|
SIGMA 21 (2025), 047, 11 pages arXiv:2503.03339
https://doi.org/10.3842/SIGMA.2025.047
Maximal Graded Solvable Subalgebras of Simple Finite-Dimensional Vectorial Lie Superalgebras
Irina Shchepochkina
Independent University of Moscow, 11 B. Vlasievsky per., 119 002 Moscow, Russia
Received March 06, 2025, in final form June 19, 2025; Published online June 24, 2025
Abstract
Here, in every simple finite-dimensional vectorial Lie superalgebra considered with the standard grading where every indeterminate is of degree 1, the maximal graded solvable subalgebras are classified over $\mathbb{C}$.
Key words: Lie superalgebra; Lie algebra; maximal subalgebra; solvable subalgebra.
pdf (389 kb)
tex (20 kb)
References
- Bai W., Liu W., Liu X., Melikyan H., Maximal subalgebras for Lie superalgebras of Cartan type, J. Algebra Appl. 14 (2015), 1550013, 38 pages, arXiv:1304.5618.
- Bai W., Liu W., Melikyan H., Maximal subalgebras of Lie superalgebras of Cartan type over fields of characteristic zero, J. Algebra 404 (2014), 176-199.
- Bouarroudj S., Grozman P., Lebedev A., Leites D., Shchepochkina I., Simple vectorial Lie algebras in characteristic 2 and their superizations, SIGMA 16 (2020), 089, 101 pages, arXiv:1510.07255.
- Bouarroudj S., Grozman P., Leites D., Classification of finite dimensional modular Lie superalgebras with indecomposable Cartan matrix, SIGMA 5 (2009), 060, 63 pages, arXiv:0710.5149.
- Dynkin E.B., The maximal subgroups of the classical groups, in Five Papers on Algebra and Group Theory, Am. Math. Soc. Transl. II. Ser, Vol. 6, American Mathematical Society, Providence, RI, 1957, 245-378.
- Kac V.G., Lie superalgebras, Adv. Math. 26 (1977), 8-96.
- Kuznetsov M.I., Simple modular Lie algebras with a solvable maximal subalgebra, Math. USSR Sb. 30 (1976), 68-76.
- Leites D., On odd parameters in geometry, J. Lie Theory 33 (2023), 965-1004, arXiv:2210.17096.
- Ogievetsky V.I., Infinite-dimensional algebra of general covariance group as the closure of finite-dimensional algebras of conformal and linear groups, Lett. Nuovo Cimento 8 (1973), 988-990.
- Penkov I.B., Borel-Weil-Bott theory for classical Lie supergroups, J. Soviet Math. 51 (1990), 2108-2140.
- Sergeev A., Irreducible representations of solvable Lie superalgebras, Represent. Theory 3 (1999), 435-443, arXiv:math.RT/9810109.
- Shchepochkina I.M., Maximal and maximal solvable subalgebras of simple Lie superalgebras, in Problems in Group Theory and Homological Algebra, Matematika, Yaroslav. Gos. Univ., Yaroslavl, 1987, 156-161.
- Shchepochkina I.M., Maximal solvable subalgebras of Lie superalgebras $\mathfrak{gl}(m|n)$ and $\mathfrak{sl}(m|n)$, Funct. Anal. Appl. 28 (1994), 147-149.
- Shchepochkina I.M., Maximal subalgebras of the classical linear Lie superalgebras, in The Orbit Method in Geometry and Physics (Marseille, 2000), Progr. Math., Vol. 213, Birkhäuser, Boston, MA, 2003, 445-472, arXiv:1311.4131.
- Shchepochkina I.M., How to realize a Lie algebra by vector fields, Theoret. and Math. Phys. 147 (2006), 821-838, arXiv:math.RT/0509472.
- Sokolov V.V., Symmetries of evolution equations, Russian Math. Surveys 43 (1988), no. 5, 165-204.
- Zusmanovich P., On contact brackets on the tensor product, Linear Multilinear Algebra 70 (2022), 4695-4706, arXiv:2211.06638.
|
|