|
SIGMA 21 (2025), 076, 20 pages arXiv:2501.02789
https://doi.org/10.3842/SIGMA.2025.076
Prolongation of $(8,15)$-Distribution of Type $F_4$ by Singular Curves
Goo Ishikawa a and Yoshinori Machida b
a) Department of Mathematics, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
b) Department of Mathematics, Faculty of Science, Shizuoka University, 836, Ohya, Suruga-ku, Shizuoka 422-8529, Japan
Received January 30, 2025, in final form September 12, 2025; Published online September 18, 2025
Abstract
Cartan gives the model of $(8, 15)$-distribution with the exceptional simple Lie algebra $F_4$ as its symmetry algebra in his paper (1893), which is published one year before his thesis. In the present paper, we study abnormal extremals (singular curves) of Cartan's model from viewpoints of sub-Riemannian geometry and geometric control theory.Then we construct the prolongation of Cartan's model based on the data related to its singular curves, and obtain the nilpotent graded Lie algebra which is isomorphic to the negative part of the graded Lie algebra $F_4$.
Key words: exceptional Lie algebra; singular curve; constrained Hamiltonian equation.
pdf (455 kb)
tex (45 kb)
References
- Adams J.F., The selected works of J. Frank Adams. Vol. II, Cambridge University Press, Cambridge, 1992.
- Adams J.F., Lectures on exceptional Lie groups, Chicago Lectures in Math., University of Chicago Press, Chicago, IL, 1996.
- Agrachev A.A., Sachkov Y.L., Control theory from the geometric viewpoint. Control theory and optimization, II, Encyclopaedia Math. Sci., Vol. 87, Springer, Berlin, 2004.
- Agrachev A.A., Zelenko I., Nurowski's conformal structures for $(2,5)$-distributions via dynamics of abnormal extremals, in Proceedings of RIMS Symposium on Developments of Cartan Geometry and Related Mathematical Problems, RIMS Kôkyûroku, Vol. 1502, Res. Inst. Math. Sci. (RIMS), Kyoto, 2006, 204-218.
- Altomani A., Santi A., Tanaka structures modeled on extended Poincaré algebras, Indiana Univ. Math. J. 63 (2014), 91-117, arXiv:1201.0555.
- Baston R.J., Eastwood M.G., The Penrose transform. Its interaction with representation theory, Oxford Math. Monogr., The Clarendon Press, New York, 1989.
- Bonnard B., Chyba M., Singular trajectories and their role in control theory, Math. Appl., Vol. 40, Springer, Berlin, 2003.
- Bourbaki N., Groupes et algèbres de Lie, Chaptres 4 à 6, Springer, Berlin, 2007.
- Bryant R.L., Élie Cartan and geometric duality, A lecture given at the Institut d'Élie Cartan, 19 June 1998.
- Bryant R.L., Chern S.S., Gardner R.B., Goldschmidt H.L., Griffiths P.A., Exterior differential systems, Math. Sci. Res. Inst. Publ., Vol. 18, Springer, New York, 1991.
- Bryant R.L., Hsu L., Rigidity of integral curves of rank $2$ distributions, Invent. Math. 114 (1993), 435-461.
- Čap A., Slovák J., Parabolic geometries. I: Background and general theory, Math. Surveys Monogr., Vol. 154, American Mathematical Society, Providence, RI, 2009.
- Cartan É., Structure des groupes de transformations finis et continus, Thèses a la Faculté des Sciences de Paris, 1894.
- Cartan É., Über die einfachen Transformationsgruppen, Leipz. Ber. 45 (1893), 395-420.
- Cartan É., Les groupes réels simples, finis et continus, Ann. Sci. École Norm. Sup. 31 (1914), 263-355.
- Doubrov B., Zelenko I., On local geometry of non-holonomic rank $2$ distributions, J. Lond. Math. Soc. 80 (2009), 545-566, arXiv:math.DG/0703662.
- Doubrov B., Zelenko I., Equivalence of variational problems of higher order, Differential Geom. Appl. 29 (2011), 255-270, arXiv:1004.1730.
- Gantmacher F., On the classification of real simple Lie groups, Sb. Math. 5 (1939), 217-250.
- Godoy Molina M., Kruglikov B., Markina I., Vasil'ev A., Rigidity of 2-step Carnot groups, J. Geom. Anal. 28 (2018), 1477-1501, arXiv:1603.00373.
- Harvey F.R., Spinors and calibrations, Perspect. in Math., Vol. 9, Academic Press, Inc., Boston, MA, 1990.
- Helgason S., Differential geometry, Lie groups, and symmetric spaces, Pure Appl. Math., Vol. 80, Academic Press, Inc., New York, 1977.
- Humphreys J.E., Introduction to Lie algebras and representation theory, Grad. Texts in Math., Vol. 9, Springer, New York, 1972.
- Hwang J.M., Mori geometry meets Cartan geometry: varieties of minimal rational tangents, in Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. 1, Kyung Moon Sa, Seoul, 2014, 369-394, arXiv:1501.04720.
- Ishikawa G., Kitagawa Y., Tsuchida A., Yukuno W., Duality of $(2,3,5)$-distributions and Lagrangian cone structures, Nagoya Math. J. 243 (2021), 303-315, arXiv:1808.00149.
- Ishikawa G., Kitagawa Y., Yukuno W., Duality of singular paths for $(2,3,5)$-distributions, J. Dyn. Control Syst. 21 (2015), 155-171, arXiv:1308.2501.
- Ishikawa G., Machida Y., Singular curves of hyperbolic $(4,7)$-distributions of type $C_3$, Adv. Stud. Pure Math., to appear, arXiv:2310.18739.
- Ishikawa G., Machida Y., Takahashi M., Singularities of tangent surfaces in Cartan's split $G_2$-geometry, Asian J. Math. 20 (2016), 353-382.
- Ivey T.A., Landsberg J.M., Cartan for beginners: differential geometry via moving frames and exterior differential systems, Grad. Stud. Math., Vol. 175, American Mathematical Society, Providence, RI, 2016.
- Jacobson N., Exceptional Lie algebras, Lect. Notes Pure Appl. Math., Vol. 1, Marcel Dekker, Inc., New York, 1971.
- Kostant B., Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. 74 (1961), 329-387.
- Landsberg J.M., Manivel L., On the projective geometry of rational homogeneous varieties, Comment. Math. Helv. 78 (2003), 65-100.
- Liu W., Sussman H.J., Shortest paths for sub-Riemannian metrics on rank-two distributions, Mem. Amer. Math. Soc. 118 (1995), x+104 pages.
- Montgomery R., A survey of singular curves in sub-Riemannian geometry, J. Dynam. Control Systems 1 (1995), 49-90.
- Montgomery R., A tour of subriemannian geometries, their geodesics and applications, Math. Surveys Monogr., Vol. 91, American Mathematical Society, Providence, RI, 2002.
- Morimoto T., Geometric structures on filtered manifolds, Hokkaido Math. J. 22 (1993), 263-347.
- Nurowski P., Exceptional simple real Lie algebras $\mathfrak{f}_4$ and $\mathfrak{e}_6$ via contactifications, J. Inst. Math. Jussieu 24 (2025), 157-201.
- Sato H., $F_4$-contact structures and companions, A lecture at the workshop ''Singularities of Differentiable Maps and its Applications'', Hokkaido University, 6 March 2023.
- Tanaka N., On differential systems, graded Lie algebras and pseudogroups, J. Math. Kyoto Univ. 10 (1970), 1-82.
- Tanaka N., On the equivalence problems associated with simple graded Lie algebras, Hokkaido Math. J. 8 (1979), 23-84.
- Yamaguchi K., Differential systems associated with simple graded Lie algebras, in Progress in Differential Geometry, Adv. Stud. Pure Math., Vol. 22, Math. Soc. Japan, Tokyo, 1993, 413-494.
|
|