Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 062, 22 pages      arXiv:2406.16208      https://doi.org/10.3842/SIGMA.2025.062

Deformation Families of Quasi-Projective Varieties and Symmetric Projective K3 Surfaces

Fan Xu
Graduate School of Mathematics, Nagoya University, Furocho, Chikusaku, Nagoya, 464-8602, Japan

Received October 31, 2024, in final form July 16, 2025; Published online July 28, 2025

Abstract
The main aim of this paper is to construct a complex analytic family of symmetric projective K3 surfaces through a compactifiable deformation family of complete quasi-projective varieties from $\operatorname{CP}^2 \#9\overline{\operatorname{CP}}^2$. Firstly, for an elliptic curve $C_0$ embedded in $\operatorname{CP}^2$, let $S \cong \operatorname{CP}^2 \#9\overline{\operatorname{CP}}^2$ be the blow up of $\operatorname{CP}^2$ at nine points on the image of $C_0$ and $C$ be the strict transform of the image. Then if the normal bundle satisfies the Diophantine condition, a tubular neighborhood of the elliptic curve $C$ can be identified through a toroidal group. Fixing the Diophantine condition, a smooth compactifiable deformation of $S\backslash C$ over a 9-dimensional complex manifold is constructed. Moreover, with an ample line bundle fixed on $S$, complete Kähler metrics can be constructed on the quasi-projective variety $S\backslash C$. So complete Kähler metrics are constructed on each quasi-projective variety fiber of the smooth compactifiable deformation family. Then a complex analytic family of symmetric projective K3 surfaces over a 10-dimensional complex manifold is constructed through the smooth compactifiable deformation family of complete quasi-projective varieties and an analogous deformation family.

Key words: blow up; complete quasi-projective varieties; symmetry projective K3 surfaces; deformation families.

pdf (500 kb)   tex (28 kb)  

References

  1. Abasheva A., Déev R., Complex surfaces with many algebraic structures, Int. Math. Res. Not. 2024 (2024), 7379-7400, arXiv:2303.10764.
  2. Abe Y., Kopfermann K., Toroidal groups. Line bundles, cohomology and quasi-abelian varieties, Lecture Notes in Math., Vol. 1759, Springer, Berlin, 2001.
  3. Arnold V.I., Bifurcations of invariant manifolds of differential equations, and normal forms of neighborhoods of elliptic curves, Funct. Anal. Appl. 10 (1976), 249-259.
  4. Ballico E., Gasparim E., Rubilar F., 20 open questions about deformations of compactifiable manifolds, São Paulo J. Math. Sci. 15 (2021), 661-681, arXiv:2004.11299.
  5. Brunella M., On Kähler surfaces with semipositive Ricci curvature, Riv. Math. Univ. Parma (N.S.) 1 (2010), 441-450.
  6. Demailly J.-P., Complex analytic and differential geometry, Universitè de Grenoble I, Grenoble, 1997.
  7. Evans L.C., Partial differential equations, Grad. Stud. Math., Vol. 19, American Mathematical Society, Providence, RI, 1998.
  8. Fujimoto Y., On rational elliptic surfaces with multiple fibers, Publ. Res. Inst. Math. Sci. 26 (1990), 1-13.
  9. Gasparim E., Rubilar F., Deformations of noncompact Calabi-Yau manifolds, families and diamonds, in Geometry at the Frontier—Symmetries and Moduli Spaces of Algebraic Varieties, Contemp. Math., Vol. 766, American Mathematical Society, Providence, RI, 2021, 117-132, arXiv:1908.09045.
  10. Griffiths P., Harris J., Principles of algebraic geometry, Wiley Classics Lib., John Wiley & Sons, New York, 1994.
  11. Guedj V., Zeriahi A., Degenerate complex Monge-Ampère equations, EMS Tracts Math., Vol. 26, European Mathematical Society (EMS), Zürich, 2017.
  12. Hartshorne R., Algebraic geometry, Grad. Texts in Math., Vol. 52, Springer, New York, 1977.
  13. Hein H.J., Complete Calabi-Yau metrics from $\mathbb{P}^2\#9\overline{\mathbb{P}}^2$, arXiv:1003.2646.
  14. Kodaira K., Complex manifolds and deformation of complex structures, Class. Math., Springer, Berlin, 2005.
  15. Koike T., Uehara T., A gluing construction of projective K3 surfaces, arXiv:1903.01444.
  16. Koike T., Uehara T., A gluing construction of K3 surfaces, Épijournal Géom. Algébrique 6 (2022), 12, 15 pages, arXiv:2108.07168.
  17. Ross J., Nyström D.W., Homogeneous Monge-Ampère equations and canonical tubular neighbourhoods in Kähler geometry, Int. Math. Res. Not. 2017 (2017), 7069-7108, arXiv:1403.3282.
  18. Sukhov A., Regularized maximum of strictly plurisubharmonic functions on an almost complex manifold, Internat. J. Math. 24 (2013), 1350097, 6 pages, arXiv:1303.5312.
  19. Szemberg T., Tutaj-Gasińska H., General blow-ups of the projective plane, Proc. Amer. Math. Soc. 130 (2002), 2515-2524.
  20. Ueda T., On the neighborhood of a compact complex curve with topologically trivial normal bundle, J. Math. Kyoto Univ. 22 (1982), 583-607.
  21. Vogt C., Line bundles on toroidal groups, J. Reine Angew. Math. 335 (1982), 197-215.
  22. Voisin C., Hodge theory and complex algebraic geometry. I, Cambridge Stud. Adv. Math., Vol. 76, Cambridge University Press, Cambridge, 2002.

Previous article  Next article  Contents of Volume 21 (2025)