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Abstract. We introduce an algebra of elliptic commuting variables involving a base q,
nome p, and 2r noncommuting variables. This algebra, which for r = 1 reduces to an algebra
considered earlier by the author, is an elliptic extension of the well-known algebra of r q-
commuting variables. We present a multinomial theorem valid as an identity in this algebra,
hereby extending the author’s previously obtained elliptic binomial theorem to higher rank.
Two essential ingredients are a consistency relation satisfied by the elliptic weights and
the Weierstraß type A elliptic partial fraction decomposition. From the elliptic multinomial
theorem we obtain, by convolution, an identity equivalent to Rosengren’s type A extension of
the Frenkel–Turaev 10V9 summation. Interpreted in terms of a weighted counting of lattice
paths in the integer lattice Zr, this derivation of Rosengren’s Ar Frenkel–Turaev summation
constitutes the first combinatorial proof of that fundamental identity.
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1 Introduction

A standard and powerful tool in algebraic combinatorics is the identification of a class of combi-
natorial objects with words of noncommuting variables in some monoid. Such a correspondence
is convenient when the combinatorics of the objects translates, on the algebraic side, to com-
mutation relations satisfied by the variables. For instance, semi-standard Young tableaux are in
one-to-one correspondence with words in the plactic monoid (cf. [9]), the monoid consisting of all
words in an alphabet of totally ordered variables modulo Knuth equivalence. Another example,
one which we shall consider in this paper in the “elliptic” setting, is the correspondence between
positively oriented lattice paths of length m in the r-dimensional integer lattice and words of
length m in r variables built from the successive steps of the path. In the context of weighted
enumeration (typically with respect to the area of the path, or a similar statistic), commutation
relations can be used in connection with normalization to determine the weight of a path. A well-
known example—intimately tied to q-combinatorics—is the monoid of q-commuting variables
in X1, . . . , Xr, satisfying the q-commutation relations XjXi = qXiXj , for 1 ≤ i < j ≤ r, where q
is an indeterminate. (In Section 3, we consider an elliptic algebra that generalizes exactly this
monoid.) Rather than restricting ourselves just to a monoid, as we are interested in generating
functions we consider formal linear combinations of elements of the monoid, thus we work in
a unital associative algebra. This has the advantage that by exploiting certain properties (such
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as associativity) of the elements in the algebra one is able to prove combinatorial identities by
entirely algebraic means. For instance, working in the just mentioned algebra of q-commuting
variables, a proof of the q-multinomial theorem (which is a particular summation theorem for
multivariate basic hypergeometric series) can be given easily.

The aim of this paper is to develop appropriate algebraic machinery that fits with the theory
of Ar elliptic hypergeometric series. Specifically, we introduce an algebra of elliptic commuting
variables involving a base q, nome p, and 2r noncommuting variables. This algebra, which
for r = 1 reduces to an algebra considered earlier by the author [16], is an elliptic extension of
the aforementioned well-known algebra of r q-commuting variables. We present a multinomial
theorem valid as an identity in this algebra, hereby extending the author’s previously obtained
elliptic binomial theorem from [16] to higher rank. From the elliptic multinomial theorem, we
obtain, by convolution, an identity equivalent to Rosengren’s type A extension of the Frenkel–
Turaev 10V9 summation. Interpreted in terms of a weighted counting of lattice paths in the
integer lattice Zr, this derivation of Rosengren’s Ar Frenkel–Turaev summation constitutes the
first combinatorial proof of that fundamental identity.

After having explained the gross outline of the paper, we briefly explain what elliptic hyperge-
ometric series are, as the main application of the elliptic algebra introduced in this paper concerns
identities for such series. Elliptic hypergeometric series form a natural extension of ordinary and
of basic hypergeometric series. Consider the series S =

∑
k≥0 c(k), and g(k) := c(k + 1)/c(k)

being the quotient of two consecutive terms of S. The series S is by definition an ordinary (or
“rational”) hypergeometric series if the ratio g(k) is a rational function in the summation index
k. Similarly, S is a basic (or “q-”, or “trigonometric”) hypergeometric series if g(k) is a rational
function in qk (the base q usually satisfying |q| < 1). Finally, S is an elliptic hypergeometric
series if g(k) is an elliptic function in k (by which one understands a complex-valued func-
tion that is doubly-periodic and meromorphic.) Elliptic hypergeometric series made their first
implicit appearance in 1987 in the work of the mathematical physicists Date, Jimbo, Kuniba,
Miwa and Okado [4] as elliptic 6-j symbols, representing elliptic solutions of the Yang–Baxter
equation. Ten years later, Frenkel and Turaev [5], by exploiting the tetrahedral symmetries of
those 6-j symbols and making the expressions explicit, wrote out the first identities for (what
they called) “modular hypergeometric series” (now commonly called elliptic hypergeometric se-
ries). In particular, they discovered what is now called the 12V11 transformation (an elliptic
extension of Bailey’s very-well-poised 10ϕ9 transformation) and, by applying specialization, the

10V9 summation (which is an elliptic extension of Jackson’s very-well-poised 8ϕ7 summation).

We start with explaining some important notions from the theory of elliptic hypergeometric
series (cf. [6, Chapter 11] and [13]) which we shall need. Let C× := C \ {0}. Let the modified
Jacobi theta function (in short: theta function) with argument x and fixed nome p be defined
by θ(x) = θ(x; p) := (x; p)∞(p/x; p)∞, θ(x1, . . . , xm) :=

∏m
i=1 θ(xi), where x, x1, . . . , xm, p ∈ C×,

|p| < 1, and (x; p)∞ =
∏∞

k=0

(
1− xpk

)
is an infinite p-shifted factorial.

The theta function satisfies the following simple properties, namely the inversion

θ(x) = −xθ(1/x), (1.1a)

the quasi-periodicity

θ(px) = −1

x
θ(x), (1.1b)

and the three-term addition formula (cf. [20, p. 451, Example 5])

θ(xy, x/y, uv, u/v)− θ(xv, x/v, uy, u/y) =
u

y
θ(yv, y/v, xu, x/u). (1.2)
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The addition formula in (1.2) is a special case of the following more general identity due to
Weierstraß (cf. [20, p. 451, Example 3]), which we refer to as the elliptic partial fraction identity
of type A: let a1, . . . , ar, b1, . . . , br ∈ C×, then

r∑
i=1

∏r
j=1 θ(ai/bj)∏
j ̸=i θ(ai/aj)

= 0, (1.3)

under the assumption that the elliptic balancing condition a1 · · · ar = b1 · · · br holds. The ad-
dition formula in (1.2) is a rewriting of the r = 3 special case of (1.3). While the relation
in (1.2) serves as key ingredient in the theory of elliptic hypergeometric series, the partial frac-
tion decomposition in (1.3) is underlying the theory of multivariate elliptic hypergeometric series
associated to the root system Ar−1 (cf. [12, 14]). Indeed, in the theory of (multivariate) elliptic
hypergeometric series inductive proofs and functional equations typically make use of the iden-
tities in (1.2) and (1.3) (or, in the setting of root systems other than Ar−1, of other suitable
elliptic partial fraction identities which exist).

Now define the theta shifted factorial (or q, p-shifted factorial) by

(a; q, p)n :=



n−1∏
k=0

θ
(
aqk

)
, n = 1, 2, . . . ,

1, n = 0,

1/

−n−1∏
k=0

θ
(
aqn+k

)
, n = −1,−2, . . . .

For compact notation, we write

(a1, a2, . . . , am; q, p)n :=

m∏
k=1

(ak; q, p)n.

Notice that for p = 0 one has θ(x; 0) = 1 − x, in which case (a; q, 0)n = (a; q)n is a q-shifted
factorial in base q (cf. [6]).

Notice that

(pa; q, p)n = (−1)na−nq−(
n
2)(a; q, p)n,

which follows from repeated use of (1.1b). A list of other useful identities for manipulating the
q, p-shifted factorials is given in [6, Section 11.2].

By definition, a function g(u) is elliptic if it is a doubly-periodic meromorphic function of the
complex variable u.

Without loss of generality, one may assume (see [13, Theorem 1.3.3]) that

g(u) =
θ(a1q

u, a2q
u, . . . , asq

u)

θ(b1qu, b2qu, . . . , bsqu)
z

(i.e., g is an abelian function of some degree s, cf. [1]), for a constant z and some a1, a2, . . . , as,
b1, b2, . . . , bs, q, p ∈ C× with |p| < 1, where the elliptic balancing condition, namely

a1a2 · · · as = b1b2 · · · bs,

holds. If one writes q = e2π
√
−1σ, p = e2π

√
−1τ , with complex σ, τ , then g(u) is indeed periodic

in u with periods σ−1 and τσ−1 (which can be verified by applying (1.1b) to each of the 2s theta
functions appearing in g(u)). Keeping this notation for p and q, we denote the field of elliptic
functions over C of the complex variable u, with the two periods σ−1 and τσ−1, by Eq,p(q

u).
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(We use the notation Eq,p(q
u) instead of Eq,p(u) as we work with multiplicatively denoted theta

functions.) More generally, we denote the field of totally elliptic multivariate functions over C
of the complex variables u1, . . . , un, in each variable with two equal periods, σ−1 and τσ−1, by
Eq,p(q

u1 , . . . , qun). The notion of totally elliptic multivariate functions was first introduced by
Spiridonov [18, 19].

Recall that an (ordinary) hypergeometric series is a series
∑

k≥0 ck with c0 = 1 such that
g(k) := ck+1/ck is a rational function in k. Further, a basic hypergeometric series (also called
q-hypergeometric series) is a series

∑
k≥0 ck with c0 = 1 such that g(k) := ck+1/ck is a rational

function in qk. Similarly, an elliptic hypergeometric series is defined to be a series
∑

k≥0 ck
with c0 = 1 such that g(k) := ck+1/ck is an elliptic function in k (viewed as a complex variable).
The definition of an elliptic hypergeometric series extends that of a basic hypergeometric series,
assuming that the rational function in qk that appears in the definition of the basic hyperge-
ometric series is a ratio of two polynomials α

(
qk
)
=

∑s
j=0 αjq

kj and β
(
qk
)
=

∑s
j=0 βjq

kj of
equal degree s, with non-vanishing constant terms such that the (polynomial) balancing condi-
tion αs/α0 = βs/β0 holds.

We conclude our brief introduction by explicitly reproducing Frenkel and Turaev’s 10V9 sum-
mation [5] (see also [6, equation (11.4.1)]), an identity which is fundamental to the theory of
elliptic hypergeometric series: Let m ∈ N0 and a, b, c, d, e, q, p ∈ C with |p| < 1. Then there
holds the following identity:

m∑
k=0

θ
(
aq2k

)
θ(a)

(a, b, c, d, e, q−m; q, p)k(
q, aq/b, aq/c, aq/d, aq/e, aqm+1; q, p

)
k

qk

=
(aq, aq/bc, aq/bd, aq/cd; q, p)m
(aq/b, aq/c, aq/d, aq/bcd; q, p)m

, (1.4)

where a2qm+1 = bcde. It is easy to see that the series in (1.4) is indeed an elliptic hypergeometric
series. The convention of referring to the above series as a 10V9 series follows the arguments
in [17] and has become standard (see also [6, Chapter 11]).

The rest of the paper is organized as follows: In Section 2, we introduce the specific elliptic
weights which we use and define corresponding elliptic binomial and multinomial coefficients.
The elliptic binomial coefficients considered here are those which we introduced in [15] in the
context of lattice path enumeration. They also appeared as the normal form coefficients in an
elliptic extension of the binomial theorem, featured in [16, Section 4]. (Different elliptic bino-
mial coefficients were considered by Rains [11, Definition 11] and implicitly also by Coskun and
Gustafson [3], both in the context of convolutions for families of multivariate special functions
that are recursively defined by vanishing properties and a branching rule.) The elliptic multi-
nomial coefficients, defined in the same section, extend our elliptic binomial coefficients and are
new. What is interesting about our specific elliptic weights in (2.1) is that they satisfy a certain
consistency relation in (2.5) that is reminiscent of the dynamical Yang–Baxter equation but has
a very simple form as it involves only scalars. Our analysis in the subsequent section crucially
depends on this consistency relation. In Section 3, we introduce an algebra of elliptic commuting
variables for which we identify a natural basis. We also look at specific commutation relations
useful for normalization of the elements of the algebra. We then turn to another main result
of the paper in Section 4, featuring an elliptic extension of the multinomial theorem, valid as
an identity in the just introduced algebra of elliptic commuting variables. The new result ex-
tends the elliptic binomial theorem from [16, Section 4] to higher rank. In Section 5, we show
how our elliptic multinomial theorem can be used to rederive Rosengren’s [12, Theorem 5.1]
Ar extension of the Frenkel–Turaev summation, which in the basic case was first obtained by
Milne [10, Theorem 6.17]. In a concluding remark we explain how our algebraic derivation of the
Ar Frenkel–Turaev summation admits a direct combinatorial interpretation in terms of elliptic
weighted lattice paths in the integer lattice Zr.
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2 Elliptic weights, elliptic binomial and multinomial coefficients

For indeterminates a, b, complex numbers q, p (with |p| < 1), and integers s, t, we define the
small elliptic weights by

wa,b;q,p(s, t) :=
θ
(
aqs+2t, bq2s+t−2, aqt−s−1/b

)
θ
(
aqs+2t−2, bq2s+t, aqt−s+1/b

)q. (2.1)

The corresponding big elliptic weights are defined by

Wa,b;q,p(s, t) :=

t∏
j=1

wa,b;q,p(s, j) =
θ
(
aqs+2t, bq2s, bq2s−1, aq1−s/b, aq−s/b

)
θ
(
aqs, bq2s+t, bq2s+t−1, aq1+t−s/b, aqt−s/b

)qt. (2.2)

Clearly, Wa,b;q,p(s, 0) = 1, for all s. For p → 0 followed by a → 0 and b → 0 (or p → 0 followed
by b → ∞ and a → ∞), the small elliptic weights wa,b;q,p(s, t) all reduce to q and the big elliptic
weights Wa,b;q,p(s, t) reduce to qt. For convenience, we also define the following shifted variant
of a big elliptic weight,

W
(ρ)
a,b;q,p(s, t) := Waq2ρ,bq2ρ;q,p(s, t), (2.3)

and further the big Q-weights by the product

Qa,b;q,p(ℓ, ρ, s, t) :=

ℓ∏
i=1

W
(ρ)
a,b;q,p(i+ s, t) (2.4)

=

(
aq1+2ρ+s+t; q, p

)
ℓ

(
bq1+2ρ+2s; q, p

)
2ℓ

(
aq1−ℓ−s/b, aq−ℓ−s/b; q, p

)
ℓ(

aq1+2ρ+s; q, p
)
ℓ

(
bq1+2ρ+2s+t; q, p

)
2ℓ

(
aq1+t−ℓ−s/b, aqt−ℓ−s/b; q, p)ℓ

qℓt.

Assuming c to be an additional indeterminate, we would like to highlight the following relation
satisfied by the small elliptic weights (2.1), for all s, which we refer to as the elliptic consistency
relation

waq2,bq2;q,p(s, s)wa,c;q,p(s, s)wbq2,cq2;q,p(s, s) = wb,c;q,p(s, s)waq2,cq2;q,p(s, s)wa,b;q,p(s, s). (2.5)

This specific equality of simple products is readily verified using the explicit expression for the
small elliptic weights in (2.1). Equation (2.5) concerns an equality involving six weights in total.
In three of the six weights the “dynamical” parameters a, b, c are shifted by q2, while in the
other three weights those parameters are not shifted. If we view the weights in (2.5) as nodes
in a graph, and connect the shifted weights by edges from left to right and the similarly do
this separately for the unshifted weights, an overlapping of two chains becomes apparent, see
Figure 1. This picture helps to remember the special form of (2.5).

XXXXXX������
��� XXX

XXX���
r r rr r r

waq2,bq2;q,p(s, s)wa,c;q,p(s, s)wbq2,cq2;q,p(s, s)

wb,c;q,p(s, s)waq2,cq2;q,p(s, s)wa,b;q,p(s, s)

Figure 1. Interlacing of the shifted terms in the elliptic consistency relation.

The elliptic consistence relation in (2.5) guarantees the unique normalization of XkXjXi

(for 1 ≤ i < j < k ≤ r) in the elliptic algebra that is defined in Definition 3.1, in particular
it is responsible for the equality of the two expressions obtained on the right-hand sides of
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equations (3.2a) and (3.2b). Equation (2.5) is reminiscent of the dynamical Yang–Baxter equa-
tion (a master equation in integrable models in statistical mechanics and quantum field theory,
see [8]) but has a very simple form, as it involves only scalars (or 1× 1 matrices) and no oper-
ators. Independently, to the best of our knowledge, it was not known before that (2.5) has the
solution (2.1), not even in the case p = 0.

For indeterminates a, b, complex numbers q, p (with |p| < 1), and integers n, k, we define
the elliptic binomial coefficient as follows[

n
k

]
a,b;q,p

:=

(
q1+k, aq1+k, bq1+k, aq1−k/b; q, p

)
n−k(

q, aq, bq1+2k, aq/b; q, p
)
n−k

. (2.6)

This is exactly the expression for w(P((0, 0) → (k, n− k))) in [15, Theorem 2.1]. In [16], it was
moreover shown that the elliptic binomial coefficients in (2.6) indeed appear as the coefficients in
a noncommutative elliptic binomial theorem. Note that the elliptic binomial coefficient in (2.6)
reduces to the usual q-binomial coefficient after taking the limits p → 0, a → 0, and b → 0,
in this order (or after taking the limits in the order p → 0, b → ∞, and a → ∞). As pointed
out in [15], the expression in (2.6) is totally elliptic, i.e., elliptic in each of logq a, logq b, n,
and k (viewed as complex parameters), with equal periods of double periodicity. In particular,
[ nk ]a,b;q,p ∈ Eq,p

(
a, b, qn, qk

)
.

It is immediate from the definition of (2.6) that, for integers n, k, there holds[
n
0

]
a,b;q,p

=

[
n
n

]
a,b;q,p

= 1, (2.7a)

and [
n
k

]
a,b;q,p

= 0, whenever k < 0, or k > n. (2.7b)

Furthermore, using the theta addition formula in (1.2) one can verify the following recursion
formula for the elliptic binomial coefficients:[

n+ 1
k

]
a,b;q,p

=

[
n
k

]
a,b;q,p

+

[
n

k − 1

]
a,b;q,p

Wa,b;q,p(k, n+ 1− k), (2.7c)

for non-negative integers n and k.
In the above classical limit, the relations in (2.7) reduce to[

n
0

]
q

=

[
n
n

]
q

= 1,

[
n+ 1
k

]
q

=

[
n
k

]
q

+

[
n

k − 1

]
q

qn+1−k,

for positive integers n and k with n ≥ k, which is a well-known recursion for the q-binomial
coefficients.

As was shown in [16], the elliptic binomial coefficients in (2.6) can be interpreted as the (area)
generating function for all lattice paths in the integer lattice Z2 from (0, 0) to (k, n−k) consisting
of East and North steps of unit length where each path is weighted with respect to the product
of the weights of the respective squares covered by the path. In this interpretation, the weight
of the single square with north-east corner (s, t) is given by wa,b;q,p(s, t), whereas Wa,b;q,p(s, t)
can be regarded as the weight of the s-th column having height t.

To prepare the reader for a better understanding of the main result of this paper, namely
the elliptic multinomial theorem in Section 4, it will be convenient to recall the author’s el-
liptic binomial theorem from [16, Theorem 2]. We start with the definition of the algebra of
elliptic commuting variables in which the elliptic binomial coefficients manifestly appear as the
coefficients in a binomial expansion after normal ordering of the respective variables.
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Definition 2.1. For two nonzero complex numbers q and p with |p| < 1, let Cq,p[X,Y ; a, b]
denote the associative unital algebra over C, generated by X, Y , satisfying the following three
relations:

Y X = Wa,b;q,p(1, 1)XY, Xf(a, b) = f
(
aq, bq2

)
X, Y f(a, b) = f

(
aq2, bq

)
Y,

for all f ∈ Eq,p(a, b).

We refer to the variables X, Y , a, b forming Cq,p[X,Y ; a, b] as elliptic commuting variables.
The algebra Cq,p[X,Y ; a, b] reduces to Cq[X,Y ] if one formally lets p → 0, a → 0, then b → 0,
in this order, or lets p → 0, b → ∞, then a → ∞, in this order, while (having eliminated the
nome p) relaxing the condition of ellipticity. It should be noted that the monomials XkY l form
a basis for the algebra Cq,p[X,Y ; a, b] as a left module over Eq,p(a, b), i.e., any element can be
written uniquely as a finite sum

∑
k,l≥0 cklX

kY l with ckl ∈ Eq,p(a, b) which we call the normal
form of the element.

The following result from [16, Theorem 2] shows that the normal form of the binomial
(X + Y )n is “nice”; each coefficient to the left of XkY n−k completely factorizes as an expression
in Eq,p(a, b).

Theorem 2.2 (binomial theorem for variables in Cq,p[X,Y ; a, b]). Let n ∈ N0. Then, as an
identity in Cq,p[X,Y ; a, b], we have

(X + Y )n =
n∑

k=0

[
n
k

]
a,b;q,p

XkY n−k.

In [16, Corollary 4], convolution was applied to this result (together with comparison of
coefficients) yielding the Frenkel and Turaev 10V9 summation [5] in a form equivalent to (1.4)
by analytic continuation.

Remark 2.3. In the recent work [7, Definition 5.6 and Theorem 5.7], the author, in collaboration
with Hoshi, Katori, and Koornwinder, defined a similar but different elliptic commuting algebra
with a corresponding binomial theorem.

Before we extend the elliptic binomial coefficients in (2.6) to elliptic multinomial coefficients,
we rewrite the elliptic partial fraction decomposition (1.3) in a form that is suitable for our
purpose. Replacing r by r + 1 in (1.3), isolating the (r + 1)-th term of the sum, putting the
first r terms to the other side and dividing both sides of the equation by the (r+1)-th term and
using (1.1a), we obtain the following form of the type A elliptic partial fraction identity

1 =

∏r
j=1 θ(ar+1/aj)∏r+1
j=1 θ(ar+1/bj)

r∑
i=1

∏r+1
j=1 θ(bj/ai)∏

1≤j≤r+1
j ̸=i

θ(aj/ai)
, (2.8)

now subject to the elliptic balancing condition a1 · · · ar+1 = b1 · · · br+1.
We are ready to define (for the first time) elliptic multinomial coefficients. Let r > 1 be

an integer and a1, . . . , ar ∈ C× be variables. Further, let k1, . . . , kr be integers satisfying k1 +
· · · + kr ≥ 0. Here and throughout, we write Ki :=

∑i
ν=1 kν , for i = 0, . . . , r, and we will later

similarly use the notations Ni :=
∑i

ν=1 nν and Li :=
∑i

ν=1 lν . We define the elliptic multinomial
coefficients explicitly as[

k1 + · · ·+ kr
k1, . . . , kr

]
a1,...,ar;q,p

:=
(q; q, p)k1+···+kr∏r

i=1(q; q, p)ki

r∏
i=1

(
aiq

1+Kr−ki ; q, p
)
ki(

aiq1+2Ki−1 ; q, p
)
ki

∏
1≤i<j≤r

(
aiq

1−ki/aj ; q, p
)
kj

(aiq/aj ; q, p)kj
. (2.9)
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For r = 2, the elliptic multinomial coefficients
[
k1+k2
k1,k2

]
a1,a2;q,p

reduce to the elliptic binomial
coefficients

[
k1+k2
k1

]
a1,a2;q,p

(which in general is different from
[
k1+k2
k2

]
a1,a2;q,p

) given in (2.6).
That is, for r = 2 we have two short notations for the elliptic multinomial coefficients in (2.9),
just as in the familiar ordinary case.

The elliptic multinomial coefficients in (2.9) satisfy[
0

0, . . . , 0

]
a1,...,ar;q,p

= 1,

and (remember that we are assuming k1 + · · ·+ kr ≥ 0)[
k1 + · · ·+ kr
k1, . . . , kr

]
a1,...,ar;q,p

= 0, whenever kj < 0 for some j = 1, . . . , r,

and for k1 + · · ·+ kr > 0 the recurrence relation[
k1 + · · ·+ kr
k1, . . . , kr

]
a1,...,ar;q,p

=

r∑
i=1

[
k1 + · · ·+ kr − 1

k1, . . . , ki−1, ki − 1, ki+1, . . . , kr

]
a1,...,ar;q,p

∏
j>i

W
(Kj−1−ki)
ai,aj ;q,p (ki, kj). (2.10)

The latter is readily established by using the elliptic partial fraction decomposition (2.8). Indeed,
dividing both sides of (2.10) by the elliptic multinomial coefficient on the left-hand side and
replacing the elliptic multinomial coefficients and the shifted big elliptic weights by their explicit
expressions in (2.9), (2.3) and (2.2), we obtain, after cancellation of common factors, (2.8) with
respect to the following simultaneous substitutions:

ai 7→ qki/ai for 1 ≤ i ≤ r, ar+1 7→ qk1+···+kr ,

bi 7→ 1/ai for 1 ≤ i ≤ r, br+1 7→ q2(k1+···+kr).

This confirms (2.10).

3 An algebra of elliptic commuting variables

Recall (from Section 1) that Eq,p(a1, . . . , ar) denotes the field of totally elliptic functions over C,
in the complex variables logq ai, 1 ≤ i ≤ r, with equal periods σ−1, τσ−1 (where q = e2π

√
−1σ,

p = e2π
√
−1τ , σ, τ ∈ C), of double periodicity.

We shall work in the following algebra.

Definition 3.1. For 2r noncommuting variables X1, . . . , Xr, and a1, . . . , ar, where the variables
a1, . . . , ar commute with each other, and two nonzero complex numbers q, p with |p| < 1, let
Cq,p[X1, . . . , Xr; a1, . . . , ar] denote the associative unital algebra over C, generated byX1, . . ., Xr,
satisfying the following relations:

XjXi = wai,aj ;q,p(1, 1)XiXj for 1 ≤ i < j ≤ r, (3.1a)

Xif(a1, . . . , ar) = f
(
a1q

2, . . . , ai−1q
2, aiq, ai+1q

2, . . . , arq
2
)
Xi for 1 ≤ i ≤ r, (3.1b)

for all f ∈ Eq,p(a1, . . . , ar), and where the elliptic weights wai,aj ;q,p ∈ Eq,p(a1, . . . , ar) are defined
in (2.1).
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We refer to the 2r variables X1, . . . , Xr, a1, . . . , ar forming Cq,p[X1, . . . , Xr; a1, . . . , ar] as
elliptic-commuting variables.1

The following commutation relations, for 1 ≤ i < j ≤ r and 1 ≤ k ≤ r, arise as a consequence
of (3.1b) combined with (2.1):

Xiwai,aj ;q,p(s, t) = wai,aj ;q,p(s+ 1, t)Xi, Xjwai,aj ;q,p(s, t) = wai,aj ;q,p(s, t+ 1)Xj ,

Xkwai,aj ;q,p(s, t) = waiq2,ajq2;q,p(s, t)Xk for k ̸= i and k ̸= j.

Proposition 3.2. The monomials Xk1
1 · · ·Xkr

r , for k1, . . . , kr ∈ N0, form a basis for the al-
gebra Cq,p[X1, . . . , Xr; a1, . . . , ar] as a left module over Eq,p(a1, . . . , ar). In other words, any
element of the algebra can be written uniquely as a finite sum∑

k1,...,kr≥0

ck1,...,krX
k1
1 · · ·Xkr

r

with ck1,...,kr ∈ Eq,p(a1, . . . , ar) which we call the normal form of the element.

Proof. It is clear that any element in Cq,p[X1, . . . , Xr; a1, . . . , ar] can be put into normal form
using the relations in (3.1). What still needs to be shown is that the coefficients ck1,...,kr to the left

of each of the monomials Xk1
1 · · ·Xkr

r are well defined in that they are independent of the order
in which the commutation relations are applied in the normalization procedure. In other words,
since we are working in a multivariate noncommutative setting, we show that in the associative
algebra Cq,p[X1, . . . , Xr; a1, . . . , ar] a suitable variant of Bergman’s diamond lemma [2] applies.
By linearity, it is enough to assume that the element consists of a finite product of the variablesXi

(in some order and allowing repetitions) and some elements in Eq,p(a1, . . . , ar). Using (3.1b),
the latter elements can all be moved to the left of the Xi (possibly creating some shifts in the aj ,
1 ≤ j ≤ r, by some powers of q) resulting in the product of a unique element in Eq,p(a1, . . . , ar)
times a finite product of the variables Xi, which without loss of generality we may assume to
be X =

∏m
s=1Xis (i.e., we assume m to be the degree of the monomial X) which we may refer

to as a word of m letters.
We now sketch the reduction algorithm of the word X =

∏m
s=1Xis to normal form: If there

are any 1 ≤ s < m for which two neighboring variables (letters)Xis andXis+1 are not in the right
order, i.e., when is > is+1, then we pick such an s (the choice of s may not be unique) and apply
a reduction of the form (3.1a) (to switch the order of Xis and Xis+1) and subsequently use (3.1b)
sufficiently many times to move any newly created elliptic weights that depend on a1, . . . , ar to
the most left. This step is repeated until the indices is, 1 ≤ s ≤ m, are in weakly increasing
order. (In the terminology of the diamond lemma, our total monomial ordering is thus the
lexicographic ordering on the letters, or equivalently, on the indices of the monomials.) Now,
since at each step there may be several s with is > is+1, the order of the described reductions is
not unique, leading to possible ambiguity in eventually arriving at an irreducible form (which is
a form where no further reductions can be applied). According to the diamond lemma, there are
two possible ambiguities when applying reductions: overlap ambiguity and inclusion ambiguity.
The special form of the defining commutation relations (3.1a) (each term is transformed to
another term, there are no new terms created) shows that in our setting no inclusion ambiguity
can ever arise. (See [2] for examples of rings when inclusion ambiguity can arise.) What still
needs to be done is to show that each overlap ambiguity is resolvable. In the quadratic algebra
we are considering, this reduces by the diamond lemma to the following: We only have to show
the any subword of three variables X = XkXjXi with 1 ≤ i < j < k ≤ r is reduction-unique.
See Figure 2 for illustration.

1The algebra Cq,p[X1, . . . , Xr; a1, . . . , ar] reduces to the well-known algebra of q-commuting variables, that
we may denote by Cq[X1, . . . , Xr], defined by XjXi = qXiXj for 1 ≤ i < j ≤ r, if one formally lets p → 0
and a1 → 0, . . . , ar → 0, in this order, or lets p → 0 and ar → ∞, . . . , a1 → ∞, in this order, while (having
eliminated the nome p) relaxing the conditions of ellipticity.
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(waj ,ak;q,p(1, 1)XjXk)Xi

Xk(wai,aj ;q,p(1, 1)XiXj)

C

s1

s2

σj,k

σi,j

Figure 2. Diamond lemma: different reductions of the word XkXjXi lead to a common expression C.

In the figure σi,j refers to the application of the commutation relation in (3.1a) with indices i
and j. There are two ways to apply a simple commutation relation to X = XkXjXi. In this first
step of reduction, we can either apply σj,k or σi,j , leading to two different reductions. We now
have to show that when these reductions are further reduced (by s1 or s2, both representing
ordered sequences of commutation relations), they lead to a common expression C. We can
verify the uniqueness of C directly: On the one hand, we have

XkXjXi = Xk(XjXi) = Xkwai,aj ;q,p(1, 1)XiXj

= waiq2,ajq2;q,p(1, 1)XkXiXj

= waiq2,ajq2;q,p(1, 1)wai,ak;q,p(1, 1)XiXkXj

= waiq2,ajq2;q,p(1, 1)wai,ak;q,p(1, 1)Xiwaj ,ak;q,p(1, 1)XjXk

= waiq2,ajq2;q,p(1, 1)wai,ak;q,p(1, 1)wajq2,akq2;q,p(1, 1)XiXjXk. (3.2a)

On the other hand, we have

XkXjXi = (XkXj)Xi = waj ,ak;q,p(1, 1)XjXkXi

= waj ,ak;q,p(1, 1)Xjwai,ak;q,p(1, 1)XiXk

= waj ,ak;q,p(1, 1)waiq2,akq2;q,p(1, 1)XjXiXk

= waj ,ak;q,p(1, 1)waiq2,akq2;q,p(1, 1)wai,aj ;q,p(1, 1)XiXjXk. (3.2b)

Comparison of the coefficients to the left of XiXjXk in (3.2a) and (3.2b) gives

waiq2,ajq2;q,p(1, 1)wai,ak;q,p(1, 1)wajq2,akq2;q,p(1, 1)

= waj ,ak;q,p(1, 1)waiq2,akq2;q,p(1, 1)wai,aj ;q,p(1, 1),

which is indeed true by an instance of the elliptic consistency relation (2.5). By the diamond
lemma, this establishes that the reduced normalized form of any word is unique. Thus the
reduced normalized form of any element of the algebra is unique, as claimed. ■

The proof of Proposition 3.2 showed that when normalizing elements of the elliptic alge-
bra Cq,p[X1, . . . , Xr; a1, . . . , ar] and hereby producing products of elliptic weights, there are
different ways to write those products. For practical purposes, it will be convenient to define
a preference between the different possible choices. Subsequently, we shall prefer the expression
obtained in (3.2b) to that in (3.2a), as it contains less shifts of q in the parameters appearing
in the weights. This choice can repeatedly be applied to larger products of weights to obtain
a product of weights with smallest possible number of shifts of q.

For instance, it follows by application of (2.5) and induction that for any positive integer l,
and indices 1 ≤ i1 < i2 < · · · < il ≤ r, the following l-variable commutation relation holds

Xil · · ·Xi2Xi1 =

( ∏
1≤j<k≤l

waij q
2(k−j−1),aikq

2(k−j−1);q,p(1, 1)

)
Xi1Xi2 · · ·Xil .
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For bringing expressions in Cq,p[X1, . . . , Xr; a1, . . . , ar] into normal form, the following lemma
is useful. (While it was not needed in the proof of Proposition 3.2, it will be useful in the proofs
of Theorems 4.1 and 5.1.)

Lemma 3.3. Let k1, . . . , kr and l1, . . . , lr be non-negative integers. The following commutation
relation holds as an identity in Cq,p[X1, . . . , Xr; a1, . . . , ar]

Xk1
1 · · ·Xkr

r X l1
1 · · ·X lr

r

=

( ∏
1≤i<j≤r

Qai,aj ;q,p(li,Kj−1 − ki + Li−1, ki, kj)

)
Xk1+l1

1 · · ·Xkr+lr
r ,

where the big Q-weights are defined in (2.4).

Proof. The identity is readily proved by multiple induction using

Xk
j X

l
i = Qai,aj ;q,p(l, 0, 0, k)X

l
iX

k
j ,

where 1 ≤ i < j ≤ r, for any pair of non-negative integers k and l (which is equivalent to the
elliptic specialization of [16, Lemma 1]), combined with repeated application of the commutation
rule (3.1b). ■

4 An elliptic multinomial theorem

We have the following result.

Theorem 4.1 (elliptic multinomial theorem). Let n ∈ N0. Then the following identity is valid
in Cq,p[X1, . . . , Xr; a1, . . . , ar]:

(X1 + · · ·+Xr)
n =

∑
k1+···+kr=n

[
n

k1, . . . , kr

]
a1,...,ar;q,p

Xk1
1 · · ·Xkr

r .

Proof. We proceed by induction on n. For n = 0, the formula is trivial. Now let n > 0
(n being fixed) and assume that we have already shown the formula for all non-negative integers
less than n. We have (by separating the last factor, applying induction, applying a special
case of Lemma 3.3, shifting the summation, and finally combining terms using the recurrence
relation (2.10))

(X1 + · · ·+Xr)
n = (X1 + · · ·+Xr)

n−1(X1 + · · ·+Xr)

=
∑

k1+···+kr=n−1

[
n− 1

k1, . . . , kr

]
a1,...,ar;q,p

Xk1
1 · · ·Xkr

r (X1 + · · ·+Xr)

=
∑

k1+···+kr=n−1

r∑
i=1

([
n− 1

k1, . . . , kr

]
a1,...,ar;q,p

(∏
j>i

W
(Kj−1−ki)
ai,aj ;q,p (1 + ki, kj)

)

×Xk1
1 · · ·Xki−1

i−1 Xki+1
i X

ki+1

i+1 · · ·Xkr
r

)
=

∑
k1+···+kr=n

r∑
i=1

([
n− 1

k1, . . . , ki−1, ki − 1, ki+1, . . . , kr

]
a1,...,ar;q,p

×
(∏

j>i

W
(Kj−1−ki)
ai,aj ;q,p (ki, kj)

)
Xk1

1 · · ·Xkr
r

)

=
∑

k1+···+kr=n

[
n

k1, . . . , kr

]
a1,...,ar;q,p

Xk1
1 · · ·Xkr

r ,

which is what was to be shown. ■
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5 Rosengren’s Ar extension of the Frenkel–Turaev
summation by convolution

By convolution, applied to the elliptic multinomial theorem in Theorem 4.1, we obtain the
following result which turns out to be equivalent to Rosengren’s Ar extension of the Frenkel–
Turaev 10V9 summation.

Theorem 5.1. Let 0 ≤ M ≤ N be two integers, and let n1, . . . , nr ∈ N0 satisfying Nr =
n1 + · · ·+ nr = N . Then we have[

N
n1, . . . , nr

]
a1,...,ar;q,p

=
∑

k1+···+kr=M

([
M

k1, . . . , kr

]
a1,...,ar;q,p

[
N −M

n1 − k1, . . . , nr − kr

]
a1q2M−k1 ,...,arq2M−kr ;q,p

×
∏

1≤i<j≤r

Qai,aj ;q,p(ni − ki, Ni−1 +Kj−1 −Ki, ki, kj)

)
. (5.1)

Proof. Working in Cq,p[X1, . . . , Xr; a1, . . . , ar], we expand (X1 + · · · + Xr)
N = (X1 + · · · +

Xr)
M (X1 + · · ·+Xr)

N−M in two different ways and extract coefficients to the left of the mono-
mial Xn1

1 · · ·Xnr
r where n1 + · · ·+ nr = N . On the left-hand side, the expansion is achieved by

a single application of Theorem 4.1, which is simply

(X1 + · · ·+Xr)
N =

∑
k1+···+kr=N

[
N

k1, . . . , kr

]
a1,...,ar;q,p

Xk1
1 · · ·Xkr

r ,

whose coefficient of Xn1
1 · · ·Xnr

r is clearly
[

N
n1,...,nr

]
a1,...,ar;q,p

. On the right-hand side, we ap-
ply Theorem 4.1 twice and bring the expression into normal form by multiple applications
of (3.1b) (to the second elliptic multinomial coefficient) and finally apply Lemma 3.3 (to bring
the product of two monomials into normal form). The details are as follows

(X1 + · · ·+Xr)
M (X1 + · · ·+Xr)

N−M

=
∑

k1+···+kr=M

[
M

k1, . . . , kr

]
a1,...,ar;q,p

Xk1
1 · · ·Xkr

r

×
∑

l1+···+lr=N−M

[
N −M
l1, . . . , lr

]
a1,...,ar;q,p

X l1
1 · · ·X lr

r

=
∑

k1+···+kr=M
l1+···+lr=N−M

([
M

k1, . . . , kr

]
a1,...,ar;q,p

×
[
N −M
l1, . . . , lr

]
a1q2M−k1 ,...,arq2M−kr ;q,p

Xk1
1 · · ·Xkr

r X l1
1 · · ·X lr

r

)
=

∑
k1+···+kr=M

l1+···+lr=N−M

([
M

k1, . . . , kr

]
a1,...,ar;q,p

[
N −M
l1, . . . , lr

]
a1q2M−k1 ,...,arq2M−kr ;q,p

×
( ∏

1≤i<j≤r

Qai,aj ;q,p(li,Kj−1 − ki + Li−1, ki, kj)

)
Xk1+l1

1 · · ·Xkr+lr
r

)
.

Taking coefficients to the left of xn1
1 · · ·xnr

r evidently gives the right-hand side of (5.1). ■
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The convolution identity in Theorem 5.1 can be regarded as the combinatorial form of the Ar

Frenkel–Turaev summation

(b/a1, . . . , b/ar+1; q, p)M
(q, bz1, . . . , bzr; q, p)M

=
∑

k1+···+kr=M

∏
1≤i<j≤r

qkiθ
(
zjq

kj−ki/zi
)

θ(zj/zi)

r∏
i=1

∏r+1
j=1(ajzi; q, p)ki

(bzi; q, p)ki
∏r

j=1(ziq/zj ; q, p)ki
. (5.2)

This identity was first obtained by Rosengren in [12, Theorem 5.1], see also [6, equation (11.7.8)].
The r = 2 case of the identity in (5.2) is the single-sum Frenkel–Turaev summation in (1.4).
The p → 0 case of the summation in (5.2) was derived earlier by Milne [10, Theorem 6.17]. Now,
(5.2) contains (5.1) as a special case: In (5.2), perform the following simultaneous substitutions

ai 7→ q−ni for 1 ≤ i ≤ r, ar+1 7→ q−M ,

zi 7→ 1/ai for 1 ≤ i ≤ r, b 7→ q−M−N .

These substitutions yield (5.1) (after some rewriting). On the contrary, after rewriting the
elliptic multinomial coefficients and weights in (5.1) explicitly in terms of products of theta-
shifted factorials, the restriction that n1, . . . , nr are non-negative integer parameters can be
removed by repeated analytic continuation. This means that (5.1) is actually equivalent to (5.2).

Remark 5.2. While the above derivation of (5.1) involved elliptic commuting variables and
algebraic manipulations, it is not difficult to give combinatorial interpretations of the respective
algebraic expressions in terms of weighted lattice paths in the r-dimensional integer lattice Zr.
The multinomial (X1+ · · ·+Xr)

N can be interpreted as the generating function for lattice paths
starting at the origin and consisting of N unit steps where the ith of the r different unit steps
increases the ith coordinate in Zr by one while not changing the other coordinates. In other
words, starting at the origin, after N steps, the path reaches a point in the intersection of Zr

with the hyperplane z1 + · · · + zr = N . In this interpretation, for any r-tuple of non-negative
integers (k1, . . . , kr) whose ith component is positive, the weight of the unit step

(k1, . . . , ki−1, ki − 1, ki+1, . . . , kr) → (k1, . . . , kr)

is defined to be∏
i<j≤r

W
(Kj−1−ki)
ai,aj ;q,p (ki, kj), (5.3)

for any i = 1, . . . , r, in accordance with the recurrence relation of the elliptic multinomial
coefficients in (2.10). Assuming the weight of a lattice path in Zr to be the product of the
weights (which are all of the form (5.3)) of the unit steps it is composed of, the weighted
generating function of the family of all lattice paths that start at the origin (0, . . . , 0) and,
after N = n1 + · · ·+ nr unit steps, end in (n1 . . . , nr), is the elliptic multinonomial coefficient[

N
n1, . . . , nr

]
a1,...,ar;q,p

.

In this lattice path interpretation the convolution in Theorem 5.1 then concerns the gener-
ating function of paths that start at the origin (0, . . . , 0) and, after N = n1 + · · · + nr unit
steps, end exactly in (n1 . . . , nr) but is refined according to where, after M steps (for fixed M
satisfying 0 ≤ M ≤ N), the path crosses the hyperplane z1 + · · ·+ zr = M .

Our derivation of (5.1) by convolution (which as we just explained, can be interpreted in
terms of a weighted counting of lattice paths) appears to constitute the first combinatorial proof
of Rosengren’s Ar extension of the Frenkel–Turaev summation, an identity that is of fundamental
importance in the theory of elliptic hypergeometric series associated with root systems (cf. [14]).
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Remark 5.3. A natural question concerns the possible wider application of the methods de-
veloped in this paper. Concretely, it would be interesting to find a higher rank extension of
the elliptic binomial theorem from [7, Definition 5.6 and Theorem 5.7] that was mentioned in
Remark 2.3 and to derive a corresponding multivariate Frenkel–Turaev summation by convolu-
tion, in the same way as Theorem 5.1 was derived in this section. We find this an interesting
open problem worthwhile to pursue. It is not clear whether the such obtained identity would be
equivalent to Rosengren’s Ar extension of the Frenkel–Turaev summation or whether it would
be of a different type such as one of the multivariate Frenkel–Turaev summations listed in [14].
One could also ask whether the elliptic binomial coefficients from [3] and [11] can be identified as
the normal form coefficients in a suitably defined algebra of elliptic commuting variables (with
developments parallel to those of this paper).

Furthermore, one can simply ask whether any of the other multivariate Frenkel–Turaev sum-
mations in [14] admit similar algebraic or combinatorial interpretations as (5.2) does. We cur-
rently have no idea whether this is possible and would find this question rather difficult (or
challenging) to answer affirmatively. Specifically, when considering lattice paths in the Cr case
(see [12, Theorem 7.1] for Rosengren’s Cr extension of the Frenkel–Turaev sum), it may well
be that instead of considering positively directly lattice paths in Zr that are bounded by a hy-
perplane, one would have to allow paths that move in the direction (positive or negative) of
any axis. It is likely that one would then work in an associative algebra that contains non-
commuting variables C1, . . . , Cr, and X1, X

−1
1 , . . . , Xr, X

−1
r , and seek an expansion of the prod-

uct
∏r

i=1

(
Xi + CiX

−1
i

)ni in terms of normalized monomials. At the moment this is all specula-
tive. Further research is needed to determine whether the methods developed in this paper can
indeed be applied in the setting of root systems other than Ar.
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