyn signs on ΓA provided we set σi = 1 if and only if Xfi([κ]) = (−1)

|∂fi|
2 for

every 1 ≤ i ≤ h.

4 TCD maps on cylinders

In this section, we describe the cokernel of the Kasteleyn matrix K from a projective point
of view in terms of triple crossing diagram maps, which we abbreviate to TCD maps. Our
presentation of TCD maps is self-contained but we refer to [1, 2] for more details on TCD maps.
We then define the notion of twisted TCD maps on a cylinder and compute the monodromy of
such twisted TCD maps.

TCD maps are introduced in [2, 3] as a special case of the vector-relation configurations of [1].
The spider move for TCD maps first appeared in [1] while the resplit move is introduced in [2, 3].
The geometric R-matrix move for TCD maps is a novel contribution of the present paper.

4.1 TCD maps

Let ΓA be a balanced cylinder graph. Assume that the black vertices of ΓA are all of degree 2
or 3, which we can always do using expansion moves. A TCD map is a collection of points
(Pw)w∈W ∈ CP|W |−|B|−1 such that the following two conditions hold:
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� for each b ∈ B of degree 3, the three points Pw for w incident to b are distinct and are all
contained in a line;

� for each b ∈ B of degree 2, the two points Pw for w incident to b are equal.

Strictly speaking, the black vertices of a TCD should all be of degree 3 [48], but for the purposes
of this article, it will be convenient to also allow black vertices of degree 2. The above definition
of a TCD map was given in [2] for any bipartite graph with black vertices of degree 2 or 3,
not necessarily a balanced cylinder graph. However starting in the next paragraph we use the
Kasteleyn matrix hence we have to restrict the level of generality to consider only balanced
cylinder graphs.

Recall that for a linear map f between two vector spaces E and F , the cokernel of f is defined
as F/ im f . Given a generic weight wt on ΓA, we obtain a TCD map as follows: consider the
exact sequence

0→ CB KA−−→ CW → cokerKA → 0,

where cokerKA is (|W | − |B|)-dimensional. Let ew be the unit basis vector corresponding to w
in CW (ΓA) and let vw ∈ cokerKA be the image of ew. Then the projectivizations Pw of the vectors
vw define a TCD map. Clearly the definition is invariant under gauge equivalence. On the other
hand, given a TCD map, we recover the edge weights modulo gauge transformations from the
equations of the lines associated to the black vertices (see Lemma 4.3 below).

Remark 4.1. Note that the cokernel is only defined up to isomorphism. Different choices for
a representative of the isomorphism class of the cokernel give different TCD maps related by
projective transformations.

w1

w3

w2

w4

↔

w4

w2w1

w3

w1

w4

w2

w3

w
↔

w4 w3

w1 w2

w′

Pw1

Pw4

Pw3

Pw2

↔

Pw1

Pw4

Pw3

Pw2

Pw1

Pw4

Pw2

Pw3

Pw

↔

Pw1

Pw4
Pw′

Pw2

Pw3

Figure 9. Elementary transformations allowed in TCD maps: spider move (left) and resplit (right).

The advantage of working with a graph ΓA having trivalent black vertices is that we can keep
track of both the geometric dynamics and the invariants while performing local moves. For TCD
maps, there are two allowed elementary transformations, the spider move and the resplit, see
Figure 9. In a generic situation, the points associated to white vertices after one of these two
moves are determined by the combinatorics. Indeed, points do not change when performing the
spider move. Furthermore, if the ambient projective space is of dimension at least 2, the new
point appearing in the resplit is determined as the intersection of the two lines represented by
the two black vertices. One can give a formula for it using multi-ratios.
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The multi-ratio of 2m points P1, P2, . . . , P2m ∈ CPn with n ≥ 1 is defined by

mr(P1, . . . , P2m) =

m∏
i=1

(P2i−1 − P2i)

m∏
i=1

(P2i − P2i+1)

.

Such a definition makes sense by taking an affine chart of CPn (and is independent of the choice of
such a chart) by pairing up each term in the numerator with a collinear term in the denominator,
which is possible whenever one of the following two conditions is satisfied:

(1) for every 1 ≤ i ≤ m the points P2i−1, P2i and P2i+1 are aligned;

(2) for every 1 ≤ i ≤ m the points P2i, P2i+1 and P2i+2 are aligned.

The cross-ratio of four aligned points P1, P2, P3, P4 ∈ CPn with n ≥ 1 is defined by

cr(P1, P2, P3, P4) = mr(P1, P2, P3, P4).

If the ambient dimension is at least 2, then the points involved in a resplit satisfy the classical
Menelaus’ theorem (see for, e.g., [38]):

mr(Pw1 , Pw, Pw2 , Pw3 , Pw′ , Pw4) = −1, (4.1)

where the white vertices are labeled as on the right-hand side of Figure 9. In CP1 however,
there is no incidence geometry. In this case, we define the new white vertex in the resplit via
equation (4.1). Equation (4.1) has the symmetries of the octahedron.

Lemma 4.2. Let n ≥ 1 and let P1, . . . , P6 be six points in CPn. For every permutation σ of
{1, . . . , 6} such that σ(i+ 3) = σ(i) + 3 mod 6 for every 1 ≤ i ≤ 6, we have

mr(P1, P2, P3, P4, P5, P6) = −1 ⇔ mr
(
Pσ(1), Pσ(2), Pσ(3), Pσ(4), Pσ(5), Pσ(6)

)
= −1.

Proof. The permutations σ such that σ(i+3) = σ(i)+3 mod 6 for every i form the symmetry
group of the octahedron, namely they leave invariant the collection of pairs of opposite points
{{P1, P4}, {P2, P5}, {P3, P6}}. This subgroup is generated by σ1, σ2 and σ3, where σ1(i) = i+1
mod 6 for every i, σ2(i) = 7− i for every i and σ3 is the transposition (1, 4).

Observe that σ1 changes a multi-ratio to its inverse, while σ2 leaves it invariant. In the case
of σ3, solving the linear equation mr(P1, . . . , P6) = −1 for P1 and reinserting it in mr(P4, P2, P3,
P1, P5, P6) yields the value −1. ■

Another useful property of TCD maps is that the face weights can be recovered as multi-ratios
as stated in the following lemma.

Lemma 4.3 ([1, Proposition 2.6]). For a loop

L = w1 → b1 → w2 → b2 → · · · → wn → bn → w1

such that wi ̸= wi+1 for every i, let w′
i denote the third white vertex incident to bi that is not

in {wi,wi+1}. Then we have

[wt]([L]) = [κ]([L])−1mr
(
Pw1 , Pw′

1
, Pw2 , Pw′

2
, . . . , Pwn , Pw′

n

)
.
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4.2 TCD map on ΓÂ from Γ

Let ΓA be a balanced cylinder graph.

Lemma 4.4. Suppose there exists a dimer cover M1 of ΓA such that ∂M1 = T . Then the ma-
trix Π in (3.2) is invertible for generic weights on ΓA.

Proof. Since detK4 = detKA,S , using Theorem A.1, we get

detΠ =
detKA,T
detKA,S

.

The existence of M1 with ∂M1 = T and Theorem 3.1 with I = T gives detKA,T ̸= 0 for generic
weights. ■

Hereafter, we assume that there is a dimer cover M1 of ΓA such that ∂M1 = T and that
weights on ΓA are generic.

Let T be the torus obtained by gluing together the two boundary components of A in such
a way that the two endpoints of γz are identified and that each vertex in S is identified with
a vertex in T . Let γw be the image in T of the boundaries of A and let Γ be the image in T of ΓA.
Let Â := H1(T,R)/Z[γw] denote the infinite cylinder covering A. Note that Â =

⋃
k∈ZA+ k[γz],

that is Â is obtained by gluing together infinitely many copies of A. Let

ΓÂ =
(
B
(
ΓÂ
)
∪W

(
ΓÂ
)
, E
(
ΓÂ
))

denote the preimage of Γ under the covering map Â→ T. Fix a white vertex w ∈ W
(
ΓÂ
)
and

choose a large enoughm so that w is in Am :=
⋃

k∈[−m,m]∩Z(A+ kγz) ⊂ Â. Let ΓAm := ΓÂ ∩ Am.

Lemma 4.5. We have cokerKAm
∼= cokerKA ∼= C|W (ΓA)|−|B(ΓA)| for all m ≥ 0. Moreover

with these identifications, the image of ew in C|W (ΓA)|−|B(ΓA)| under the cokernel map of KAm is
independent of m, where ew is the unit basis vector corresponding to w in CW (ΓAm ).

Proof. Suppose m > m′. KAm has the block form

KAm =

B
(
ΓAm′

)
B(ΓAm) \B

(
ΓAm′

)[ ]
KAm′ ∗ W

(
ΓAm′

)
0 K ′ W (ΓAm) \W

(
ΓAm′

) ,

whereK ′ is invertible by existence ofM0 andM1, and Theorem 3.1. Therefore, KAm/K
′ = KAm′

and so the second statement follows from Theorem A.2. By Theorem A.2 with m′ = 0, we get
cokerKAm

∼= cokerKA ∼= C|W (ΓA)|−|B(ΓA)| for all m ≥ 0. ■

We define a TCD map P : W
(
ΓÂ
)
→CP|W (ΓA)|−|B(ΓA)|−1 in the following way. For w∈W

(
ΓÂ
)
,

we choose m sufficiently large so that w ∈ W (ΓAm). Let vw denote the image of ew in
C|W (ΓA)|−|B(ΓA)| as in Lemma 4.5, and define Pw ∈ CP|W (ΓA)|−|B(ΓA)|−1 to be the projectivization
of vw. Lemma 4.5 guarantees that the definition is independent of the choice of m.

4.3 Monodromy of a TCD map on ΓÂ

A pair (P,M) where P : W
(
ΓÂ
)
→ CP|W (ΓA)|−|B(ΓA)|−1 is a TCD map and the operator M ∈

PGL|W (ΓA)|−|B(ΓA)| is called a twisted TCD map if M(Pw) = Pw+γz for all w ∈ W
(
ΓÂ
)
. M is

called the monodromy of P .
Now suppose P : W

(
ΓÂ
)
→ CP|W (ΓA)|−|B(ΓA)|−1 is a TCD map on ΓÂ as in Section 4.2.

Let [Π] denote the class of Π in PGL|W (ΓA)|−|B(ΓA)|, where Π is the matrix in (3.2).



Integrable Dynamics in Projective Geometry 23

Theorem 4.6. The map P is a twisted TCD map. The PGL|W (ΓA)|−|B(ΓA)| matrix class [−Π]
is the monodromy of P in the basis {vw}w∈T .

Proof. The existence of the dimer coverM1 implies that the matrix Π is invertible (Lemma 4.4).
Let T = {w1, . . . ,wh} be the set of target vertices in W (ΓA) so that S = {w1 + γz, . . . ,wh + γz}
is the set of source vertices. Since each boundary white vertex of ΓA has degree 1, we have
a unique black vertex bi ∈ BS incident to wi + γz ∈ S in ΓA. Therefore, we have a canonical
isomorphism CS ∼= CBS , ewi+γz 7→ ebi .

By Theorem A.2, we have coker
[
I
Π

] ∼= cokerKA such that the cokernel map CS ⊕ CT →
coker

[
I
Π

] ∼= cokerKA is ew 7→ vw. Consider the following exact sequence:

0→ CBS

[
I
Π

]
−−−→ CS ⊕ CT [−Π I ]−−−−→ CT → 0.

When we write −Π above the third arrow, we are abusing notation and mean the composi-
tion CS ∼= CBS

−Π−−→ CT . By the universal property of the cokernel, we have a canonical iso-
morphism of cokerKA with CT such that vwi = ewi for wi ∈ T and vwi+γz = −Πewi+γz for
wi + γz ∈ S. Translation by γz gives us an isomorphism CT ∼= CS sending ewi to ewi+γz . There-
fore, vwi+γz = −Πvwi for i = 1, 2, . . . , h, where again we are abusing notation by calling −Π
the composition CT ∼= CS −Π−−→ CT which sends vwi to vwi+γz .

The same argument applied to the translated graph ΓA+kγz gives vwi+(k+1)γz = −Πvwi+kγz .
This implies vwi+kγz = (−Π)kvwi for all k ∈ Z. For w ∈ W (ΓA), since {vwi} is a basis of
cokerKA, there exist ai ∈ C such that vw =

∑h
i=1 aivwi . Then we have

(−Π)kvw =

h∑
i=1

ai(−Π)kvwi =

h∑
i=1

aivwi+kγz = vw+kγz ,

where the last equality follows fromKA = KA+kγz . Any white w′ ∈W
(
ΓÂ
)
is of the form w+mγz

for some w ∈W (ΓA). Then w′ + γz = w+ (m+ 1)γz, so that we have

vw′ = (−Π)mvw, vw′+γz = (−Π)m+1vw,

and therefore vw′+γz = −Πvw′ . Projectivizing, we get the statement of the proposition. ■

In the second half of the paper, the setting of twisted TCD maps will be used to study
dynamical systems on spaces of twisted polygons.

Definition 4.7. Let d ≥ 1 and let n ≥ 3. A twisted n-gon in dimension d is a pair (p,M)
where p : Z → CPd and M ∈ PGLd+1 is a projective transformation called monodromy such
that pi+n = M(pi) for all i ∈ Z.

The group PGLd+1 acts on the space of twisted n-gons in dimension d by

A · (p1, p2, . . . , pn,M) =
(
A(p1), A(p2), . . . , A(pn), AMA−1

)
. (4.2)

For each dynamical system considered, we will impose some additional nondegeneracy con-
ditions for the twisted n-gons, which will be specific to each dynamics.

5 The pentagram map

Our exposition follows [41, 49]. Let n ≥ 4. A twisted n-gon in dimension 2 is said to be
nondegenerate if in each 5-tuple (pi, pi+1, pi+2, pi+3, pi+4) of consecutive points, no three points
are collinear, except possibly pi, pi+2, pi+4.
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Let T̃n denote the space of nondegenerate twisted n-gons. T̃n is an open subvariety of(
CP2

)n × PGL3, and PGL3 acts on it by (4.2). The quotient Tn := T̃n/PGL3 is the mod-
uli space parameterizing projective equivalence classes of nondegenerate twisted n-gons. For
(p,M) ∈ T̃n, the left and right corner invariants are defined by

xi := cr(pi−2, pi−1, pi−2pi−1 ∩ pi+1pi+2, pi−2pi−1 ∩ pipi+1),

yi := cr(pi−2pi−1 ∩ pi+1pi+2, pi−1pi ∩ pi+1pi+2, pi+2, pi+1),

where ab denotes the projective line spanned by a, b ∈ CP2. The corner invariants define
a morphism

(x, y) : T̃n → (C \ {0, 1})2n, (p,M) 7→ (x1, . . . , xn, y1, . . . , yn). (5.1)

Since the xi, yi’s are cross-ratios, they are PGL3-invariant. Therefore, the morphism (5.1) de-
scends to a morphism (x, y) : Tn → (C \ {0, 1})2n, which is an isomorphism [45]. The Poisson
brackets

{xi, xi+1}Tn := −xixi+1, {yi, yi+1}Tn := yiyi+1, (5.2)

make Tn a Poisson variety. Here, we only give the nonzero values obtained by pairing two
coordinate functions.

The rational map T : Tn → Tn defined by (p,M) 7→ (q,M), where qi = pi−1pi+1 ∩ pipi+2

is called the pentagram map. In the coordinates (x, y), the rational map T is given by [41,
Lemma 2.4]

T ∗xi = xi
1− xi−1yi−1

1− xi+1yi+1
, T ∗yi = yi+1

1− xi+2yi+2

1− xiyi
.

5.1 Integrability of the pentagram map

We recall the following well known result from the theory of algebraic groups (see, for ex-
ample, [47, Theorem 3.2.3]). If we have an action of a torus C× on a vector space V , then
V =

⊕
k∈Z Vk can be decomposed into the weight subspaces corresponding to the characters

of C×, where a character χ : C× → C× is just a Laurent monomial χ(w) = wk, k ∈ Z, and the
weight subspace of χ(w) = wk is defined as

Vk := {v ∈ V | w · v = wkv for w ∈ C×}.

If v ∈ Vk, then we say that v has weight k.
Now consider the (rational) action of C× on Tn: Rw(x, y) =

(
w−1x,wy

)
, x = (x1, . . . , xn),

y = (y1, . . . , yn), and let R∗
w denote the induced action on the vector space C[x, y]:

R∗
w(f(x, y)) = f(Rw−1(x, y)).

Define On :=
∏n

i=1 xi and En :=
∏n

i=1 yi. Then, On and En have weights n and −n, respectively.
For (p,M) ∈ Tn, let M(w) denote the monodromy matrix of Rw(p,M), and let

P (z, w) := det(zI −M(w)).

In [45], it is shown that(
wnO2

nEn

detM(w)−1

) 1
3

trM(w)−1 = 1 +

⌊n
2
⌋∑

k=1

Okw
k,

(
OnE

2
n

wn detM(w)

) 1
3

trM(w) = 1 +

⌊n
2
⌋∑

k=1

Ekw
−k, (5.3)

where Ok, Ek, k = 1, . . . , ⌊n2 ⌋, are polynomials in C[x, y].
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Theorem 5.1 ([41]). We have

1. For n even, {·, ·}Tn has corank 4, and the subalgebra of Casimirs is generated by On
2
, En

2
,

On, En.

2. For n odd, {·, ·}Tn has corank 2, and the subalgebra of Casimirs is generated by On, En.

3. For k = 1, 2, . . . , ⌊n−1
2 ⌋, the functions Ok and Ek mutually commute and form a maximal

set of functionally independent Hamiltonians, making the Poisson variety Tn a Liouville
integrable system.

Moreover, the pentagram map T is discrete integrable in the following sense:

4. T is Poisson.

5. The Hamiltonians and the Casimirs are invariant under T .

5.2 Pentagram TCD maps

Let n ≥ 4. Let Ξn denote the torus graph obtained by gluing in cyclic order the graphs Hi in
Figure 10 for i = 1, 2, . . . , n and contracting two-valent black vertices (see Figure 11 for a picture
of Ξ4). Let NΞn denote the Newton polygon of Ξn. When n is even, there are 6 zig-zag paths
and the Newton polygon is as shown on left hand side of Figure 13, and when n is odd, there
are 4 zig-zag paths and the Newton polygon as shown on the right hand side of Figure 13.

wi

wi

wi+1

wi+1

wi+1
wi+1

wi+2

wi+2

wi+2

wi+3

w̃i+1

−(−xi+1w)

−1

−1

yi+1

w

−1
−1 −1

X2i+2

X2i+4X2i+3

X2i+5

X2i+1

Figure 10. The building block graph Hi. In the edge label −(−xi+1w), the edge weight is −xi+1 and

the other − is the Kasteleyn sign. We have given white vertices that are identified upon contracting

2-valent black vertices the same label, since they are mapped to the same point by the twisted TCD

map P .

p1 p̃1

p1 p̃1

p2 p̃2

p2 p̃2

p3 p̃3

p3 p̃3

p4 p̃4

p4 p̃4

p5 = M(p1)

p5 = M(p1)

y1
−x2

y2
−x3

y3
−x4

y4
−x5X3 X5 X7 X1X2 X4 X6 X8

Figure 11. The graph Ξ4 showing the face weights and the pentagram map TCD. Here p̃i := pi−1pi ∩
pi+1pi+2.
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wi+1

wi+1

wi+2

wi+2
wi+2

wi+3
w̃i+1

yi+1−xi+1
X2i+2

X2i+4X2i+3

X2i+5

X2i+1

wi

wi

wi+1

wi+1

wi+1

wi+1

wi+2
wi+2

w̃i+1

yi+1−xi+1
X2i+2

X2i+4X2i+3

X2i+5

X2i+1

(1) Contract green edges. (2) Contract green edges.

wi+1

wi+1

wi+2
wi+2

w̃i+1

yi+1−xi+1
X2i+2

X2i+4X2i+3

X2i+5

X2i+1 wi+1 wi+2

w̃i+1

yi+1−xi+1X2i+2

X2i+4X2i+3

X2i+5

X2i+1

(3) Contract green edges. (4) Translate.

wi+1 wi+2

w̃i+1

wi+1 wi+2

w̃i+1

yi+1

−xi+2

X2i+2

X2i+4

X2i+3

X2i+5

X2i+1

wi+1 wi+2

w̃i+1

wi+1 wi+2

w̃i+1

yi+1

−xi+2

X2i+2

X2i+4X2i+3

(5) Isotope black vertices. (6) The graph in Figure 11.

Figure 12. Sequence of steps in the transformation of the building block graph Hi from Figure 10 into

the graph in Figure 11.

Consider the cycles σi, ρi, i = 1, . . . , n, shown in Figure 14. Let ξ denote the zig-zag path
in Ξn with homology (1,−n). Let λ ∈ C× and let LλΞn

(
resp. X λ

Ξn

)
denote the level set of LΞn

(resp. XΞn) where χ[ξ]([wt]) = λ. Since χ[ξ] is a Casimir, these level sets are Poisson subvarieties.
The choice of λ is unimportant: it is an extra Casimir in the GK integrable system compared
to the pentagram map and does not affect the twisted TCD map below.

The homology classes [σi], [ρi], [ξ] freely generate H1(Ξn,Z), so the coordinate ring

Oλ
LΞn

= C
[
χ±1
[σi]

, χ±1
[ρi]

]
.

Define the birational map πn : X λ
N(Ξn)

⊃ LλΞn
→ (C \ {0, 1})2n by

π∗
nxi := −χ[σi], π∗

nyi := χ[ρi],

for all i ∈ {1, 2, . . . , n}.

Proposition 5.2. The map πn is Poisson.

Proof. The only nonzero intersection numbers are

ϵΞn([σi], [σi+1]) = 1, ϵΞn([ρi], [ρi+1]) = −1,

where the index i is cyclic, so σn+1 = σ1. Comparing with (5.2), we see that πn is Poisson (up
to an irrelevant global sign which can be made to match by changing the choice of orientation
of the conjugated surface). ■
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(3, 0)

(1, n)

(2, n2 )

(0, 2n)

(2, n)

(1, 3n2 )

(3, 0)

(1, n)

(0, 2n)

(2, n)

Figure 13. The Newton polygon NΞn
of Ξn for even n (left) and odd n (right).

wi−1 wi

w̃i−1

wi−1 wi

w̃i−1

yi−1

−xi

wi wi+1

w̃i

wi wi+1

w̃i

yi

−xi+1

Figure 14. The cycles σi (left) and ρi (right) (compare with Figure 11 and Figure 12 (6)).

Let (p,M) ∈ Tn and let [wt] ∈ X λ
N(Ξn)

such that (x, y)−1 ◦πn([wt]) = (p,M). We choose edge
weights and Kasteleyn signs representing [wt] as in Figure 10. Let Ξn,A denote the balanced
cylinder graph obtained by concatenating the graphs Hi for i = 1, 2, . . . , n without closing up
cyclically. We have |W (Ξn,A)| − |B(Ξn,A)| = 3. Let P : W

(
Ξ
n,Â
)
→ CP2 denote the twisted

TCD map associated to [wt]. We label the vertices of Ξn,A as in Figure 10.

Proposition 5.3. We have

Pwi = pi, Pw̃i
= pi−1pi ∩ pi+1pi+2,

for all i ∈ Z modulo the action of PGL3.

Proof. Since P is a TCD map, the three white vertices incident to a trivalent black vertex
are in a line. Therefore, we have Pw̃i+1

= PwiPwi+1 ∩ Pwi+2Pwi+3 , and so it suffices to show that
Pwi = pi for all i ∈ Z. The points pi are determined modulo PGL3 by their xi and yi coordinates,
so it suffices to show that the points Pwi have the same xi and yi coordinates. Since [wt] is
defined so that (x, y)−1 ◦ πn([wt]) = (p,M), we have χ[σi]([wt]) = −xi. On the other hand,

χ[σi]([wt]) = mr
(
Pwi−1 , Pwi−2 , Pw̃i−1

, Pwi+1 , Pwi , Pw̃i

)
,

so it suffices to show that

−mr
(
Pwi−1 , Pwi−2 , Pw̃i−1

, Pwi+1 , Pwi , Pw̃i

)
= cr

(
Pwi−2 , Pwi−1 , Pwi−2Pwi−1 ∩ Pwi+1Pwi+2 , Pw̃i−1

)
= cr

(
Pwi−1 , Pwi−2 , Pw̃i−1

, Pwi−2Pwi−1 ∩ Pwi+1Pwi+2

)
, (5.4)

where the cross-ratio on the right hand side of the first line is the definition of xi, and the
second equality is from reordering the terms in the cross-ratio. Expanding both sides of (5.4)
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and canceling common terms, we see that (5.4) is equivalent to

mr
(
Pwi−1 , Pwi−2Pwi−1 ∩ Pwi+1Pwi+2 , Pw̃i−1

, Pwi+1 , Pwi , Pw̃i

)
= −1,

which is Menelaus’ theorem applied to the quadrilateral Pw̃i
Pwi−1Pw̃i−1

Pwi+1 , whose opposite
sides intersect at the points Pwi and Pwi−2Pwi−1 ∩ Pwi+1Pwi+2 . The proof for yi is similar. ■

We call the twisted TCD map P the pentagram TCD map. It was studied in [1, Section 3.1].

Corollary 5.4. The monodromy matrix of the twisted TCD map P coincides with the mon-
odromy matrix M of the twisted n-gon (p,M).

Now we compute this monodromy matrix. The Kasteleyn matrix of Hi, with rows and
columns indexed as in (3.1), is

KHi(w) =





1 0 0 0 0 0 wi+1

0 1 0 0 0 0 wi+2

0 0 1 0 0 0 wi+3

0 0 0 0 xi+1w 0 wi

0 0 0 0 0 1 wi+1

0 0 0 −1 0 0 wi+2

−1 0 0 0 1 −1 wi+1

0 −1 1 yi+1

w 0 0 wi+2

0 0 −1 0 1 0 w̃i+1

,

using which we get

ΠHi(w) =

 0 0 xi+1w
−1 0 1
0 − w

yi+1

w
yi+1

 .

We have detΠHi(w) =
xi+1

yi+1
w2. The monodromy matrix M(w) = (−1)n

∏n
i=1ΠHi(w), so that

detM(w) = (−1)nOn

En
w2n. (5.5)

The following lemma is elementary.

Lemma 5.5. For a 3× 3 invertible matrix M , we have

det(zI −M) = z3 − trMz2 +
trM−1

detM−1
z − detM.

Applying Lemma 5.5 to M(w), multiplying by En, and using equations (5.3) and (5.5), we get

EnP (z, w) = Enz
3 − En trM(w)z2 + En

trM(w)−1

detM(w)−1
z − En detM(w)

= Enz
3 ±

1 +

⌊n
2
⌋∑

k=1

Ekw
−k

 z2wn ±

1 +

⌊n
2
⌋∑

k=1

Okw
k

 zwn ±Onw
2n,

where the signs are irrelevant for our purposes. Since the GK Hamiltonians are coefficients
of P (z, w), we have proved the following theorem.
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Theorem 5.6. The map πn identifies the GK Poisson structure, Hamiltonians and Casimirs
with those of the pentagram map in Theorem 5.1.

Remark 5.7. Glick [20] discovered a cluster algebra structure for the pentagram map, where
the cluster variables are given by

X2i = −
1

xiyi
, X2i+1 = −xi+1yi.

On the other hand, the GK cluster variables are the face weights. Since the cycles −(σi + ρi)
and σi+1+ρi are the faces of Ξn, we see that Glick’s cluster variables coincide with those of GK.

6 The cross-ratio dynamics integrable system

In this section, we define cross-ratio dynamics on the space of α⃗-related pairs of twisted polygons
and we recall the integrability results of [4] for that dynamics, generalizing them to the case
when αi may depend on i. All the results that we attribute to [4] in this section were stated and
proven by them for constant α, but the proofs carry over easily to the case when αi depends on i.

6.1 Poisson varieties of twisted polygons in CP1

Let n ≥ 2. A twisted n-gon (p,M) in dimension 1 is called nondegenerate if for all i ∈ Z, we
have pi /∈ {pi+1, pi+2}. Let P̃n denote the space of nondegenerate twisted n-gons. P̃n is an open
subvariety of

(
CP1

)n×PGL2, and PGL2 acts on it by (4.2). The quotient Pn := P̃n/PGL2 is the
moduli space parameterizing projective equivalence classes of nondegenerate twisted n-gons. We
will sometimes abuse notation and simply write p ∈ P̃n instead of (p,M) ∈ P̃n. Given p ∈ P̃n,
we define the c-variables

ci := cr(pi−1, pi, pi+2, pi+1) for all i ∈ Z. (6.1)

Notice that ci+n = ci for all i ∈ Z. Since p is nondegenerate, ci(p) /∈ {0,∞}, so the c-variables
define a morphism

c : P̃n → (C×)n, p 7→ (c1, c2, . . . , cn). (6.2)

Since each ci is a cross-ratio, this morphism is PGL2-invariant, and therefore, (6.2) descends to
a morphism c : Pn → (C×)n. Given the c-variables and three initial points p1, p2, p3, the whole
polygon is recovered from (6.1). Since any three points can be mapped to any other three points
by a projective transformation, the c-variables characterize a polygon up to projective transfor-
mations and so c is an isomorphism. The inverse morphism is given explicitly in [4, Section 3.2].

The following lemma gives an explicit representative for the PGL2 conjugacy class of the
monodromy matrix M in terms of the c-variables.

Theorem 6.1 ([4, Lemma 3.2]). The matrix

M =

[
0 c1
−1 1

] [
0 c2
−1 1

]
· · ·
[
0 cn
−1 1

]
represents the monodromy matrix.

Let α⃗ = (αi)i∈Z with αi ∈ C \ {0, 1} such that αi+n = αi. Two twisted polygons p, q ∈ P̃n

are said to be α⃗-related, and denoted p
α⃗∼ q if

cr(pi, qi, pi+1, qi+1) = αi for all i ∈ Z, (6.3)
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and p and q have the same monodromy. Note that condition (6.3) alone does not imply that p
and q have the same monodromy. The relation

α⃗∼ is PGL2-invariant, and therefore, descends to
a relation on Pn.

Let Ũn,α⃗ denote the space of pairs of α⃗-related nondegenerate twisted polygons of length n.
It is a subvariety of (P1)2n × PGL2 and PGL2 acts on it by

A · (p1, . . . , pn, q1, . . . , qn,M) =
(
A(p1), . . . , A(pn), A(q1), . . . , A(qn), AMA−1

)
.

We define the u-variables by

ui := − cr(pi, pi+1, qi, pi−1) for all i ∈ Z. (6.4)

Since p and q are nondegenerate and α⃗-related, ui /∈ {0,−1,∞}. Therefore, the u-variables
define a PGL2-invariant morphism u : Ũn,α⃗ → (C \ {0,−1})n which descends to a morphism

u : Un,α⃗ → (C \ {0,−1})n,

where Un,α⃗ := Ũn,α⃗/PGL2. When there is no ambiguity on the choice of α⃗, we will denote Ũn,α⃗
and Un,α⃗ simply by Ũn and Un. Consider the morphism

ρα⃗ : Un → Pn, (p, q,M) 7→ (p,M).

It follows from [4, Section 4.8] that the diagram

Un Pn

(C \ {0,−1})n (C×)n

ρα⃗

u c

Λα⃗

commutes, where the map Λα⃗ is determined by

ci =
αi

(1 + ui)
(
1 + 1

ui+1

) .
If we are given the u-variables, we can recover p up to projective transformations as c−1 ◦
Λα⃗(u1, . . . , un), and q is then determined by (6.4). Therefore, the morphism u induces an
isomorphism between Un and (C \ {0,−1})n. The set Un is the moduli space parameterizing
projective equivalence classes of pairs of α⃗-related twisted n-gons. The Poisson bracket

{ui, ui+1}Un := uiui+1, (6.5)

makes (Un, {·, ·}Un) a Poisson variety while the Poisson bracket

{ci, ci+1}α⃗ := cici+1

(
1− ci

αi
− ci+1

αi+1

)
, {ci, ci+2}α⃗ := − 1

αi+1
cici+1ci+2,

makes (Pn, {·, ·}α⃗) a Poisson variety. For both Poisson brackets, we only give the nonzero values
obtained by pairing two coordinate functions. We also define the rescaled coordinates ci :=

ci
αi
.

In these coordinates, the Poisson bracket {·, ·}α⃗ takes the simpler form

{ci, ci+1}α⃗ = cici+1 (1− ci − ci+1) , {ci, ci+2}α⃗ = −cici+1ci+2.

A computation similar to [4, Lemma 4.9] shows that ρα⃗ is Poisson. [4, Corollary 2.7] shows
that ρα⃗ is generically finite of degree 2, that is, for a generic polygon q ∈ Pn there are two
polygons p, r ∈ Pn that are α⃗-related to q. Therefore, the maps C1

α⃗ : (p, q,M) 7→ (r, q,M)
and C2

α⃗ : (q, p,M) 7→ (q, r,M) are birational involutions of Un, respectively changing the first
and the second curve of a pair of α⃗-related curves. The space Un also has another involution
j : (p, q,M) 7→ (q, p,M) given in coordinates by

ui 7→ vi :=
1

ui

αi − 1

αi−1 − 1
= − cr(qi, qi+1, pi, qi−1). (6.6)
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6.2 Cross-ratio dynamics and integrability

Suppose (q,M) ∈ Pn such that
∣∣ρ−1

α⃗ (q,M)
∣∣ = 2, and suppose p, r are the two different polygons

α⃗-related to q. The birational automorphism

να⃗ = j ◦ C1
α⃗ : Un → Un, (p, q,M) 7→ (q, r,M)

is called cross-ratio dynamics. It can be described in coordinates as follows.

Proposition 6.2. Let (p, q,M) ∈ Un and denote respectively by ui and u′i the coordinates of
(p, q,M) and (q, r,M) = να⃗(p, q,M). Then, we have

u′i =

n−1∑
t=0

t−1∏
s=0

vi+s

n∑
t=1

t∏
s=1

vi+s

, (6.7)

where the vi are expressed in terms of the ui as in formula (6.6).

Proposition 6.2 is new compared to [4] and is proved in Section 7.2 using geometricR-matrices.

For I ⊂ [n], let cI :=
∏

i∈I ci. Similarly, we define cI , αI , uI etc. Let ceven := c2c4 · · · and
codd := c1c3 · · · denote the product of the even and odd c variables, respectively. In the same
way, we define αeven, etc.

A subset I ⊂ [i, j] is said to be cyclically sparse if it contains no pair of consecutive indices
where the indices are taken periodic modulo n. Define

Fk(c) :=
∑

I cyclically sparse: |I|=k

cI for k = 0, . . . ,

⌊
n

2

⌋
,

Eα⃗ :=
1

c[n]

⌊n
2
⌋∑

k=0

(−1)kFk(c)

2

.

If αi = α for all i, then we say that p and q are α-related. In this case, we replace α⃗ with α
and write p

α∼ q, {·, ·}α, ρα etc. This is the setting of [4], but we defined everything in the more
general setting of nonconstant α⃗ since it is the natural setting from the point of view of the
corresponding GK integrable system.

Theorem 6.3 ([4, Main Theorem 1]). Let αi = α for all i ∈ Z. We have

1. For n even, {·, ·}α has corank 2 and the subalgebra of Casimirs is generated by Eα and ceven
codd

.

2. For n odd, {·, ·}α has corank 1 and the Casimir is Eα.

3. For k = 1, 2, . . . , ⌊n+1
2 ⌋ − 1, the functions Fk(c)

2

c[n]
mutually commute and form a maximal

set of functionally independent Hamiltonians, making the Poisson variety Pn a Liouville
integrable system.

Moreover, cross-ratio dynamics is discrete integrable in the following sense:

4. να is Poisson.

5. The pullbacks of the Hamiltonians and the Casimirs to Un by ρα are invariant under να.

The following theorem shows that the Hamiltonians can be obtained from the monodromy
matrix.
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Theorem 6.4 ([4, Theorem 1]). We have

1

detM
tr2M =

1

c[n]

⌊n
2
⌋∑

k=0

(−1)kFk(c)

2

.

Remark 6.5. Note that trM is not PGL2-invariant, but the normalized trace trM√
detM

is. How-
ever, the normalized trace is not a regular function on Pn, so we need to square everything to
make it so.

To get the Hamiltonians from Theorem 6.4, notice that Fk(c) is the homogeneous degree k
component of

√
c[n]

trM√
detM

up to a sign. This observation will be very useful to prove the
coincidence with the AFIT Hamiltonians of the GK Hamiltonians associated to the TCD maps
defined in the next section.

7 TCD maps for cross-ratio dynamics

In this section, we give two different constructions realizing pairs (p, q) of α⃗-related curves as
twisted TCD maps on the cylinder graph Γ

n,Â. We provide a detailed account in Section 7.1
of a TCD map on a hexagonal lattice. In Section 7.2, we show that cross-ratio dynamics, that
is the map να⃗ : (p, q,M) 7→ (q, r,M), is identified with a certain semi-local move on the TCD
map side. This leads to a proof of Proposition 6.2 on the evolution of the u coordinates under
cross-ratio dynamics. Finally, in Section 7.4, we give a second TCD map on a square lattice and
describe a semi-local move realizing cross-ratio dynamics.

7.1 Hexagonal TCD map

wi

wi+1

wi
wi+1

w′
i

w′
i+1

wi

w′
i

wi

bi

b′i

1

1− αi

1

1
ui+1

1
ui+1

1

Yi+1

Xi+1

1 −1

1 −1

1 −1

Figure 15. The building block graph Ki.

For n ≥ 2, let ∆n denote the torus graph obtained by gluing in cyclic order the graphs Ki in
Figure 15 for i = 1, 2, . . . , n and contracting two-valent vertices. See Figure 16 for a picture of ∆4.

Let N∆n := Convex-hull{(0, 0), (2, 0), (0, n)} denote the Newton polygon of ∆n. For even n
there are n+4 zig-zag paths and for odd n, there are n+3 zig-zag paths. The multiset of boundary
vectors of N∆n is

{
(1, 0)2,

(
−1, n2

)2
, (0,−1)n

}
in the even case and

{
(1, 0)2, (−1, n), (0,−1)n

}
in

the odd case (see Figure 17). We label some of the zig-zag paths as follows:

ξ1 := w1,b1,w2,b2, . . . ,wn,bn,w1, [ξ1] = (1, 0),

ξ2 := w′
1,b

′
1,w

′
2,b

′
2, . . . ,w

′
n,b

′
n,w

′
1, [ξ2] = (1, 0),

ζi = wi,b
′
i,w

′
i, bi,wi, [ζi] = (0,−1),
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p2 p3 p4

p1 p2 p3

q1
q2 q3 q4

p4

p1

p5 = M(p1)

q5 = M(q1)

p5 = M(p1)

v1v4v2 v3

u1u4u2 u3

Figure 16. The graph ∆4 showing the TCD map and face weights.

(0, 0) (2, 0)

(0, n)

(
1, n2

)

(0, 0) (2, 0)

(0, n)

Figure 17. The Newton polygon N∆n of ∆n for even n (left) and odd n (right).

where ζi is defined for i = 1, 2, . . . , n. Suppose the faces and zig-zag paths of ∆n are labeled as
in Figure 15. The set{

X±1
1 , . . . , X±1

n , Y ±1
1 , . . . , Y ±1

n , χ±1
[ζ1]

, χ±1
[ξ1]

}
is a set of generators for OL∆n

and the only relation among them is
∏n

i=1XiYi = 1. However, it
will be more convenient to work with a different set of generators given by{

X±1
1 , . . . , X±1

n , χ±1
[ζ1]

, . . . , χ±1
[ζn]

, χ±1
[ξ1]

}
.

We will map a subspace of the dimer parameter space XN∆n
, defined by prescribing the

values of the Casimirs χ[ζ1], . . . , χ[ζn], to the AFIT parameter space Un. That map will transform
each Xi into ui. As in Section 5.2, there is an extra Casimir χ[ξ1] on the GK side that we also
fix to be a constant λ ∈ C×.

Let X λ
N∆n ,α⃗

(
resp. Lλ∆n,α⃗

)
denote the Poisson subvariety of XN∆n

(resp. L∆n) where χ[ξ] = λ
and

χ[ζi] =
1

1− αi
, (7.1)

for all i ∈ {1, 2, . . . , n}. The coordinate ring Oλ
L∆n,α⃗

is generated by
{
X±1

1 , . . . , X±1
n

}
. Recall

from Section 6 that Un ∼= (C \ {0,−1})n.
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Definition 7.1. We define the birational map πα⃗ : X λ
N∆n ,α⃗

⊃ Lλ∆n,α⃗
→(C \ {0,−1})n such that

π∗
α⃗ui := Xi, (7.2)

for all i ∈ {1, 2, . . . , n}.

Recall that Lλ∆n,α⃗
is a Zariski-dense open subset of X λ

N∆n ,α⃗
. Definition 7.1 means that the

map πα⃗ is the unique rational map such that, for [wt]∈Lλ∆n,α⃗
,

πα⃗([wt]) = (X1([wt]), . . . , Xn([wt])).

Lemma 7.2. We have π∗
α⃗vi = Yi for all i ∈ {1, 2, . . . , n}.

Proof. It follows from XiYi =
χ[ζi−1]

χ[ζi]
and the equations (6.6) and (7.1). ■

Next, we check the following.

Proposition 7.3. The map πα⃗ is Poisson.

Proof. The functions X1, X2, . . . , Xn are local coordinates on X λ
N∆n ,α⃗

. The only nonzero Pois-
son brackets on X λ

N∆n ,α⃗
in these coordinates are

{Xi, Xi+1} = XiXi+1, i = 1, 2, . . . , n.

We compute that

π∗
α⃗{ui, ui+1}Un = π∗

α⃗(uiui+1) = XiXi+1 = {Xi, Xi+1} =
{
π∗
α⃗ui, π

∗
α⃗ui+1

}
. ■

Let (p, q,M) ∈ Un and let [wt] ∈ X λ
N∆n ,α⃗

be such that u−1 ◦ πα⃗([wt]) = (p, q,M). We choose
edge weights representing [wt] and Kasteleyn signs as in Figure 15. Note that we have

|W (∆n,A)| − |B(∆n,A)| = 2.

Let P : W (∆
n,Â)→ CP1 denote the twisted TCD map associated to [wt]. The graph ∆

n,Â is
a union of infinitely many copies of the building block graph Ki, i ∈ Z. We label the vertices
of ∆

n,Â as in Figure 15.

Lemma 7.4. We have Pwi = pi and Pw′
i
= qi for all i ∈ Z, up to a common projective

transformation.

Proof. The polygons p and q are determined up to projective transformations by the cross-
ratios (6.3) and (6.4). Using Lemma 4.3, we see from (7.2) and Lemma 7.2 that the Pw have
the same cross-ratios. ■

The TCD map for n = 4 is shown in Figure 16.

Corollary 7.5. The monodromy matrix of the twisted TCD map P coincides with the mon-
odromy matrix M of the pair of polygons (p, q).

We now compute this monodromy matrix. The Kasteleyn matrix of Ki is

KKi(w) =





1 0 0 0
0 1 0 0

0 0 1 0
0 0 0 1

1 1
ui+1

−1 0

(1− αi)w
1

ui+1
0 1
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so that

ΠKi(w) =

[
1 1

ui+1

(1− αi)w
1

ui+1

]
=

1

ui+1

[
ui+1 1

ui+1(1− αi)w 1

]
.

By Proposition 3.2, the monodromy matrix is Π(1), where

Π(w) = ΠH1(w)ΠH2(w) · · ·ΠHn(w).

We have detΠKi(w) =
1−w(1−αi)

ui+1
, so we get

detΠ(1) =
α[n]

u[n]
. (7.3)

The following lemma is elementary.

Lemma 7.6. Suppose M is a 2 × 2 matrix and P (z) = det(zI + M) is its characteristic
polynomial. Then P (z) = z2 + trMz + detM .

Let P (z, w) denote the characteristic polynomial of ∆n, normalized so that it has its Newton
polygon as on the left picture of Figure 17 with the vertex in the bottom left corner corresponding
to the monomial 1, and such that the coefficient of z2 is u[n]. To find the normalization explicitly,
we know from Theorem 3.6 and Lemma 7.6 that P (z, w) is up to normalization equal to det(zI+
Π(w)) = z2 + trΠ(w)z + detΠ(w), which is equal to

z2 + z
1

u[n]
tr

n∏
i=1

[
ui+1 1

ui+1(1− αi)w 1

]
+

1

u[n]

n∏
i=1

(1− w(1− αi)),

so

P (z, w) = u[n]z
2 + z tr

n∏
i=1

[
ui+1 1

ui+1(1− αi)w 1

]
+

n∏
i=1

(1− w(1− αi)).

Let H(1,k) denote the coefficient of zwk in P (z, w) for k = 0, . . . , ⌊n+1
2 ⌋, so that when

k ∈
{
1, 2, . . . , ⌊n+1

2 ⌋ − 1
}
, they are the Hamiltonians of the cluster integrable system. Then,

we have

⌊n
2
⌋∑

k=0

H(1,k)w
k = tr

n∏
i=1

[
ui+1 1

ui+1(1− αi)w 1

]
.

Make the substitution βi = 1 − αi and consider the above expression as a polynomial in
β1, β2, . . . , βn. Since each (1 − αi) inside the matrices appears with a w, the homogeneous
component of degree k in β1, β2, . . . , βn is H(1,k)w

k. The main result of this section is the
following simple procedure for converting between the AFIT Hamiltonians [4] and the GK dimer
Hamiltonians for ∆n.

Theorem 7.7. Let k ∈
{
1, 2, . . . , ⌊n+1

2 ⌋ − 1
}
and let αi = α for all i. We have

1. The homogeneous degree k component of
∑⌊n+1

2
⌋−1

d=0 H(1,d) as a polynomial in the variables
α1, . . . , αn is, up to a sign, equal to√

α[n]

X[n]
π∗
α⃗ ◦ Λ

∗
α⃗

(
Fk(c)√
c[n]

)
,

which is the product of the Casimir
√

α[n]

X[n]
with the pullback of an AFIT Hamiltonian.
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2. The homogeneous degree k component of
∑⌊n+1

2
⌋−1

d=0 H(1,d) as a polynomial in 1 − α1, . . . ,
1− αn is the GK dimer Hamiltonian H(1,k).

Proof. Only the first item remains to be proved. By Corollary 7.5, Π(1) is conjugated to
π∗
α⃗ ◦ Λ

∗
α⃗M in PGL2. Since

1
detM tr2M is a PGL2-conjugacy invariant, we have

π∗
α⃗ ◦ Λ

∗
α⃗

(
1√

detM
trM

)
= ± 1√

det(Π(1))
tr(Π(1)).

Using Theorem 6.4 and (7.3), we get√
α[n]

X[n]

⌊n
2
⌋∑

k=0

(−1)kπ∗
α⃗ ◦ Λ

∗
α⃗

(
Fk(c)√
c[n]

)
= ±

⌊n
2
⌋∑

k=0

H(1,k).

Note that the left-hand side is a polynomial in αi since π∗
α⃗ ◦ Λ

∗
α⃗
√
c[n] has a factor

√
α[n] which

cancels the same factor in the numerator. Then, the homogeneous component of degree k in the
variables α1, α2, . . . , αn on the left is

(−1)k
√

α[n]

X[n]
π∗
α⃗ ◦ Λ

∗
α⃗

(
Fk(c)√
c[n]

)
.

Finally, note that X[n] =
χ[ξ2]

χ[ξ1]
is a Casimir, hence so is

√
α[n]

X[n]
. ■

7.2 Cross-ratio dynamics via a semi-local move

p0 p1
×

q1 q2

q0

→ ×

p0 p1

q1 q2

q0

p1 →

p0 p1

q1 q2

q0

×

p1 →

p0 p1

q1 q2

q0

p1

x1

Figure 18. When following the arrows from left to right, this depicts Step 1 of the sequence, namely

the insertion of x1. The vertices/faces where moves are applied are marked with ×’s.

qi qi+1

pi

qi

pi+1

xi

→×

qi qi+1

pi
×

qi

pi+1

xi

→

qi qi+1

xi+1

qi

pi+1

xi

Figure 19. Step 2 in the sequence replacing pi with xi+1.

We prepare with an observation on multi-ratios.

Lemma 7.8. Assume p, q are nondegenerate twisted n-gons such that p is α⃗-related to q. Suppose
xi, xi+1 ∈ CP1 are two points such that − cr(qi, xi, qi+1, xi+1) = αi. Then,

mr(pi, qi, xi, xi+1, qi+1, pi+1) = −1

holds for all i ∈ Z.
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Proof. The lemma follows from the following two equations

cr(pi, qi, pi+1, qi+1) = cr(qi, xi, qi+1, xi+1),

mr(pi, qi, xi, xi+1, qi+1, pi+1) = −
cr(pi, qi, pi+1, qi+1)

cr(qi, xi, qi+1, xi+1)
. ■

Now we construct the sequence of moves.

M−1(xn)
x1

q1 q2

q0

p1

M−1(xn+1)

Figure 20. Local configuration near p1 in Step 3.

Theorem 7.9. Suppose [wt] ∈ X λ
N∆n ,α⃗

is such that u−1 ◦ πα⃗([wt]) = (p, q,M). Consider the
sequence of moves shown in Figures 18, 19, and let µ denote the induced birational map of
weights. Then the pair of curves (q, r,M) is u−1 ◦ πα⃗ ◦ µ([wt]). In other words, the following
diagram commutes:

X λ
N∆n ,α⃗

Un

X λ
N∆n ,α⃗

Un

u−1 ◦ πα⃗

µ να⃗

u−1 ◦ πα⃗

.

Proof. By Lemma 7.12, it suffices to trace what happens to the twisted TCD map associated
to [wt] through the sequence of moves. We identify A with the fundamental domain in Â
containing p1, . . . , pn, and the other fundamental domains are denoted A+mγz, m ∈ Z. Recall
that Pw+γz = M(Pw) for a twisted TCD map. The moves are applied γz-periodically in Â, so
we only describe what happens in A. We proceed in four steps:

1. First, we insert a new point x1 into the twisted TCD map, which, based on a choice made
in Step 3, will turn out to be r1; see Figure 18 for an illustration (in A+mγz, this means
that we insert Mm(x1)). To do this, we begin by using the resplit move to split p1 into
two copies of p1 and a new black vertex, which we denote b. Then, we add a bigon with
vertices b and q1, such that the bigon is inside the face also bounded by p0 and p1. In order
for this bigon insertion not to change the rest of the TCD map, we require that the weights
of the two edges of this bigon sum to 0. Finally, we split b into two new black vertices of
degree three while also generating the new white vertex corresponding to x1. The result
is a version of the graph in the middle of Figure 4 in which all black vertices are trivalent
so that we are in the realm of TCD maps.



38 N. Affolter, T. George and S. Ramassamy

2. Let xi ∈ CP1 for i ∈ {2, . . . , n + 1} be defined by − cr(qi, xi, qi+1, xi+1) = αi. We apply
a spider move followed by a resplit that replaces pi with xi+1; see Figure 19. When we apply
the resplit, (4.1) and Lemma 7.8 imply that the newly created point is xi+1. We apply
these moves until we have replaced pn with a new copy of xn+1.

3. After the moves of Step 2, there is still one copy of p1 left in the graph. Locally near p1,
the TCD map looks like Figure 20. This is the same as the rightmost graph in Figure 18,
except that the roles of p and x are interchanged. There are two choices of x1 that make
M−1(xn+1) = x1, namely p1 and r1. However, x1 = p1 makes the weight of the face to the
right of the bigon equal to 0, and is therefore disallowed. We then apply the sequence of
moves in Step 1 in reverse order to recover the hexagonal graph with p replaced by r.

4. Finally, we translate ∆n by 1
2γw to interchange q and r. ■

Since the weights of the two edges of a bigon sum to zero, the weight of any dimer cover
that uses one of the edges of the bigon is canceled by the weight of the dimer cover that uses
the other edge. Therefore, the spectral curve, the Casimirs and the Hamiltonians of the dimer
model are unchanged upon inserting a bigon. Since the dimer Casimirs and Hamiltonians are
also preserved by the elementary transformations [23, Theorem 4.7], we obtain as a corollary of
Theorem 1.4.

Corollary 7.10. The AFIT Casimirs and Hamiltonians are invariant under cross-ratio dy-
namics.

We can now prove Proposition 6.2 on the evolution of the ui coordinates under cross-ratio
dynamics.

Proof of Proposition 6.2. The sequence of moves in Theorem 7.9 is a sequence of local moves
on TCD maps starting and ending with a TCD map on ∆n. It can be seen as a sequence of
dimer local moves starting and ending with ∆n. Up to contractions and expansions of degree 2
vertices, the sequence of dimer local moves is exactly the one described above for the geometric
R-matrix transformation. More precisely, the bigon is initially added between the white vertex
carrying q1 and the black vertex resulting from the contraction of the white vertex carrying p1.
Then, the sequence of n spider moves crosses a string of hexagons and finally the bigon gets
deleted at the end of this sequence. Since contractions and expansions of degree 2 vertices do
not change the face weights, we deduce that the evolution of the face weights for the sequence
in Theorem 7.9 is given by the geometric R-matrix transformation.

Let X ′
i and Y ′

i be the face weights after applying the birational map µ of Theorem 7.9, which
includes in Step 4 a translation by 1

2γw. In our case, the face weights of the strip of hexagonal
faces crossed by the spider moves are the Xi and they become Y ′

i after the transformation, i.e.,

(Y ′
1 , . . . , Y

′
n) = Φ(X1, . . . , Xn).

By Theorem 2.1, we have

Y ′
i =

n−1∑
t=0

t−1∏
s=0

Xi+s

n∑
t=1

t∏
s=1

Xi+s

.

Formula (6.7) follows from the fact that π∗
α⃗vi = Xi and π∗

α⃗u
′
i = Y ′

i . ■

We can also use this correspondence with the geometric R-matrix transformation to provide
an alternative proof that the cross-ratio dynamics map να⃗ is Poisson.
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Corollary 7.11. The map να⃗ from Un to itself is Poisson for the bracket {·, ·}Un.

Proof. In [27], it is shown that the geometric R-matrix transformation can rewritten as a com-
position of cluster mutations for a quiver obtained from the original dimer quiver by adding sev-
eral edges and vertices. In particular, the Poisson bracket on the space of cluster variables [17]
induces on the space of ai variables the bracket given by {ai, ai+1} = aiai+1 for every i. Since
cluster mutations induce Poisson maps [17], we deduce that the map Φ sending (a1, . . . , an) to
(a′1, . . . , a

′
n) is a Poisson map. Alternatively, this result follows from a direct computation on

Poisson brackets using formula (2.1).

The Poisson bracket {·, ·}Un on Un is given by the same formula (6.5) as the bracket for the ai.
Furthermore, να⃗ is given by the composition of the Poisson map Φ with the map transforming
each component into its inverse (which is also Poisson), thus να⃗ is Poisson. ■

7.3 Other dynamics

In this subsection, we describe all the other integrable dynamics that are defined on the phase
space of the cross-ratio dynamics integrable system, called generalized cluster modular transfor-
mations in [19].

By definition, each side e of the Newton polygon (which we think of as oriented counterclock-
wise around the boundary of N) corresponds to a subset Ze := {β ∈ Z | e ∈ Z>0[β]} of zig-zag
paths. Let |e|Z denote the integral length of e, i.e., the number of lattice points in e minus one
or equivalently, the number of primitive line segments in e. Let p : R2 → T denote the universal
covering map of the torus, and let Γ̃ denote the biperiodic graph p−1(Γ) in R2. Let β1, . . . , β|e|Z
denote the zig-zag paths in Ze in cyclic order around the torus from right to left. Their lifts
to R2 form a collection of bi-infinite parallel zig-zag paths β̃i, i ∈ Z, in Γ̃ labeled in order from
right to left, such that p

(
β̃i
)
= βj , where 1 ≤ j ≤ |e|Z and j ≡ i mod |e|Z.

An extended affine permutation of period k is a bijection w : Z → Z such that w(i+ k) =
w(i) + k. Let Ŝk denote the group of extended affine permutations with period k. We will write
extended affine permutations w in window notation [w(1), . . . , w(k)]. Define τ := [2, 3, . . . , k,
k + 1], si := [1, 2, . . . , i−1, i+1, i, i+2, . . . , k] for 1 ≤ i ≤ k−1 and s0 = sk := [0, 2, 3, . . . , k − 2,
k − 1, k + 1]. Then, Ŝk is the group generated by τ, s0, . . . , sk−1 modulo the relations

s2i = 1, sisi+1si = si+1sisi+1, sisj = sjsi if |i− j| > 1, τsiτ
−1 = si+1.

There is a group homomorphism disp: Ŝk → Z given by disp(w) := 1
k

∑k
i=1(f(i) − i). Given

a Newton polygon N , let E(N) denote the set of edges of N . Let LN denote the kernel of the
group homomorphism

∏
e∈E(N)

Ŝ|e|Z

∑
e∈E(N) disp−−−−−−−−→ Z,

i.e., LN consists of an extended affine permutation we for each edge e of N such that the total
displacement

∑
e∈E(N) disp(w

e) is 0.

One of the main results of [19] is that each w = (we)e∈E(N) ∈ LN determines an automorphism
of the cluster Poisson variety XN given by a sequence of isotopies, elementary transformations
and geometric R-matrix transformations that take a graph Γ to itself, called a generalized cluster
modular transformation. Generalized cluster modular transformations are determined by what
they do to zig-zag paths and the correspondence is as follows. Each generalized cluster modular
transformation ϕ lifts to an H1(T,Z)-periodic sequence of isotopies, elementary transformations
and geometric R-matrix transformations in Γ̃ that take Γ̃ to itself. Therefore, each zig-zag
path β̃i of Γ̃ ends up at the initial location of a parallel zig-zag path β̃j . Then, we(i) := j



40 N. Affolter, T. George and S. Ramassamy

where e is the edge of N in the direction [β]. We have an injective group homomorphism
(coming from the translation action of H1(T,Z))

j : H1(T,Z) ↪→ LN , m 7→
(
τ ⟨e,m⟩
ρ

)
e∈E(N)

,

where ⟨·, ·⟩ denotes the intersection form in T. Explicitly, identifying H1(T,Z) with Z2 using the
basis (γz, γw), if (a, b), (c, d) ∈ Z2, then ⟨(a, b), (c, d)⟩ := ad−bc. The generalized cluster modular
group, the group of all generalized cluster transformations is isomorphic to the quotient of LN

by the subgroup j(H1(T,Z)).
Let e→, e −→and e↓ denote the edges of N∆n given by the vectors (2, 0), (−2, n) and (0,−n), re-

spectively. For a ∈ {→, −→, ↓}, we denote the generators of Ŝ|ea|Z by τa and si,a, 0 ≤ i ≤ |ea|Z − 1.
The subgroup j(H1(T,Z)) =

〈
τn −→τ

−n
↓ , τ−2

→ τ2 −→
〉
. The generators of the generalized cluster modular

group are

1. si,→, 0 ≤ i ≤ 1: Let (p, q) be a pair of α⃗-related twisted n-gons, and let o (resp. r)
denote the other twisted n-gon α⃗-related to p (resp. q). Then, s0,→ (resp. s1,→) is given
by (p, q) 7→ (r, q) (resp. (p, o)). Here, we are indexing the two horizontal zig-zag paths so
that the zig-zag path containing the points of p gets label 1 and the one containing the
points of q gets label 2 (see the left hand side of Figure 2).

2. si,↓ for i = 0, 1, . . . , n−1: Given a pair of α⃗-related twisted n-gons (p, q), let si ·α⃗ be defined
by (si · α⃗)j := αsi(j). It is not difficult to see that there is a unique (si · α⃗)-related pair
of twisted n-gons (p′, q′) such that p′k = pk and q′k = qk if k ̸= i + 1. The transformation
is (p, q) 7→ (p′, q′).

3. Only when n is even, si, −→, 0 ≤ i ≤ 1: There is a graph automorphism exchanging the

zig-zag paths in directions (1, 0) and
(
− 1, n2

)
which sends (p, q) to (p′, q′), where

p′k =

{
pk if k is odd,

qk if k is even,
q′k =

{
qk if k is odd,

pk if k is even.

Note that (p′, q′) is a pair of α⃗′-related twisted n-gons where α′
i :=

1
αi

and the monodromy
is the same as (p, q). Under this automorphism, si, −→becomes si,→.

4. τ→τ−1
−→: This is the transformation (p, q) 7→ (q, p).

5. τ −→τ
−1
↓ : Given a twisted n-gon p, let shift(p) be the twisted n-gon defined by shift(p)i :=

pi+1. The transformation is (p, q) 7→ (shift(p), shift(q)).

In terms of the generators above, Theorem 7.9 says that cross-ratio dynamics is the generalized
cluster modular transformation τ→τ−1

−→s1,→. The above discussion shows that there are other
integrable discrete dynamics on the same space whose interactions with each other can be written
down explicitly as the relations in the generalized cluster modular group. The most interesting
one occurs when n is even where, if we conjugate cross-ratio dynamics by the automorphism in
item 3, we get a generalized cluster modular transformation that we call switch dynamics.

Let us mention the interpretation of the three geometrically non-trivial operations above
in terms of discrete integrable systems. Recall from the beginning of Section 1.3 that a so-
lution of the cross-ratio dynamics system may be seen as a map f : Z2 → CP1, such that
fi,0 = pi and fi,1 = qi. We view each row as a twisted n-gon and the four vertices on the
boundary of any quad, i.e., (1 × 1)-square, are required to satisfy the cross-ratio condition
cr(fi,j , fi,j+1, fi+1,j , fi+1,j+1) = αi. Then, cross-ratio dynamics corresponds to a vertical trans-
lation by one unit in Z2. A priori, there is a one-parameter family of choices for r (resp. o)
such that the cross-ratios formed by the quads between q and r (resp. o and p) are αi, but after
imposing the monodromy condition in the twisted case, there is only one choice.
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Similarly, switch dynamics is related to the corresponding discrete equation of Toda type [7]
of the cross-ratio dynamics system. The Toda type equation is a lattice equation satisfied by
the even (resp. odd) parity vertices of a solution of the cross-ratio dynamics system. Thus, the
even (resp. odd) vertices of the cross-ratio dynamics system satisfy an equation independently
of the odd (resp. even) vertices. Moreover, a solution of the Toda type equation on the even
(resp. odd) vertices can be extended to a solution of the cross-ratio dynamics system, but there
is a one-parameter family of such extensions on Z2. Again, upon imposing the monodromy
condition in the twisted case, the one-parameter family reduces to only two extensions. Given
one extension, there is thus exactly one other such extension, and this defines switch dynamics
by alternately choosing the other odd (resp. even) extension.

p0 p1

p2

p3 p4

q0 q1

q2

q′2

q3 q4

α0 α1 α2 α3

1

p0 p1

p2

p3 p4

q0 q1

q′2

p′2

q3 q4

α0 α1 α2 α3

1

Figure 21. Illustration of s1,↓ around the cube formed by p1, p2, p3, p′2, q1, q2, q3 and q′2. On

these pictures, we are requiring that the cross-ratio of the four points around any quad be equal to the

ratio of the parameters attached to the two blue lines crossing the quad. The three blue lines with

parameters α1, α2 and 1 cycle around the cube.

Finally, si,↓ corresponds to introducing a “fault” in the lattice; see Figure 21. On that
figure we start with the points p1, p2, p3, q1, q2, q3 satisfying the two cross-ratio equations
corresponding to the two front faces of the cube. We then compute q′2 using the equation
cr
(
q2, q1, q3, q

′
2

)
= α2/α1 corresponding to the top face. There are three possible ways to com-

pute p′2, using any equation corresponding to one of the three hidden faces of the cube. They
actually give the same result and this fact is called 3D-consistency of the cross-ratio system [7].

7.4 Square TCD map

For n even, consider the graph Γn in T for which a fundamental domain is obtained by gluing
the cylinder graphs Gi shown on the left side of Figure 22 for i ∈

{
1, 2, . . . , n2

}
in the order

G1G2 · · ·Gn
2
, so that w2n+1 is identified with w1 and w2n+2 with w2 (see the left side of Figure 23

for Γ6). Similarly, for odd n, let Γn be obtained by gluing the graphs G1G2 · · ·Gn−3
2
Gn−1

2
Godd

n

from left to right and identifying w2n+1 with w1 and w2n+2 with w2 (see the right side of
Figure 23 for Γ5). Here Godd

n is the graph represented on the right picture of Figure 22.
We label some of the zig-zag paths of Γn as follows:

ξ1 := w1,b1,w2,b2, . . . ,wn,bn,w1, [ξ1] = (1, 0),

ξ2 := w′
1,b

′
1,w

′
2,b

′
2, . . . ,w

′
n,b

′
n,w

′
1, [ξ2] = (1, 0),

ζ2i−1 := w2i,b2i−1,w
′
2i,b

′
2i−1,w2i, [ζ2i−1] = (0, 1),

ζ2i := w2i, b
′
2i−1,w

′
2i, b2i−1,w2i, [ζ2i] = (0,−1),

where i ∈
{
1, 2, . . . , ⌊n2 ⌋

}
, and for n odd, we also define ζn := w1bnw

′
1b

′
nw1 where [ζn] = (0, 1).

Using the basis (γz, γw), we identify H1(T,Z) with Z2. Then, the Newton polygon of Γn is

NΓn =

{
Convex-hull

{
(0, 0), (2, 0),

(
0, n2

)
,
(
2, n2

)}
if n is even, (Figure 24, left),

Convex-hull
{
(0, 0), (2, 0),

(
0, n−1

2

)
,
(
2, n+1

2

)}
if n is odd (Figure 24, right).
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w2i−1

w′
2i−1

b2i−1

b′2i−1

w′
2i

w′
2i

w2i

1

−u2i−1

1

1

−1−α2i−1

u2i−1
w

1

w2i+1

w′
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Figure 22. The building block graphs Gi and Godd
n .

For any n, the faces of Γn are labeled by their face weights Xi, Yi for i ∈ {1, 2, . . . , n} as
shown in Figure 22. A set of generators for the coordinate ring OLΓn

is given by{
X±1

1 , . . . , X±1
n , χ±1

[ζ1]
, . . . , χ±1

[ζn]
, χ±1

[ξ1]

}
.

Let λ ∈ C× and let X λ
NΓn ,α⃗

(
resp. LλΓn,α⃗

)
denote the Poisson subvariety of XNΓn

(
resp. LΓn

)
,

where χ[ξ1] = λ and

χ[ζk] :=

{
1− αk if k is odd,

1
1−αk

if k is even,

where k ∈ {1, 2, . . . , n}. The coordinate ring Oλ
LΓn,α⃗

is generated by
{
X±1

1 , . . . , X±1
n

}
. We define

the birational map

πα⃗ : X λ
NΓn ,α⃗

⊃ LλΓn,α⃗ → (C \ {0,−1})n

by π∗
α⃗ui := Xi for all i ∈ {1, 2, . . . , n}. Similarly to Lemma 7.2 and Proposition 7.3, π∗

α⃗vi = Yi
for all i ∈ {1, 2, . . . , n} and πα⃗ is Poisson.

Let (p, q,M) ∈ Un and let [wt] ∈ X λ
NΓn ,α⃗

be such that

u−1 ◦ πα⃗([wt]) = (p, q,M).

The left picture of Figure 22 shows edge weights and Kasteleyn signs. Let P : W
(
Γ
n,Â
)
→ CP1

denote the twisted TCD map associated to [wt]. We label the vertices of Γ
n,Â as in Figure 22.

Lemma 7.12. We have (see Figure 23) Pwi = pi and Pw′
i
= qi for all i ∈ Z, up to a common

projective transformation. The monodromy matrix of the twisted TCD map P coincides with the
monodromy matrix M of the pair of polygons (p, q).
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Figure 23. The relevant bipartite graphs to describe a pair of curves of length n = 6 (left) and n = 5

(right). Here the top and the bottom sides of each graph are identified, yielding the cylinder graphs Γ6,A

and Γ5,A. If we additionally identify the left and right sides of each graph, we obtain the torus graphs Γ6

and Γ5. In blue we indicate how the face weights are related to the coordinates on the space of pairs of

α⃗-related twisted polygons.

(0, 0) (2, 0)

(
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) (
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)
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Figure 24. The Newton polygon NΓn
of Γn for even n (left) and odd n (right).

The Kasteleyn matrix of Gi is

KGi(w) =





1 0 0 0
0 1 0 0

0 0 1 0
0 0 0 1

α2i−1u2i−1u2i α2i−1u2i−1u2i 1 −u2i−1

α2i−1(1− α2i)w α2i−1 −1−α2i−1

u2i−1
w 1

so that

ΠGi(w) =
α2i−1

(1− α2i−1)w − 1

[
u2i−1(u2i + (1− α2i)w) u2i−1(1 + u2i)

(1− α2i)w + u2i(1− α2i−1)w 1 + u2i(1− α2i−1)w

]
,

detΠGi(w) =

(
α2i−1

(1− α2i−1)w − 1

)
((1− α2i)w − 1)α2i−1u2i−1u2i,

detΠGi(w) = α2i−1α2iu2i−1u2i.
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Similarly, we compute

ΠGodd
n

(w) =
αn

(1− αn)w − 1

[
1 (1− αn)w
un un

]
,

detΠGodd
n

(w) =
αn

(1− αn)w − 1
(−αnun),

detΠGodd
n

(1) = αnun.

Therefore, for all n, we get

detΠ(1) = α[n]u[n].

Let P (z, w) denote the characteristic polynomial of Γn, normalized so that

det(zI +Π(w)) =
αodd∏

i odd((1− αi)w − 1)
P (z, w).

Let H(1,k) denote the coefficient of zwk in P (z, w) for k = 0, . . . , n2 , so that when k ∈
{
1, 2, . . . ,

n
2 − 1

}
, they are the Hamiltonians of the cluster integrable system. Then, we have

n
2∑

k=0

H(1,k)w
k =

∏n
2
i=1((1− α2i−1)w − 1)

αodd
trΠ(w).

Since each (1 − αi) inside each of the matrices whose product is Π(w) appears with a w, the
homogeneous component of degree k in 1− α1, 1− α2, . . . , αn is H(1,k)w

k.

Theorem 7.13. Let k ∈
{
1, 2, . . . , ⌊n+1

2 ⌋ − 1
}
and let αi = α for all i. We have:

1. The homogeneous degree k component of
∑⌊n

2
⌋

d=0H(1,d) as a polynomial in the variables
α1, . . . , αn is, up to a sign, equal to√

X[n]α[n]π
∗
α⃗ ◦ Λ

∗
α⃗

(
Fk(c)√
c[n]

)
,

which is the product of the Casimir
√

X[n]α[n] with the pullback of an AFIT Hamiltonian.

2. The homogeneous degree k component of
∑⌊n

2
⌋

d=0H(1,d) as a polynomial in 1−α1, . . . , 1−αn

is the dimer Hamiltonian H(1,k).
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Figure 25. Step 1: Insertion of x1.

As in Theorem 7.9, we have the following.
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Figure 26. Step 2: Replacing (pi, pi+1) with (xi+1, xi+2).
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Figure 27. Step 3: Local configuration near p1 after Step 2. Apply Step 1 backwards to obtain Γn.

Theorem 7.14. Suppose [wt] ∈ X λ
NΓn ,α⃗

is such that u−1 ◦πα⃗([wt]) = (p, q,M). Consider the se-
quence of moves shown in Figures 25, 26 and 27, and let µ denote the induced birational map
of weights. Then, the following diagram commutes:

X λ
NΓn ,α⃗

Un

X λ
NΓn ,α⃗

Un

u−1 ◦ πα⃗

µ να⃗

u−1 ◦ πα⃗

.

We now explain how the sequence in Theorem 7.14 is related to geometric R-matrices.
Let n ≥ 2. We first transform the graphs Γn into graphs Γ̃n as follows. Recall that Γn pos-
sesses two zig-zag paths with homology (1, 0), the path ξ1 which goes through all the white
vertices carrying the qi’s and the path ξ2 which goes through all the white vertices carrying
the pi’s. We modify the path ξ2 by contracting all the 2-valent white vertices carrying points
of the form p2i−1 with 1 ≤ 2i− 1 ≤ n (this concerns every white vertex carrying a point of the
form p2i−1 except in the odd n case the trivalent white vertex which carries p1) and we hori-
zontally expand all the white vertices carrying points of the form p2i with 1 ≤ 2i ≤ n, in such
a way that each of the two new white vertices created by such an expansion is connected to one
black neighbor in ξ1 and to another black neighbor in ξ2. We call Γ̃n the graph obtained from
this procedure. Using the terminology of [9], this corresponds to putting the 2-loop graph Γn in
its 1-expanded form. We have depicted Γ̃6 on Figure 28.

The sequence in Theorem 7.14 is a sequence of local moves on TCD maps starting and ending
with a TCD map on Γn. It can be seen as a sequence of dimer local moves starting and ending
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q2 q4 q6

q2 q4 q6

q1 q3 q5 q7

p2 p2 p4 p4 p6 p6

→

→

× × ×

× × ×

Figure 28. The graph Γ̃6. The two arrows on the left indicate the two endpoints to which a bigon is

attached and the stars indicate the string of hexagonal faces traversed by spider moves before coming

back to the starting point and deleting the bigon.

with Γn. Since the transformation of Γn into Γ̃n only involves contractions and expansions of
degree 2 vertices, the sequence can be turned into a sequence of dimer local moves starting and
ending with Γ̃n. Up to contractions and expansions of degree 2 vertices, the latter sequence of
dimer local moves is exactly the one described above for the geometric R-matrix transformation.

A Schur complement

Suppose M =
[
A B
C D

]
is a (p+ q)× (r + q) block matrix with D an invertible q × q matrix. Let

V := cokerM . Let ei denote the ith basis column vector, and let vi ∈ V denote the image of ei
under the cokernel map. Let M/D := A−BD−1C denote the Schur complement.

Theorem A.1 (Schur determinant formula [43]). If M is a square matrix (p = r), then we have

det(M) = det(D) det(M/D).

Theorem A.2. cokerM/D ∼= cokerM , and under this identification the cokernel map of M/D
is ei 7→ vi for i = 1, . . . , p.

Proof. After a change of basis, M takes the block diagonal form
[
M/D 0
0 D

]
,

M =

[
I BD−1

0 I

] [
M/D 0
0 D

] [
I 0

D−1C I

]
.

Since D is invertible, we have cokerD = 0. Therefore, we have

cokerM ∼= cokerM/D ⊕ cokerD ∼= cokerM/D.

Under the change of basis
[
I BD−1

0 I

]
of Cp+q, we have

ei 7→
[
I BD−1

0 I

]−1

ei = ei for i = 1, 2, . . . , p,

from which we see that the cokernel map ofM/D, when we identify cokerM/D with cokerM=V ,
is given by ei 7→ vi. ■
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