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Abstract. By introducing a Miura transformation, we derive a generalized super modified
Korteweg–de Vries (gsmKdV) equation from the generalized super KdV (gsKdV) equation.
It is demonstrated that, while the gsKdV equation takes Kupershmidt’s super KdV (sKdV)
equation and Geng–Wu’s sKdV equation as two distinct reductions, there are also two
equations, namely Kupershmidt’s super modified KdV (smKdV) equation and Hu’s smKdV
equation, which are associated with the gsmKdV equation. By analyzing the flows within
the gsKdV and gsmKdV hierarchies, we specifically derive the first negative flows associated
with both hierarchies. We then construct a number of Bäcklund–Darboux transformations
(BDTs) for both the gsKdV and gsmKdV equations, elucidating the interrelationship be-
tween them. By proper reductions, we are able not only to recover the previously known
BDTs for Kupershimdt’s sKdV and smKdV equations, but also to obtain the BDTs for the
Geng–Wu’s sKdV/smKdV and Hu’s smKdV equations. As applications, we construct some
exact solutions for those equations. Since all flows of the sKdV or smKdV hierarchy share
the same spatial parts of spectral problem, thus these Darboux matrices and spatial parts
of BTs are applicable to any flow of those hierarchies.
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super KdV equations
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1 Introduction

The celebrated Korteweg–de Vries (KdV) equation, which models solitary waves in shallow
water, is one of most important integrable systems. It was related to a similar nonlinear partial
differential equation, i.e., modified KdV (mKdV) equation, via the Miura transformation. Both
KdV and mKdV equations are integrable and their integrable properties such as Lax pairs,
multi-soliton solutions, infinitely many symmetries and conserved quantities, bi-Hamiltonian
structures, and solvability by the inverse scattering transformation, are well known. With the
development of theory of integrable systems, numerous classical systems including KdV and
mKdV equations are extended to super or supersymmetric (see [5, 7, 8, 9, 10, 11, 12, 13, 15, 16,
17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 32, 34, 35, 36, 37, 39, 43] and references therein).

Various different super extended versions of KdV/mKdV equations exist in the literature.
Kupershmidt was the first to conduct such study and in 1984 he proposed a super KdV (sKdV)
equation with one bosonic field and one fermionic field, and a super mKdV (smKdV) equation
together with the Miura transformation and Lax pairs [28]. Holod and Pakuliak in 1989 gen-
eralized Kupershmidt’s sKdV equation and considered a generalized sKdV (gsKdV) equation
which involves one bosonic field and two fermionic fields [19]. In 1997, Hu proposed another
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smKdV equation of one bosonic field and two fermionic fields, and also gave its spectral prob-
lem [21]. In fact, Hu’s smKdV equation is related to the gsKdV equation of Holod–Pakuliak via
a Miura transformation, so the former is a modification of the latter [41]. Geng and Wu in 2010
proposed a new sKdV equation of one bosonic field and one fermionic field and constructed its
spectral problem, bi-Hamiltonian structures, and infinite conservation laws [11]. Also, replacing
fermionic fields by the so-called ren-fields, Lou extended the Holod–Pakuliak’s gsKdV equation
to a ren-KdV type equation and gave the corresponding spectral problem [30].

The super systems mentioned above have been studied and their various properties have
been established. The symmetries for Kupershmidt’s sKdV/smKdV equations were constructed
in [23, 24]. Bäcklund–Darboux transformations (BDTs) were established to generate associ-
ated integrable discrete systems for super nonlinear Schrödinger equations [16] and gsKdV
equations [38, 42]. They were also employed to construct Grassman extensions of Yang–
Baxter maps [1, 15] and then Grassman extended discrete integrable systems from Yang–Baxter
maps [25, 26]. Aguirre et al. in 2018 investigated the integrability of the supersymmetric mKdV
hierarchy in the presence of defects by constructing its Bäcklund transformation [4]. Subse-
quently, Adans et al. considered the gauge Miura transformation for the entire supersymmet-
ric KdV and mKdV hierarchies [2]. Recently, nonlocal symmetries and Bäcklund transforma-
tion (BT) of Kupershmidt’s smKdV equation were constructed by Zhou, Tian and Li [40]. Very
Recently, for Hu’s smKdV equation, Zhou, Tian and Yang [41] obtained its bi-Hamiltonian struc-
ture and Darboux transformations. Those authors also found the Darboux transformation (DT)
for Kupershmidt’s smKdV equation via reduction.

In this paper, we clarify the relationships among the super KdV/mKdV systems discussed
above and demonstrate that their Bäcklund and Darboux transformations may be constructed
from a unified viewpoint. We show that the three-component gsKdV system possesses two
reductions, namely Kupershmidt’s sKdV equation and Geng–Wu’s sKdV equation. Then, we
construct a few BDTs for gsKdV equation and display that through reductions one of them leads
to BDT for Kupershmidt’s sKdV equation and BDT for Geng–Wu equation. Furthermore, start-
ing from a different spectral problem for gsKdV equation, we derive a Miura transformation and
the corresponding modified system, namely gsmKdV equation. Consequently, several BDTs
are constructed for gsmKdV equation and from them BDTs both for Kupershmidt’s smKdV
and Hu’s smKdV equations are recovered. As applications, some solutions for sKdV/smKdV
equations are calculated.

This paper is organized as follows. In Section 2, we introduce some basic knowledge including
Grassmann algebra, differential and integral operators. In Section 3, we first review the gsKdV
system, then construct a Miura transformation and the corresponding gsmKdV equation. We
also derive the spectral problem for the gsmKdV equation based on that of the gsKdV equation.
From the gsKdV and gsmKdV equations, we derive Kupershmit’s sKdV/smKdV equations, Hu’s
smKdV equation, and Geng–Wu’s sKdV equation. Additionally, we calculate the first negative
flows for both the gsKdV and gsmKdV hierarchies. In Section 4, we present four BDTs for the
gsKdV equation, and from the fourth one we recover a BDT for Kupershmidt’s sKdV equation
and obtain a BDT for Geng–Wu’s sKdV equation. In Section 5, by considering the gauge matrix
linear in the spectral parameter, we construct five BTs of the gsmKdV equation, the first three
are related to the four BTs of the gsKdV equation, the last one is used to derive the ones for Ku-
pershmidt’s smKdV and Geng–Wu’s smKdV equations, respectively. In Section 6, the exact so-
lutions of the gsKdV and gsmKdV equations are constructed. Section 7 summarizes the results.

2 Preliminaries

In this section, we present some basic facts and properties of Grassmann algebras [6, 31], differ-
ential and integral operators.
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Let G be a Z2-graded algebra over a field of characteristics zero (such as C or Q). Thus, G as
a vector space is a direct sum G = G0⊕G1, such that GiGj ⊆ Gi+j (mod 2). Those elements of G
that belong either to G0 or to G1 are called homogeneous, the ones in G0 are called even (bosonic,
commuting), and those in G1 are called odd (fermionic or anticommuting). In the article, we
only consider homogeneous elements.

Let a be an element in G, its parity |a| is defined to be 0 if a is even, and 1 if a is odd. The
parity of the product ab of two elements is a sum of their parities: |ab| = |a| + |b|. Grassmann
commutativity means that ba = (−1)|a||b|ab for any elements a and b. In particular, ξη = −ηξ
for all ξ, η ∈ G1 and even elements commute with all elements of G. Moreover, ξn = ηn = 0,
(ξη)n = 0, for any integer n ≥ 2. Thus any odd element is nilpotent.

Let A and D be m ×m and n × n matrices with even entries, respectively. Let B and C
be m× n and n×m matrices with odd entries, respectively. Then the super matrices considered
in the present paper are of block type W =

(
A B
C D

)
. Such matrices in the standard format are

even matrices [31]. Supertrace of W is defined by

str(W ) = tr(A)− tr(D).

If A or D is invertible, then the Berezinian (superdeterminant) of W is defined as

Ber(W ) = det(A) det
(
D −CA−1B

)−1
= det

(
A−BD−1C

)
det(D)−1.

If both the blocks A and D are invertible, then W is invertible and its inverse matrix is given by

W−1 =

( (
A−BD−1C

)−1 −A−1B
(
D −CA−1B

)−1

−D−1C
(
A−BD−1C

)−1 (
D −CA−1B

)−1

)
.

Let ∂x and ∂−1
x denote differentiation and integration with respect to an even variable x,

respectively, satisfying identity ∂x∂
−1
x = 1. They obey the following identities:

∂nx ◦ a =
n∑
k=0

(
n

k

)(
∂kxa

)
∂n−kx , ∂−1

x ◦ a∂nx =
n−1∑
k=0

(−1)k
(
∂kxa

)
∂n−1−k
x + (−1)n∂−1

x ◦ (∂nxa),

where a ∈ G, ∂kxa = ∂ka
∂xk

, n is a positive integer. Therefore, the following formulae hold:

∂x(ξη) = (ξη)x = ξxη + ξηx, (ξξx)x = ξxξx + ξξxx = ξξxx,

∂−1
x (ξx) = ξ + µ, ∂−1

x (ξηx) = ξη − ∂−1
x (ξxη), ∂−1

x (ξξxx) = ξξx + c,

where ξ, η ∈ G1, µ and c are odd and even integration constants, respectively.

Remark 2.1. In the following sections, unless otherwise stated, Latin letters denote bosonic
field variables, while Greek letters represent fermionic ones.

3 Super KdV type hierarchies

In this section, we first employ a Miura transformation on the gsKdV equation to derive the
gsmKdV equation. We then consider two reductions for both systems. Next, we analyze the
flows within the gsKdV and gsmKdV hierarchies, in particular, we provide the first negative
flows for both hierarchies.
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3.1 Super KdV type equations and Miura transformations

Let us start from the gsKdV equation of Holod and Pakuliak [19]

ut = uxxx − 6uux + 6(ξxη − ξηx)x, ηt = 4ηxxx − 6uηx − 3uxη, (3.1a)

ξt = 4ξxxx − 6uξx − 3uxξ, (3.1b)

where subscripts denote partial derivatives, t and x are temporal and spatial variables, respec-
tively; u = u(x, t) is bosonic field variable, ξ = ξ(x, t), η = η(x, t) are fermionic field variables.
In addition to the space and time shift invariant, the system (3.1) is also invariant under the
following transformations:

u→ u− c, ∂t → ∂t + 6c∂x, ∂x → ∂x; (3.2)

ξ → cξ, η → c−1η;

u→ c2u, ξ → c
3
2 ξ, η → c

3
2 η, ∂x → c∂x, ∂t → c3∂t,

where c is a bosonic constant.
System (3.1) has two different spectral problems, one is due to Holod and Pakuliak [19] and

the other, given by Lou [30] recently, is

λφ = φxx − uφ− 1

2
ξ∂−1(ηφ) +

1

2

(
∂−1(ξφ)

)
η, φt = 4φxxx − 6uφx − 3uxφ, (3.3)

where φ ≡ φ(x, t;λ) is a wave function, λ is a bosonic spectral parameter. Suppose that φ is
bosonic, let q ≡ φx/φ, ζ ≡

(
∂−1
x (ηφ)

)
/φ, δ ≡

(
∂−1
x (ξφ)

)
/φ, then (3.3) leads to

u = qx + q2 − 1

2
(δxζ − δζx)− λ, η = ζx + qζ, ξ = δx + qδ. (3.4)

Inserting (3.4) into (3.1) gives rise to

qt = 6λqx +
(
qxx − 2q3 + 3q(δxζ − δζx)

)
x
+

3

2
(δxζ − δζx)xx,

ζt = 6λζx + 4ζxxx + 6
(
qx − q2

)
ζx + 3

(
qx − q2

)
x
ζ + 3(δxζ − δζx)ζx −

3

2
(δxζ − δζx)xζ,

δt = 6λδx + 4δxxx + 6
(
qx − q2

)
δx + 3

(
qx − q2

)
x
δ + 3(δxζ − δζx)δx −

3

2
(δxζ − δζx)xδ.

The argument presented thus far remains valid if ξ, η, ζ, δ are so-called Ren-fields [30].
However, in the rest of this paper, we consider only the case where they are fermionic fields.

It is noted that spectral problem (3.3) may be related to the one derived by Holod and
Pakuliak. To see it, by introducing y = y(x, t;λ) such that y = q + 1

2δζ, from (3.4) one obtains

u = yx + y2 − ξζ − λ, η = ζx + yζ, ξ = δx + yδ. (3.5)

Furthermore, introduce a bosonic nonzero variable ψ ≡ ψ(x, t;λ) such that y = ψx/ψ. Then
the last two equations of (3.5) give ζ =

(
∂−1
x (ηψ)

)
/ψ, δ =

(
∂−1
x (ξψ)

)
/ψ, and the first equation

of (3.5) leads to the spatial part of spectral problem [19]

Lψ = λψ, L = ∂2x − u− ξ∂−1
x ◦ η, (3.6)

and the related temporal part is

ψt = 4
(
L

3
2
)
+
ψ, 4

(
L

3
2
)
+
= 4∂3x − 6u∂x − 3ux − 6ξη, (3.7)
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where ( )+ refers to the differential part of a pseudo-differential operator. LetΨ =
(
ψ,ψx,

∂−1(ηψ)
)
T, one may rewrite (3.6) and (3.7) as the matrix form

Ψx = LΨ, L =

 0 1 0
λ+ u 0 ξ
η 0 0

 , (3.8a)

Ψt = TΨ, T =

 ux − 2ξη 4λ− 2u 4ξx
T21 −ux − 2ξη 4ξxx + (4λ− 2u)ξ

4ηxx + (4λ− 2u)η −4ηx −4ξη

 , (3.8b)

where T21 = uxx + (λ+ u)(4λ− 2u) + 2(ξxη − ξηx).
Notice that the above variables y, q, ζ, δ depend on λ. In fact, under the Galilean boost (3.2)

with c = λ, λ can be eliminated. Thus from (3.4) we obtain the following Miura transformation:

u = qx + q2 − 1

2
(δxζ − δζx), η = ζx + qζ, ξ = δx + qδ, (3.9)

and the corresponding gsmKdV equation is given by

qt =
(
qxx − 2q3 + 3q(δxζ − δζx)

)
x
+

3

2
(δxζ − δζx)xx, (3.10a)

ζt = 4ζxxx + 6
(
qx − q2

)
ζx + 3

(
qx − q2

)
x
ζ + 3(δxζ − δζx)ζx −

3

2
(δxζ − δζx)xζ, (3.10b)

δt = 4δxxx + 6
(
qx − q2

)
δx + 3

(
qx − q2

)
x
δ + 3(δxζ − δζx)δx −

3

2
(δxζ − δζx)xδ, (3.10c)

where q = q(x, t), ζ = ζ(x, t), δ = δ(x, t). By y = q + 1
2δζ, (3.10) may be equivalently formu-

lated as

yt =
(
yxx − 2y3

)
x
+ 3(ζxδx − ζδxx + yζxδ − yζδx − yxζδ)x,

ζt = 4ζxxx + 6
(
yx − y2

)
ζx + 3

(
yx − y2

)
x
ζ + 3ζx(δx + yδ)ζ,

δt = 4δxxx + 6
(
yx − y2

)
δx + 3

(
yx − y2

)
x
δ + 3ζδxxδ − 3(ζx − yζ)δxδ.

It is interesting to point out that, through ξ = δx + yδ, above system may also be brought to
Hu’s smKdV equation [21]

yt =
(
yxx − 2y3 + 3ζxξ − 3ζξx

)
x
, (3.11a)

ζt = 4ζxxx + 6
(
yx − y2

)
ζx + 3

(
yx − y2

)
x
ζ + 3ζxξζ, (3.11b)

ξt = 4ξxxx − 6
(
yx + y2

)
ξx − 3

(
yx + y2

)
x
ξ − 3ξxζξ. (3.11c)

The Lax representation or spectral problem of the gsmKdV equation (3.10) may be obtained
from the spectral problem of gsKdV equation. Indeed, consider the following gauge transforma-
tion:

Φ = GΨ, G =

 1 0 0
−q + 1

2δζ 1 −δ
−ζ 0 1

 .

Then from (3.8) and Miura transformation (3.9), we have

Φx = UΦ, U =

q + 1
2δζ 1 δ
λ −q + 1

2δζ 0
0 −ζ δζ

 , (3.12a)

Φt = MΦ, M = (Gt +GT )G−1. (3.12b)
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As y = q+ 1
2δζ, ζ = ζ, δ = δ is an invertible change of variables, above U , M may be equivalently

rewritten in terms of y, ζ and δ.
Now we consider the possible reductions of above three-component systems (3.1) and (3.10)

together with the Miura transformation (3.9), there are two cases as follows.

Reduction 3.1. Consider the reduction condition ζ = δ which implies ξ = η. Then from (3.1)
and (3.10), we have Kupershmidt’s sKdV equation

ut = uxxx − 6uux + 12ηxxη, ηt = 4ηxxx − 6uηx − 3uxη, (3.13)

and Kupershmidt’s smKdV equation

qt =
(
qxx − 2q3 − 6qζζx

)
x
− 3(ζζx)xx, (3.14a)

ζt = 4ζxxx + 6
(
qx − q2

)
ζx + 3

(
qx − q2

)
x
ζ, (3.14b)

respectively. The corresponding Miura transformation is given by u = qx + q2 + 1
2(ζxζ − ζζx),

η = ζx + qζ. Thus, the results of Kupershmidt are recovered [28].

Reduction 3.2. Consider the condition δ = ζxx
(
1− 1

2ζxζ
)
+
(
qx−q2

)
ζ that implies ξ = ηxx−uη.

Under this reduction, (3.1) is reduced to

ut =uxxx − 6uux + 6(ηxηxx − ηηxxx + 2uηηx)x, (3.15a)

ηt =4ηxxx − 6uηx − 3uxη, (3.15b)

which is equivalent to Geng–Wu’s sKdV equation [11]

vt = vxxx − 6vvx − 12vηxxη − 6vxηxη + 3ηxxxxη + 6ηxxxηx, (3.16a)

ηt = 4ηxxx − 6vηx − 3vxη, (3.16b)

by v = u+ ηηx. And the modified equation (3.10) becomes

qt =
(
qxx − 2q3 + 3qa

)
x
+

3

2
axx, (3.17a)

ζt = 4ζxxx + 6
(
qx − q2

)
ζx + 3

(
qx − q2

)
x
ζ + 3ζxxxζζx, (3.17b)

with a ≡ ζxxxζ − ζxxζx + 2
(
qx − q2

)
ζxζ. The corresponding Miura transformation is given

by v = qx + q2 − qζxxζ − 1
2(ζxxζ)x, η = ζx + qζ.

Remark 3.3. It is remarked that the super KdV and mKdV equations described above are
fermionic extensions of their classical counterparts, rather than supersymmetric ones. Taking
Kupershmidt’s sKdV equation (3.13) as an example, we now compare it with the supersymmetric
KdV equation. The well-known supersymmetric KdV equation in component form [32, 34] is
given by

ut = uxxx + 6uux − 3ηηxx, ηt = ηxxx + 3(uη)x. (3.18)

As observed by Mathieu [34], while (3.13) and (3.18) appear quite similar, they are fundamentally
different. In fact, (3.18) is invariant under the following supersymmetric transformation u →
u + µηx, η → η + µu, where µ is a fermionic parameter. In this situation, by extending the
spatial variable x to a doublet (x, θ) where θ is an odd variable, one may introduce a super space
derivative D = ∂θ+θ∂x, and a fermionic super field α = α(t, x, θ) such that α = η(x, t)+θu(x, t).
In this way (3.18) is rewritten as the following form:

αt = αxxx + 3(α(Dα))x. (3.19)
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However, (3.13) is not invariant under either of the following supersymmetric transforma-
tions η → η + µu

c , u → u + cµηx, or u → u + µη
c , η → η + cµux, where c is a certain bosonic

constant. The reason is that the coefficients of ut, uxxx and ηt, ηxxx in (3.13) or (3.15) are dis-
proportionate thus it is impossible to combine these equations. Thus (3.18) or (3.19) is known
as the supersymmetric KdV equation while (3.13) and (3.15) are the fermionic or super KdV
equations.

3.2 The flows of the gsKdV and gsmKdV hierarchies

Let us first consider the positive flows of the gsKdV hierarchy. In fact, the Lax pairs are given by

Lψ = λψ, ψtN = 4
(
L

N
2
)
+
ψ, (3.20)

where u = u(x, tN ), ξ = ξ(x, tN ), η = η(x, tN ), N = 1, 3, 5, . . . , t3 = t, then Lax equation
LtN =

[
4
(
L

N
2

)
+
, L
]
provides N -th flow of the gsKdV hierarchy. One may also write (3.20) as

the matrix form

Ψx = LΨ, ΨtN = TNΨ, (3.21)

where T 3 = T , and the N -th flow of the gsKdV hierarchy can be derived by the zero curvature
condition

LtN − TN,x + [L,TN ] = 0. (3.22)

From (3.21) and Miura transformation (3.9), we have

Φx = UΦ, ΦtN = MNΦ, MN = (GtN +GTN )G
−1, (3.23)

where q = q(x, tN ), ζ = ζ(x, tN ), δ = δ(x, tN ), M3 = M . Then the zero curvature condition

U tN −MN,x + [U ,MN ] = 0 (3.24)

gives rise to N -th flow of the gsmKdV hierarchy.
It is possible to construct the negative flows. Let N be a negative integer and take TN , MN

as follows:

TN = λNT (N) + λN+1T (N+1) + · · ·+ T (0),

MN = λNM (N) + λN+1M (N+1) + · · ·+M (0),

where T (i), M (i), i = N, . . . , 0, are independent in λ. By choosing suitable T (i), M (i), the
zero curvature conditions (3.22) and (3.24) yield the negative flows of the gsKdV and gsmKdV
hierarchies, respectively. We provide one example below.

Let

T−1 =
1

λ


Z−wx,t−1

2 wt−1 −ξt−1

λwt−1 + 2wxwt−1 − 1
2wxx,t−1 +

1
2(ξηt−1 − ξt−1η)

Z+wx,t−1

2 wt−1ξ − ξx,t−1

ηwt−1 − ηx,t−1 ηt−1 Z

 ,

where u = 2wx, Z is determined by Zx = (ξη)t−1 , then (3.22) leads to

wxxx,t−1 = 8wxwx,t−1 + 4wxxwt−1 + 3(ξηx,t−1 − ξx,t−1η) + ξxηt−1 − ξt−1ηx, (3.25a)

ξxx,t−1 =
3

2
wx,t−1ξ + 2ξt−1wx + ξxwt−1 −

1

2
ξZ, (3.25b)

ηxx,t−1 =
3

2
wx,t−1η + 2ηt−1wx + ηxwt−1 +

1

2
ηZ, (3.25c)

which is the first negative flow of the gsKdV hierarchy.
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Let

M−1 =

 0 e2r

λ 0
e−2r 0 −δt−1

−ζt−1 0 0

 ,

where q = rx, then (3.24) leads to

rx,t−1 = 2 sinh 2r − 1

2
(δt−1ζ + ζt−1δ), δx,t−1 = e−2rδ − rxδt−1 −

1

2
δζδt−1 , (3.26a)

ζx,t−1 = e−2rζ − rxζt−1 −
1

2
ζδζt−1 , (3.26b)

which is the first negative flow of the gsmKdV hierarchy, i.e., a super extension of the sinh-
Gordon equation.

Upon substituting the Miura transformation (3.9) and the equation (3.26) into (3.25), we
have wt−1 = e2r, Z = e2rδζ. The first equation is the temporal Miura transformation which is
exactly the one appeared in [3].

We may also consider the two reductions mentioned in Section 3.1 and obtain the negative
flows of Kupershmidt’s sKdV hierarchy and Geng–Wu’s sKdV hierarchy.

Reduction 3.4. Consider the reduction condition ζ = δ which implies ξ = η, Z = 0. Then
from (3.25) and (3.26) we have the first negative flow of Kupershmidt’s sKdV hierarchy

wxxx,t−1 = 8wxwx,t−1 + 4wxxwt−1 + 6ηηx,t−1 + 2ηxηt−1 ,

ηxx,t−1 =
3

2
wx,t−1η + 2ηt−1wx + ηxwt−1 ,

and the first negative flow of Kupershmidt’s smKdV hierarchy

rx,t−1 = 2 sinh 2r − ζt−1ζ, ζx,t−1 = e−2rζ − rxζt−1 ,

respectively. The corresponding Miura transformation is given by

wx =
1

2

(
rxx + r2x

)
− 1

2
ζxζ, η = ζx + rxζ, wt−1 = e2r.

Reduction 3.5. Consider the condition δ = ζxx − 1
2ζxxζxζ +

(
rxx − r2x

)
ζ which gives ξ =

ηxx − 2wxη, Z = (ηxη)t−1 = e2rζxxζ. Under this reduction, (3.25) is reduced to

wxxx,t−1 = 8wxwx,t−1 + 4wxxwt−1 + (3η∂x∂t−1 − 3ηx,t−1 − ηt−1∂x + ηx∂t−1)(ηxx − 2wxη),

ηxx,t−1 =
3

2
wx,t−1η + 2ηt−1wx + ηxwt−1 +

1

2
ηηxηt−1 ,

whose modified equation becomes

rx,t−1 = 2 sinh 2r − 1

4
(ζt−1 − ζ∂t−1)

(
2ζxx − ζxxζxζ + 2

(
rxx − r2x

)
ζ
)
,

ζx,t−1 = e−2rζ − rxζt−1 −
1

2
ζζxxζt−1 .

The corresponding Miura transformation is given by

wx =
1

2

(
rxx + r2x

)
+

1

4
(ζxxζx − ζxxxζ)−

1

2
ζxζ
(
rxx − r2x

)
, η = ζx + rxζ, wt−1 = e2r.
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4 Bäcklund–Darboux transformations for gsKdV equation

In this section, for gsKdV equation (3.1) we first recall BDTs [38] and build new BDTs. Then
we will show that a BDT for Geng–Wu’s sKdV equation (3.16) may be resulted by a proper
reduction. For convenience, we introduce the potential variables defined by

u = 2wx, ũ = 2w̃x, û = 2ŵx, ̂̃u = 2 ̂̃wx, u = 2wx.

Let Ψ be the solution of (3.21). Consider a gauge transformation

Ψ̃ = WΨ, (4.1)

such that

Ψ̃x = L̃Ψ̃, Ψ̃tN = T̃NΨ̃, (4.2)

where L̃ and T̃N are L and TN but with u, ξ and η replaced by ũ, ξ̃ and η̃, respectively. The
compatibility of (3.21), (4.1) and (4.2) lead to the conditions Ψ̃x =

(
Ψ̃
)
x
and Ψ̃tN =

(
Ψ̃
)
tN
,

which yield

W x +WL− L̃W = 0, (4.3a)

W tN +WTN − T̃NW = 0, (4.3b)

respectively. The gauge transformation Ψ̃ = WΨ, together with condition (4.3a), defines a DBT
for the spectral problem Ψx = LΨ, while the transformation, combined with (4.3), yields a DBT
for (3.21), i.e., for tN -flow of the gsKdV hierarchy. Since all flows share the identical spatial part
of the associated linear problem, the entire hierarchy possesses the congruent Darboux matrix
and spatial part of the BT, and from (4.3b) one may obtain the temporal part of BT. Due to
the associated Lax matrices are traceless, hence the derived Darboux matrices have constant
determinants. In the following we mainly consider the N = 3 case, namely the third-order flow.

Suppose that W is linear in λ. Then we have the following four DBTs for (3.8) and the
related systems.

Proposition 4.1. Let

Ψ̃ = W 1Ψ,

W 1 = W 1(λ1, w, ξ, w̃, η̃) =

 w̃ − w 1 0

λ− λ1 + (w̃ − w)2 + ξη̃ w̃ − w ξ
η̃ 0 1

 . (4.4)

Then (3.8a), (4.4) and Ψ̃x = L̃Ψ̃ are compatible if and only if the following BT

η̃x = −η + (w̃ − w)η̃, ξx = ξ̃ − (w̃ − w)ξ, w̃x = −wx + (w̃ − w)2 − λ1 + ξη̃ (4.5)

holds. This BT will be referred to as BTsKdV

(
λ1;w, ξ, η, w̃, ξ̃, η̃

)
.

Proposition 4.2. Let

Ψ̂ = W 2Ψ, W 2 =

 ŵ − w 1 −ξ̂
λ− λ2 + (ŵ − w)2 ŵ − w

(
w − ŵ

)
ξ̂(

w − ŵ
)
η −η λ− λ2 − ξ̂η

 . (4.6)

Then (3.8a), (4.6) and Ψ̂x = L̂Ψ̂ are consistent if and only if the following BT

ηx = −η̂ −
(
ŵ − w

)
η, ξ̂x = ξ +

(
ŵ − w

)
ξ̂, ŵx = −wx +

(
ŵ − w

)2 − λ2 + ξ̂η (4.7)

holds. This BT will be denoted by BTsKdV

(
λ2; ŵ, ξ̂, η̂, w, ξ, η

)
.
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The BDTs presented above are elementary BDTs. Now we use them to construct a com-
pound BDT. Let us consider BTsKdV

(
λ1; ŵ, ξ̂, η̂, ̂̃w, ̂̃ξ, ̂̃η) and BTsKdV

(
λ2; ŵ, ξ̂, η̂, w, ξ, η

)
. Then,

eliminating η̂, ξ̂x, ŵx in those BTs yields(̂̃η − η
)
x
=
(̂̃w − w

)̂̃η − (ŵ − w
)(̂̃η − η

)
, (4.8)̂̃

ξ − ξ =
(̂̃w − w

)
ξ̂, (4.9)(̂̃w − w

)
x
= λ2 − λ1 +

(̂̃w − w
)2 − 2

(̂̃w − w
)(
ŵ − w

)
+ ξ̂
(̂̃η − η

)
. (4.10)

Equations (4.9) and (4.10) allow us to obtain

ξ̂ =
̂̃
ξ − ξ̂̃w − w

, ŵ = w +
̂̃w − w

2
+
λ2 − λ1 −

(̂̃w − w
)
x
+ ξ̂
(̂̃η − η

)
2
(̂̃w − w

) . (4.11)

Inserting them into (4.8) and the last two equations of (4.7), one finds a BT with two parameters,
that is

(̂̃η − η
)
x
=

1

2

(̂̃w − w
)(̂̃η + η

)
+

(
λ1 − λ2 + ̂̃wx − wx

)(̂̃η − η
)

2
(̂̃w − w

) , (4.12a)

(̂̃
ξ − ξ

)
x
=

1

2

(̂̃w − w
)(̂̃
ξ + ξ

)
+

(
λ2 − λ1 + ̂̃wx − wx

)(̂̃
ξ − ξ

)
2
(̂̃w − w

) , (4.12b)

(̂̃w − w
)
xx

=
(
λ2 + λ1 + 2 ̂̃wx + 2wx

)(̂̃w − w
)
− 1

2

(̂̃w − w
)3

+

(̂̃w − w
)2
x
− (λ2 − λ1)

2

2
(̂̃w − w

)
−

(λ2 − λ1)
(̂̃
ξ − ξ

)(̂̃η − η
)(̂̃w − w

)2 + ξ̂̃η − ̂̃ξη. (4.12c)

The composition of these two DTs (4.4) and (4.6) leads to
̂̃
Ψ = Ŵ 1Ψ̂ = Ŵ 1W 2Ψ. Thus we

have the following proposition.

Proposition 4.3. Let

̂̃
Ψ = W 3Ψ, W 3 =

λ− λ2 +
(
ŵ − w

)(̂̃w − w
) ̂̃w − w

(
w − ̂̃w)ξ̂

W21 W22 W23(
ŵ − w

)(̂̃η − η
) ̂̃η − η λ− λ2 + ξ̂

(̂̃η − η
)
 , (4.13)

where

W21 =
[
λ− λ1 +

(̂̃w − ŵ
)2

+ ξ̂
(̂̃η − η

)](
ŵ − w

)
+
[
λ− λ2 +

(
ŵ − w

)2](̂̃w − ŵ
)
,

W22 = λ− λ1 +
(̂̃w − w

)(̂̃w − ŵ
)
+ ξ̂
(̂̃η − η

)
, W23 = −

[
λ2 − λ1 +

(̂̃w − w
)(̂̃w − ŵ

)]
ξ̂,

with the intermediate variables ŵ and ξ̂ are defined by (4.11). Then (3.8a), (4.13) and
̂̃
Ψx =

̂̃
L
̂̃
Ψ

are consistent if and only if (4.12) is satisfied.

Those BDTs may be reformulated in terms of solutions of the spectral problem (3.8) and its
adjoint problem

Ψ+
x = −Ψ+L, Ψ+

t = −Ψ+T , (4.14)

where Ψ+ =
(
−ψ+

x , ψ
+,−∂−1

x

(
ψ+ξ

))
. To do so, let Ψj =

(
ψj , ψj,x, ∂

−1
x (ηψj)

)T
be a solution

of (3.8) at λ = λj and Ψ+
j =

(
−ψ+

j,x, ψ
+
j ,−∂−1

x

(
ψ+
j ξ
))

be a solution of (4.14) at λ = λj ,
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where ψj = ψj(x, t;λj), ψ
+
j = ψ+

j (x, t;λj) are bosonic, for j = 1, 2. Introduce new variables yj ,
ζj , y

+
j , δ

+
j such that

yj ≡
ψj,x
ψj

, ζj ≡
∂−1
x (ηψj)

ψj
, y+j ≡

ψ+
j,x

ψ+
j

, δ+j ≡
∂−1
x

(
ξψ+

j

)
ψ+
j

. (4.15)

Then, it is easy to see that those variables satisfy

yj,x = u− y2j + λj + ξζj , ζj,x = η − yjζj , (4.16a)

y+j,x = u−
(
y+j
)2

+ λj + ηδ+j , δ+j,x = ξ − y+j δ
+
j . (4.16b)

The above equations imply that we may take

y+j = yj − δ+j ζj . (4.17)

Using the variables defined by (4.15), we may rewrite the above three DBTs and obtain the
following proposition.

Proposition 4.4. Let

w̃ = w − y1, η̃ = −ζ1, ξ̃ = ξx − y1ξ; (4.18)

ŵ = w − y+2 , η̂ = −ηx + y+2 η, ξ̂ = δ+2 ; (4.19)̂̃w = w +G, ̂̃η = η +Gζ1,
̂̃
ξ = ξ +Gδ+2 , (4.20)

where

G ≡ λ1 − λ2

y+2 − y1 + δ+2 ζ1
,

y1, ζ1, y
+
2 , δ

+
2 are defined by (4.15). Then, for any (Ψ, u, ξ, η) satisfying equation (3.8),(

Ψ̃, w̃, ξ̃, η̃
)
given by (4.4), (4.18),

(
Ψ̂, ŵ, ξ̂, η̂

)
given by (4.6), (4.19), and

( ̂̃
Ψ, ̂̃w, ̂̃ξ, ̂̃η) given

by (4.13), (4.20) satisfy the following equations:

Ψ̃x = L̃Ψ̃, Ψ̂x = L̂Ψ̂,
̂̃
Ψx =

̂̃
L
̂̃
Ψ,

̂̃
Ψt =

̂̃
T
̂̃
Ψ,

respectively.

Remark 4.5. Inserting (4.20) into (4.12) yields

η = ζ1,x +

(
Gx −G2 + λ2 − λ1

)
ζ1

2G
, ξ = δ+2,x +

(
Gx −G2 + λ1 − λ2

)
δ+2

2G
,

u =
Gxx
2G

−Gx +
G2

4
+

(λ2 − λ1)
2 −G2

x

4G2
− (λ1 + λ2)

2

+
1

2

(
δ+2 ζ1,x − δ+2,xζ1

)
+

(λ2 − λ1)δ
+
2 ζ1

G
,

which can be viewed as an alternative form for the transformation of u, ξ, η.

Next, we consider the limit of the compound BDT and show that a fourth BDT may be
obtained. Let λ2 = λ1 + ϵ, ψ2 = ψ1(x, t;λ1 + ϵ). Taking account of (4.17), the limits of (4.12),
(4.13) and (4.20) as ϵ→ 0 give rise to the following proposition.
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Proposition 4.6. Let

w = w − 1

y′1 − δ+1 ζ
′
1

, η = η − ζ1

y′1 − δ+1 ζ
′
1

, ξ = ξ − δ+1
y′1 − δ+1 ζ

′
1

, (4.21)

Ψ = W 4Ψ, W 4 = lim
ϵ→0

W 3|
λ2=λ1+ϵ,

̂̃
ξ→ξ, ̂̃η→η, ̂̃w→w

, (4.22)

where ζ1, δ
+
1 , y1 are given by (4.15), the superscript ′ denotes the differentiation with respect

to λ1. Then for any Ψ satisfying (3.8), Ψ defined by (4.22) solves Ψx = LΨ, Ψt = TΨ. In
particular, the compatibility of (3.8a), (4.22) and Ψx = LΨ leads to

(η − η)x =
1

2
(w − w)(η + η) +

(wx − wx)(η − η)

2(w − w)
, (4.23a)

(ξ − ξ)x =
1

2
(w − w)(ξ + ξ) +

(wx − wx)(ξ − ξ)

2(w − w)
, (4.23b)

(w − w)xx = 2(λ1 + wx + wx)(w − w)− 1

2
(w − w)3 +

(w − w)2x
2(w − w)

+ ξη − ξη. (4.23c)

Remark 4.7. In the last two propositions, we may avoid the solutions of the adjoint spectral
problem and reformulate the Darboux matrices and transformations for fields in terms of so-
lutions of the spectral problem. To see it, introduce an auxiliary variable δj ≡ ∂−1

x (ξψj)
ψj

such
that δj = δ+j . Thus y

+
j , δ

+
j may be replaced by y+j = yj−δjζj , δ+j = δj , and the formulas (4.19)–

(4.21) may be rewritten. Therefore, one may show that (4.18), (4.19), (4.21) coincide with the
results obtained in [38].

Remark 4.8. The BDT given by Proposition 4.6 survives under the reduction ξ = η. Indeed,
taking ζ1 = δ+1 , we have η = ξ. Therefore from (4.21)–(4.23), we directly obtain the BDT for
Kupershmidt’s sKdV equation (3.13) [38].

As mentioned in last section, system (3.1) enjoys another reduction, namely the Geng–Wu’s
sKdV equation. It is interesting to observe that the BDT presented by Proposition 4.6 also
survives under this reduction. Indeed, we take δ+1 = ηx− y1η+λ1ζ1+ ηηxζ1. Then, it is easy to
check that ξ = ηxx− uη implies ξ = ηxx− uη. In this way, we obtain a BDT for the Geng–Wu’s
sKdV equation from (4.21)–(4.23), and the result is summarized in the following proposition.

Proposition 4.9. Let ξ = ηxx − uη, and

w = w +H, η = η +Hζ1, (4.24)

Ψ = W 5Ψ, W 5 =

 λ− λ1 +A0H H −HA1

(λ− λ1)H +A2A0 λ− λ1 +A2 −1
2

(
H2 +Hx

)
A1

A0Hζ1 Hζ1 λ− λ1 +A1Hζ1

 , (4.25)

where

H ≡ −[y′1 + ζ ′1(ηx − y1η + λ1ζ1 + ηηxζ1)]
−1,

A1 ≡ ηx +
Hη

2
− Hxη

2H
+ λ1ζ1 −

ηxηζ1
2

,

A0 ≡
1

2H

(
H2 −Hx +HA1ζ1

)
, A2 ≡

1

2

(
H2 +Hx +HA1ζ1

)
,

and ζ1, y1 are given by (4.15). Then any Ψ defined by (4.25), together with (3.15) and (3.8),
solves Ψx = LΨ, Ψt = TΨ. The corresponding BT, after eliminating H and ζ1 by (4.24),
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becomes

(η − η)x =
1

2
(w − w)(η + η) +

(w − w)x
2(w − w)

(η − η),

(w − w)xx = 2(w − w)(λ1 + wx + wx)−
1

2
(w − w)3 +

(w − w)2x
2(w − w)

+ ηxx(η − η) + ηηx(w − w) + ηη(λ1 − 2wx).

Above BDT is given in terms of variables w, η and it is possible to go over to variables v, η.
In fact, by means of v = 2wx + ηηx, v = 2wx + ηηx, from Proposition 4.9 we obtain

v = v + 2Hx +Hζ1ηx +
1

2
ζ1η
(
H2 −Hx

)
,

which should be coupled with the second equation of (4.24).

5 Bäcklund and Darboux transformations
for gsmKdV equations

In this section, we aim to construct BDTs for gsmKdV equation (3.10) and consider the relevant
reductions.

Let Φ be the solution of (3.23). Similarly, consider a gauge transformation Φ̃ = V Φ, such

that Φ̃x = ŨΦ̃, Φ̃tN = M̃NΦ̃, where Ũ and M̃N are U and MN but with q, ζ and δ replaced
by q̃, ζ̃ and δ̃, respectively. The compatibility conditions Ψ̃x =

(
Ψ̃
)
x
and Ψ̃tN =

(
Ψ̃
)
tN

lead to

V x + V U − ŨV = 0, (5.1a)

V tN + V MN − M̃NV = 0, (5.1b)

respectively. Therefore, the gauge transformation Φ̃ = V Φ, together with condition (5.1a),
provides the same Darboux matrix and spatial part of BT for tN -flow of the gsmKdV hierarchy,
and from (5.1b) one may obtain the related temporal part of BT. Again in the following we
consider N = 3 case.

We first note that there exists the following gauge transformation for spectral problem (3.12a).

Proposition 5.1. Let

Φ̃ = V 0Φ, V 0 =

0 1 δ
λ 0 0

0 −ζ̃ 1 + δζ̃

 . (5.2)

Then (3.12a), (5.2), and Φ̃x = ŨΦ̃ are compatible if and only if

ỹ = −y + δ̃ζ̃, ζ̃x = −ζ − ỹζ̃, δ̃ = δx + yδ (5.3)

are satisfied.

It is pointed out that there is no free parameter in (5.3) so that the gauge transformation does
not qualify a DT. However, it is interesting to note that from (5.3), the Miura transformations

u = 2wx = yx + y2 − ξζ, η = ζx + yζ, ξ = δx + yδ,

and

ũ = 2w̃x = ỹx + ỹ2 − ξ̃ζ̃, η̃ = ζ̃x + ỹζ̃, ξ̃ = δ̃x + ỹδ̃,
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we have

w̃ = w − y, u = yx + y2 + ξη̃, η̃x = −η − yη̃, ξx = ξ̃ + yξ,

which is exactly (4.5) if λ1 = 0.
We now present two elementary BDTs for the gsmKdV equation. In the remaining part, for

convenience, we introduce kj by λj ≡ k2j (j = 1, 2), and let q = rx, q[j] = r[j],x, j = 1, 2, 3, 4.
Our results are summarized as follows.

Proposition 5.2. Let

Φ[1] = V 1Φ, V 1 =

 λ k1p1 + p21∆1 0

λk1p
−1
1 + λ∆1 λ λ(δ − δ[1])

λ(ζ − ζ[1]) 0 λ

 , (5.4)

where p1 = er[1]+r, ∆1 =
1
2(δ[1]−δ)(ζ[1]−ζ). Then (3.12a), (5.4), Φ[1],x = U [1]Φ[1] are compatible

if and only if

(r[1] − r)x =2k1 sinh(r[1] + r) +
1

2
(δζ[1] − δ[1]ζ) +

1

2
e2r[1]+2r(δ[1] − δ)(ζ[1] − ζ), (5.5a)

(ζ[1] − ζ)x =k1e
−r[1]−rζ[1] − rx(ζ[1] − ζ) +

1

2
δ[1]ζζ[1], (5.5b)

(δ[1] − δ)x =k1e
−r[1]−rδ − r[1],x(δ[1] − δ) +

1

2
δδ[1]ζ (5.5c)

is satisfied.

Proposition 5.3. Let

Φ[2] = V 2Φ, V 2 =

 λ −k2p2 − p22∆2 k2p2(δ[2] − δ)

−λk2p−1
2 + λ∆2 λ λ(δ − δ[2])

λ(ζ − ζ[2]) k2p2(ζ[2] − ζ) λ− k22 + 2k2p2∆2

 , (5.6)

where p2 = er[2]+r, ∆2 =
1
2(δ[2]−δ)(ζ[2]−ζ). Then (3.12a), (5.6), Φ[2],x = U [2]Φ[2] are compatible

if and only if

(r[2] − r)x =− 2k2 sinh(r[2] + r) +
1

2
(δζ[2] − δ[2]ζ)−

1

2
e2r[2]+2r(δ[2] − δ)(ζ[2] − ζ), (5.7a)

(ζ[2] − ζ)x =− k2e
−r[2]−rζ − r[2],x(ζ[2] − ζ)− 1

2
δζ[2]ζ, (5.7b)

(δ[2] − δ)x =− k2e
−r[2]−rδ[2] − rx(δ[2] − δ)− 1

2
δ[2]δζ[2] (5.7c)

is satisfied.

It is noted that the BT (4.12) may be related to (5.5) (or (5.7)). In fact, from (5.5), the
Miura transformation (3.9) and its deformation

̂̃u = 2 ̂̃wx = q[1],x + q2[1] −
1

2
(δ[1],xζ[1] − δ[1]ζ[1],x), ̂̃η = ζ[1],x + q[1]ζ[1],̂̃

ξ = δ[1],x + q[1]δ[1],

imply

̂̃w = w + k1e
r[1]+r +

1

2
e2r[1]+2r(δ[1] − δ)(ζ[1] − ζ), ̂̃η = η + ( ̂̃w − w)ζ[1],̂̃

ξ = ξ + ( ̂̃w − w)δ,

then (4.12) is satisfied when λ2 = 0.
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To formulate the BDTs given above in terms of the particular solutions of spectral prob-
lem (3.12) and adjoint problem

Φ+
x = −Φ+U , Φ+

t = −Φ+M , (5.8)

we assume that Φj = (ϕ1j , ϕ2j , ϕ3j)
T is a solution of (3.12) at λ = λj , Φ

+
j =

(
ϕ+1j , ϕ

+
2j , ϕ

+
3j

)
is a solution of (5.8) at λ = λj , where Φj ≡ Φj(x, t;λj), Φ

+
j ≡ Φ+

j (x, t;λj); ϕ3j and ϕ+3j are
fermionic, and other components are bosonic, for j = 1, 2. Introduce new variables bj , βj , b

+
j ,

β+j such that

bj ≡ −ϕ1j
ϕ2j

, βj ≡ −ϕ3j
ϕ2j

, b+j ≡
ϕ+2j

ϕ+1j
, β+j ≡ −

ϕ+3j

ϕ+1j
. (5.9)

Those quantities satisfy the following differential equations:

bj,x = λjb
2
j − 1 + 2bjq − βjδ, b+j,x = λj

(
b+j
)2 − 1 + 2b+j q − β+j ζ, (5.10a)

βj,x = ζ + βj(q + λjbj) +
1

2
βjδζ, β+j,x = δ + β+j

(
q + λjb

+
j

)
− 1

2
β+j δζ, (5.10b)

which indicate that we may take b+j = bj − β+j βj .

With those preparations, we may rewrite the BDTs given by last propositions and obtain the
following result.

Proposition 5.4. Let

er[1]+r = k1

(
b1 −

1

2
α1β1

)
, ζ[1] = ζ +

β1
b1
, δ[1] = δ +

α1

b1
;

er[2]+r = k2

(
1

2
α+
2 β

+
2 − b+2

)
, δ[2] = δ +

β+2
b+2
, ζ[2] = ζ +

α+
2

b+2
,

where bj, βj, b
+
j , β

+
j are defined by (5.9), the auxiliary variables α1, α

+
2 satisfy the following

first-order differential equations α1,x = δ + qα1 − 1
2α1δζ, α

+
2,x = ζ + qα+

2 + 1
2α

+
2 δζ, respectively.

Then (5.5) and (5.7) are satisfied.

Taking the last two BDTs into consideration, we find a compound BDT summarized by the
following proposition.

Proposition 5.5. Suppose that Φ solves (3.12) and denote k1k2e
r−r[3] by C. Let

ζ[3] = ζ +Bβ1, δ[3] = δ +Bβ+2 , C =
λ2λ1B

(
b+2 − b1 + β+2 β1

)
λ2 − λ1

, (5.11)

Φ[3] = V 3Φ, V 3 =

λ− λ2 − b1(λ2−λ1)
b+2 −b1+β+

2 β1

−b1b+2 (λ2−λ1)
b+2 −b1+β+

2 β1

b1β
+
2 (λ2−λ1)

b+2 −b1+β+
2 β1

λB + 1
2λB

2β+2 β1 λ− 2C
2−Bβ+

2 β1
−λBβ+2

−λBβ1 −λ2b+2 Bβ1 λ− λ2
(
1 +Bβ+2 β1

)
 ,

where

B =
2(λ2 − λ1)

2
(
λ2b

+
2 − λ1b1

)
+ (λ1 + λ2)β

+
2 β1

, (5.12)

and b1, β1, b
+
2 , β

+
2 are given by (5.9). Then Φ[3],x = U [3]Φ[3], Φ[3],t = M [3]Φ[3] hold. By

eliminating b1, β1, b
+
2 , β

+
2 , the compatibility condition V 3,x + V 3U − U [3]V 3 = 0 leads to the
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following BT:

(r[3] − r)x = −B − (C − λ1)(C − λ2)

BC
−
δ[3]ζ − δζ[3]

2

−
(λ2 − λ1)(δ[3] − δ)(ζ[3] − ζ)

2B2
, (5.13a)

(ζ[3] − ζ)x = ζ[3]B − q(ζ[3] − ζ) +
(C − λ2)(ζ[3] − ζ)

B
+
ζ[3]δ[3]ζ

2
, (5.13b)

(δ[3] − δ)x = δ[3]B − q(δ[3] − δ) +
(C − λ1)(δ[3] − δ)

B
+
δ[3]ζ[3]δ

2
, (5.13c)

where the formulae of B, B−1 are given by

B =
m1

m0
+
m2

m1
− m0m

2
2

m3
1

, B−1 =
m0

m1
− m2

0m2

m3
1

+
2m3

0m
2
2

m5
1

,

with

m0 = 4(r + r[3])x − 2(δ[3]ζ − δζ[3]),

m1 = 4C − 2Cxx − 4rxCx + 4λ1λ2
C

− 3rx(δ[3]ζ − δζ[3])− 2δ[3]ζδζ[3]

+ (δ[3] − δ)ζx − δx(ζ[3] − ζ),

m2 = 3C(δ[3]ζ − δζ[3])− 3λ1(δ[3] − δ)ζ + 3λ2δ(ζ[3] − ζ) + (λ2 − λ1)(δ[3] − δ)(ζ[3] − ζ).

Proof. It is tedious but straightforward to check that Φ[3],x = U [3]Φ[3], Φ[3],t = M [3]Φ[3]

hold, and the compatibility condition V 3,x + V 3U − U [3]V 3 = 0 together with (5.11) leads
to (5.10). Now we show that the BT (5.13) may be obtained from (5.11) and (5.10). Firstly,
(5.11) and (5.12) lead to

β1 =
ζ[3] − ζ

B
, β+2 =

δ[3] − δ

B
,

b1 =
1

B
− C

λ1B
+
β+2 β1
2

, b+2 =
1

B
− C

λ2B
− β+2 β1

2
.

Plugging above into the first-order differential equations (5.10), one may obtain (5.13) and the
following equation:

Bx = 2C − λ1 − λ2 − 2rxB +B2 +
1

2
B(δ[3]ζ − δζ[3])

+
1

2B
(λ2 − λ1)(δ[3] − δ)(ζ[3] − ζ). (5.14)

The auxiliary variable B may be eliminated as follows. We first differentiate (5.13a) with respect
to x, and meanwhile use (5.13b), (5.13c) and (5.14) to replace ζ[3],x, δ[3],x, Bx, thus get another
algebraic equation for B. We then use (5.13a) to simplify this equation and findm0B = m1+

m2
B .

As m2
2 = 18(C−λ1)(C−λ2)ζ[3]δ[3]ζδ, m3

2 = 0, we may solve the last equation and obtain B. ■

Remark 5.6. Setting the fermionic variables to zero, we recover the generalized BT for the
mKdV equation

[(r[3] − r)xx − 4k1k2 sinh (r[3] − r)]2

= (r[3] + r)2x
[
(r[3] − r)2x + 4

(
k21 + k22

)
− 8k1k2 cosh (r[3] − r)

]
,

which was referred as the type-II BT for the mKdV hierarchy in [14] (see also [33]).
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Now we consider the limit of the compound BDT and construct one more BDT. To this end,
let λ2 = λ1 + ϵ and Φ+

2 = Φ+
1 (x, t;λ1 + ϵ), then b+2 = b+1 (x, t;λ1 + ϵ), β+2 = β+1 (x, t;λ1 + ϵ).

Choosing b+1 = b1 − β+1 β1, the limit of B is found to be

lim
ϵ→0

B = K ≡ 2

2b1 − β+1 β1 + 2λ1
(
b′1 − β+1 β

′
1

) , (5.15)

where b′1 = ∂b1
∂λ1

, β′1 = ∂β1
∂λ1

. Thus after taking the limit of the last property as ϵ → 0, from
Proposition 5.5 we have the following proposition.

Proposition 5.7. Suppose that Φ satisfies (3.12), and let

ζ[4] = ζ +Kβ1, δ[4] = δ +Kβ+1 , er−r[4] = λ1K
(
b′1 − β+1 β

′
1

)
,

Φ[4] = V 4Φ, V 4 =


λ− λ1 − b1

b′1−β
+
1 β

′
1

−b1(b1−β+
1 β1)

b′1−β
+
1 β

′
1

b1β
+
1

b′1−β
+
1 β

′
1

λK + λ
2K

2β+1 β1 λ− 2λ1e
r−r[4]

2−Kβ+
1 β1

−λKβ+1
−λKβ1 −λ1b1Kβ1 λ− λ1

(
1 +Kβ+1 β1

)
 ,

where b1, β1, β
+
1 are defined by (5.9), K is given in (5.15). Then Φ[4],x = U [4]Φ[4], Φ[4],t =

M [4]Φ[4] hold. The compatibility condition V 4,x+V 4U −U [4]V 4 = 0, after eliminating b1, β1,
β+1 , leads to (5.13) with the replacement (ζ[3] → ζ[4], δ[3] → δ[4], r[3] → r[4], k2 → k1).

As Hu’s smKdV equation is related to the gsmKdV equation, it is possible to obtain its BDTs
from the above results. Indeed, taking account of the transformations y = q+ 1

2δζ, ξ = δx + qδ,
y[j] = q[j] +

1
2δ[j]ζ[j], ξ[j] = δ[j],x + q[j]δ[j], and Propositions 5.2–5.7, we have

ξ[1] = ξ + λ1b1δ, y[1] = y + λ1b1 +
δβ1 − 1

b1
;

ξ[2] = ξ + λ2
(
b+2 δ + β+2

)
, y[2] = y + λ2b

+
2 +

δα+
2 − 1

b+2
+

β+2(
b+2
)2 ;

ξ[3] = ξ +
(λ1 − λ2)

(
b+2 δ + β+2

)
b1

b+2 − b1 + β+2 β1
,

y[3] = y +
(λ1 − λ2)b1b

+
2

b+2 − b1 + β+2 β1
+

(λ1 − λ2)(1− δβ1)

λ2b
+
2 − λ1b1 + λ2β

+
2 β1

;

ξ[4] = ξ −
b1
(
b1δ − β+1 β1δ + β+1

)
b′1 − β+1 β

′
1

,

y[4] = y −
b1
(
b1 − β+1 β1

)
b′1 − β+1 β

′
1

− (1− δβ1)

b1 + λ1
(
b′1 − β+1 β

′
1

) .
Hence, these formulae, together with the transformations of ζ[j] and Propositions 5.2–5.7, also
yield the BDTs for Hu’s smKdV equation (3.11). Since its DTs have already been considered
in [41] under a different spectral problem, how to relate their results to ours is a problem
deserving further study.

Finally, we can show that the BDT presented in last proposition survives under the two
reductions mentioned in the introduction. For the first reduction ζ = δ, its BDT is described
by the following proposition.

Proposition 5.8. Suppose that Φ satisfies (3.12) with ζ = δ. Let

Φ[4] = V 5Φ, V 5 = V 4|β+
1 =β1

,

ζ[4] = ζ +
β1

b1 + λ1(b′1 − β1β′1)
, er−r[4] = 1− b1

b1 + λ1(b′1 − β1β′1)
,
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where b1, β1 are defined in (5.9). Then Φ[4],x = U [4]Φ[4], Φ[4],t = M [4]Φ[4] hold. The corre-
sponding BT is

(r[4] − r)x = −R− λ1(e
r−r[4] − 1)2

Rer−r[4]
+ ζζ[4],

(ζ[4] − ζ)x = ζ[4]R− rx(ζ[4] − ζ) +
λ1(e

r−r[4] − 1)(ζ[4] − ζ)

R
,

where

R =
m3

2(r + r[4])x + 2ζζ[4]
+

3λ1(1− er−r[4])ζζ[4]

m3
,

m3 = (r[4] − r)xx + r2x − (r[4],x)
2 + 2λ1(e

r−r[4] − er[4]−r) + 3rxζζ[4] + (ζ[4] − ζ)ζx.

In particular, we have a BDT for the Kupershmidt’s smKdV equation (3.14). Indeed,
let R0 ≡ ϕ21ϕ

′
11 − ϕ11ϕ

′
21 + ϕ31ϕ

′
31 and notice that R0,x = −ϕ211 and b′1 − β1β

′
1 = −R0/ϕ

2
21

hold. Then the DT presented in last proposition, after being rewritten, coincides with the DT
in [40, 41].

For the second reduction, our result is summarized as follows.

Proposition 5.9. Suppose that Φ satisfies (3.12) with δ = ζxx +
(
qx − q2

)
ζ − 1

2ζxxζxζ. Let

Φ[4] = V 6Φ, V 6 = V 4|β+
1 =ζx+λ1β1+ζ(q+λ1b1)

,

ζ[4] = ζ + Sβ1, er−r[4] = λ1S[b
′
1 + β′1(ζx + λ1β1 + ζ(q + λ1b1))],

where

S =
2

2b1 + 2λ1b′1 + (β1 + 2λ1β′1)(ζx + λ1β1 + ζ(q + λ1b1))
,

b1 and β1 are defined by (5.9). Then Φ[4],x = U [4]Φ[4], Φ[4],t = M [4]Φ[4] hold. The related BT
is given by

q[4] = r[4],x = q − S − λ1(e
r−r[4] − 1)2

Ser−r[4]
− 1

2
Sζxζ

− 1

2
(ζ[4] − ζ)

[
ζxx + ζ

(
λ1 + qx − q2

)]
+

1

4
ζ[4]ζxxζxζ,

ζ[4],x = ζx + ζ[4]S − q(ζ[4] − ζ) +
λ1
S
(er−r[4] − 1)(ζ[4] − ζ) +

1

2
ζζ[4](ζxx + Sζx),

Sx = 2λ1(e
r−r[4] − 1)− Sq − Sr[4],x −

λ1(e
r−r[4] − 1)2

er−r[4]
.

In this way, we succeed in obtaining a BDT for equation (3.17).

6 Exact solutions

As we know that Darboux transformations and Bäcklund transformations can be employed to
generate solutions for the associated nonlinear equations. In this section, we apply the results
obtained in last two sections to construct exact solutions of the sKdV and the smKdV systems.
To do it, we initiate from a trivial solution of an evolution equation along with the corresponding
spectral problem or Riccati type equation, then employ algebraic and differential operations to
construct new solutions.
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6.1 Solutions of gsmKdV equation and its reductions

We start from the zero solution of gsmKdV equation: q = 0, ζ = 0, δ = 0. Then by solving (5.10)
and the differential equations in Propositions 5.4, we obtain

b1 = − 1

k1
cothP1, α1 = γ1, β1 = θ1cschP1, β+1 = µ1cschP1,

b+2 = − 1

k2
tanhP2, α+

2 = γ2, β+2 = µ2sechP2,

where Pj = kjx+ 4k3j t+ cj , λj = k2j , and cj are arbitrary bosonic constants while γj , θj , µj are
arbitrary fermionic constants, for j = 1, 2.

Therefore, Propositions 5.4–5.7 give the following three exact solutions:

ζ[1] = −k1θ1sechP1, δ[1] = −k1γ1 tanhP1, q[1] =
−2k1 + k21θ1γ1 coshP1

sinh 2P1 − k1θ1γ1 sinhP1
;

ζ[3] =
2
(
k22 − k21

)
θ1 coshP2

(k2 + k1) cosh(P2 − P1)− (k2 − k1) cosh(P2 + P1)
,

δ[3] =
2
(
k22 − k21

)
µ2 sinhP1

(k2 + k1) cosh(P2 − P1)− (k2 − k1) cosh(P2 + P1)
,

q[3] = ∂x ln

[
(k2 + k1) cosh(P2 − P1)− (k2 − k1) cosh(P2 + P1) +

(
k21 + k22

)
µ2θ1

(k2 + k1) cosh(P2 − P1) + (k2 − k1) cosh(P2 + P1) + 2k1k2µ2θ1

]
;

ζ[4] =
4k1θ1 sinhP1

2k1
(
x+ 12k21t

)
− sinh 2P1

, δ[4] =
4k1µ1 sinhP1

2k1
(
x+ 12k21t

)
− sinh 2P1

,

q[4] = ∂x ln

[
2k1
(
x+ 12k21t

)
− sinh 2P1 + 2k1µ1θ1 sinh

2 P1

2k1
(
x+ 12k21t

)
+ sinh 2P1 − 2k1µ1θ1 cosh

2 P1

]
.

One may easily get the solutions of Hu’s smKdV equation by y[j] = q[j] +
1
2δ[j]ζ[j], ξ[j] = δ[j],x +

q[j]δ[j] together with ζ[j].

From Propositions 5.8 and 5.9 or from the reductions of (ζ[4], δ[4], q[4]), we also obtain a com-
mon solution for Kupershmidt’s smKdV and Geng–Wu’s smKdV equations, that is

ζ[4] =
4k1θ1 sinhP1

2k1
(
x+ 12k21t

)
− sinh 2P1

, q[4] = ∂x ln

[
2k1
(
x+ 12k21t

)
− sinh 2P1

2k1
(
x+ 12k21t

)
+ sinh 2P1

]
.

Let fermionic variables disappear and Q1 = P1 − iπ
4 . We have

q[1] =
2ik1

cosh 2Q1
, q[4] =

4ik1
[
cosh 2Q1 − 2k1

(
x+ 12k21t

)
sinh 2Q1

]
4k21
(
x+ 12k21t

)2
+ cosh2 2Q1

,

which are two pure imaginary solutions of mKdV equation.

6.2 Solutions of gsKdV equation and its reductions

First choose the initial solution w = 0, ξ = 0, η = 0. Then solving the differential equa-
tions (4.16) yields y1 = k1 tanhP1, ζ1 = θ1sechP1, δ

+
1 = µ1sechP1; y

+
2 = k2 cothP2, δ

+
2 =

µ2cschP2, where Pj = kj
(
x + 4k2j t + cj

)
, λj = k2j , and cj are arbitrary fermionic constants

while µj and θj are arbitrary fermionic constants, for j = 1, 2.
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Therefore, Proposition 4.4 leads to a one-soliton and two-soliton solutions of gsKdV equation.
They are given by

ũ = −2k21sech
2P1, η̃ = −θ1sechP1, ξ̃ = 0;

̂̃u = −2∂2x lnQ,
̂̃η =

2
(
k21 − k22

)
θ1 sinhP2

Q
,

̂̃
ξ =

2
(
k21 − k22

)
µ2 coshP1

Q
,

where Q = (k2 + k1) cosh(P2 − P1) + (k2 − k1) cosh(P2 + P1) + 2µ2θ1. From Proposition 4.6,
one has the solution of gsKdV equation

u = −2∂2x ln
[
2k21
(
x+ 12k21t

)
+ k1 sinh 2P1 − 2µ1θ1 sinh

2 P1

]
,

η = − 4k1θ1 coshP1

2k1
(
x+ 12k21t

)
+ sinh 2P1

, ξ = − 4k1µ1 coshP1

2k1
(
x+ 12k21t

)
+ sinh 2P1

.

Similarly, by the reductions of (η, ξ, u), we also obtain the common solution for Kupershmidt’s
sKdV and Geng–Wu’s sKdV equations, that is

η = − 4k1θ1 coshP1

2k1
(
x+ 12k21t

)
+ sinh 2P1

, v = −2∂2x ln
[
2k1
(
x+ 12k21t

)
+ sinh 2P1

]
.

We also note that by combining the corresponding Miura transformation and Galilean trans-
formation one may generate other solutions for gsKdV, Kupershmidt’s and Geng–Wu’s sKdV
equations from the solutions of smKdV equation (ζ[j], δ[j], q[j], j ≥ 3).

7 Conclusions and discussions

In this paper, first by constructing a Miura transformation, we obtained a gsmKdV equation
from the gsKdV equation, and we showed that not only the Kupershmidt’s, but also Geng–
Wu’s sKdV together with the corresponding smKdV equations are reductions of them. We also
provide the first negative flows of the gsKdV and gsmKdV hierarchies.

From the binary BDT of the gsKdV equation, we obtained a BDT of the Geng–Wu’s sKdV
equation which is given in Proposition 4.9. We also constructed the DBTs for gsmKdV equa-
tion, and five transformations (one non-parameter transformations, two elementary BDTs, one
compound BDT and one generalized BDT) were obtained which are presented in Proposi-
tions 5.1–5.9. We showed that the non-parameter transformation is related to the elementary
DBT of gsKdV equation, while the elementary BTs are related to the generalized binary BT of
gsKdV equation. The generalized DBT was used to obtain the DBTs for Geng–Wu’s smKdV
and Kupershmidt’s smKdV equations, respectively, see Propositions 5.8 and 5.9. It was observed
that the DBTs for Hu’s smKdV equation can be obtained from Propositions 5.2–5.7 directly.

Since all flows of the sKdV or smKdV hierarchy share the same spatial parts of spectral
problem and Miura transformation, thus Darboux matrices and spatial parts of BTs can be
used for any flow of the hierarchy.

There are some interesting problems to be explored. For example, it is interesting to con-
struct the N -fold Darboux transformations and multi-soliton solutions for gsKdV and gsmKdV
hierarchies, derive the temporal parts of BTs and solutions for the super sinh-Gordon equa-
tion (3.26), and explore the dispersionless limits of gsKdV and gsmKdV equations. Besides, the
Hamiltonian structures and integrable discretizations for the gsmKdV equation are also worthy
of study. Progress in these directions may be published elsewhere.
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[20] Hrubý J., On the supersymmetric sine-Gordon model and a two-dimensional bag, Nuclear Phys. B 131
(1977), 275–284.

[21] Hu X.-B., An approach to generate superextensions of integrable systems, J. Phys. A 30 (1997), 619–632.

[22] Inami T., Kanno H., Lie superalgebraic approach to super Toda lattice and generalized super KdV equations,
Comm. Math. Phys. 136 (1991), 519–542.

https://doi.org/10.1016/j.physd.2024.134469
http://arxiv.org/abs/2311.18673
https://doi.org/10.46298/ocnmp.13294
http://arxiv.org/abs/2403.16285
https://doi.org/10.1007/jhep08(2023)160
http://arxiv.org/abs/2304.01749
https://doi.org/10.1007/jhep01(2018)018
http://arxiv.org/abs/1709.05568
https://doi.org/10.1088/1751-8121/aabda5
http://arxiv.org/abs/1712.06854
https://doi.org/10.1007/978-94-017-1963-6
https://doi.org/10.1016/0370-2693(78)90473-2
https://doi.org/10.1016/j.physleta.2018.11.011
https://doi.org/10.1098/rspa.2020.0780
https://doi.org/10.1098/rspa.2020.0780
https://doi.org/10.1063/1.5051755
https://doi.org/10.1016/j.aml.2010.02.014
https://doi.org/10.1111/j.1467-9590.2012.00555.x
http://arxiv.org/abs/9590.2012
https://doi.org/10.1016/0370-2693(78)90703-7
https://doi.org/10.1088/1751-8113/48/40/405203
http://arxiv.org/abs/1505.01024
https://doi.org/10.1088/1751-8113/49/14/145202
http://arxiv.org/abs/1510.06913
https://doi.org/10.1016/j.physleta.2013.10.018
http://arxiv.org/abs/1303.1853
https://doi.org/10.1016/0375-9601(85)90033-7
https://doi.org/10.1007/BF00400221
https://doi.org/10.1007/978-3-642-84000-5_8
https://doi.org/10.1016/0550-3213(77)90373-X
https://doi.org/10.1088/0305-4470/30/2/023
https://doi.org/10.1007/BF02099072


22 L. Xue, S. Wang and Q.P. Liu

[23] Kersten P.H.M., Symmetries for the super modified KdV equation, J. Math. Phys. 29 (1988), 2187–2189.

[24] Kersten P.H.M., Gragert P.K.H., Symmetries for the super-KdV equation, J. Phys. A 21 (1988), L579–L584.

[25] Konstantinou-Rizos S., On the 3D consistency of a Grassmann extended lattice Boussinesq system, Nuclear
Phys. B 951 (2020), 114878, 24 pages, arXiv:1908.00565.

[26] Konstantinou-Rizos S., Kouloukas T.E., A noncommutative discrete potential KdV lift, J. Math. Phys. 59
(2018), 063506, 13 pages, arXiv:1611.08923.

[27] Kulish P.P., Quantum osp-invariant nonlinear Schrödinger equation, Lett. Math. Phys. 10 (1985), 87–93.

[28] Kupershmidt B.A., A super Korteweg–de Vries equation: an integrable system, Phys. Lett. A 102 (1984),
213–215.

[29] Kupershmidt B.A., A review of superintegrable systems, in Nonlinear Systems of Partial Differential Equa-
tions in Applied Mathematics, Lectures in Appl. Math., Vol. 23, American Mathematical Society, Providence,
RI, 1986, 83–121.

[30] Lou S.Y., Ren-integrable and ren-symmetric integrable systems, Commun. Theor. Phys. (Beijing) 76 (2024),
035006, 8 pages, arXiv:2305.12388.

[31] Manin Yu.I., Gauge field theory and complex geometry, 2nd ed., Grundlehren Math. Wiss., Vol. 289,
Springer, Berlin, 1997.

[32] Manin Yu.I., Radul A.O., A supersymmetric extension of the Kadomtsev–Petviashvili hierarchy, Comm.
Math. Phys. 98 (1985), 65–77.
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