Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 077, 11 pages      arXiv:2506.21789      https://doi.org/10.3842/SIGMA.2025.077

Integrable 3-Site, Tilted, Extended Bose-Hubbard Model with Nearest-Neighbour Interactions

Jon Links
School of Mathematics and Physics, The University of Queensland, 4072, Australia

Received June 30, 2025, in final form September 12, 2025; Published online September 19, 2025

Abstract
Extended Bose-Hubbard models have been employed in the study of cold-atom systems with dipolar interactions. It is shown that, for a certain choice of the coupling parameters, there exists an integrable extended 3-site Bose-Hubbard model with nearest-neighbour interactions. A Bethe ansatz procedure is developed to obtain expressions for the energy spectrum and eigenstates.

Key words: Bose-Hubbard model; quantum integrability; Bethe ansatz.

pdf (374 kb)   tex (20 kb)  

References

  1. Albertini G., Bethe-ansatz type equations for the Fateev-Zamolodchikov spin model, J. Phys. A 25 (1992), 1799-1813.
  2. Avdeev L.V., Vladimirov A.A., Exceptional solutions to the Bethe ansatz equations, Theoret. and Math. Phys. 69 (1986), 1071-1079.
  3. Bennett L., Isaac P.S., Links J., NOON state measurement probabilities and outcome fidelities: a Bethe ansatz approach, J. Phys. A 56 (2023), 505202, 27 pages.
  4. Bychek A.A., Muraev P.S., Maksimov D.N., Kolovsky A.R., Bulgakov E.N., Chaotic and regular dynamics in the three-site Bose-Hubbard model, AIP Conf. Proc. 2241 (2020), 020007, 7 pages, arXiv:1910.12489.
  5. Campbell C.W., Dancer K.A., Isaac P.S., Links J., Bethe ansatz solution of an integrable, non-abelian anyon chain with $D(D_3)$ symmetry, Nuclear Phys. B 836 (2010), 171-185, arXiv:1003.3514.
  6. Castro E.R., Chávez-Carlos J., Roditi I., Santos L.F., Hirsch J.G., Quantum-classical correspondence of a system of interacting bosons in a triple-well potential, Quantum 5 (2021), 563-574, arXiv:2105.10515.
  7. Castro E.R., Wittmann W. K., Chávez-Carlos J., Roditi I., Foerster A., Hirsch J.G., Quantum-classical correspondence in a triple-well bosonic model: from integrability to chaos, Phys. Rev. A 109 (2024), 032225, 13 pages, arXiv:2311.13189.
  8. Chanda T., Barbiero L., Lewenstein M., Mark M.J., Zakrzewski J., Recent progress on quantum simulations of non-standard Bose-Hubbard models, Rep. Progr. Phys. 88 (2025), 044501, 27 pages, arXiv:2405.07775.
  9. Franzosi R., Penna V., Chaotic behavior, collective modes, and self-trapping in the dynamics of three coupled Bose-Einstein condensates, Phys. Rev. E 67 (2003), 046227, 37 pages, arXiv:cond-mat/0203509.
  10. Giri P.R., Deguchi T., Singular eigenstates in the even (odd) length Heisenberg spin chain, J. Phys. A 48 (2015), 175207, 26 pages, arXiv:1411.5839.
  11. Grün D.S., Wittmann W. K., Ymai L.H., Links J., Foerster A., Protocol designs for NOON states, Commun. Phys. 5 (2022), 36, 13 pages, arXiv:2102.02944.
  12. Grün D.S., Wittmann W. K., Ymai L.H., Links J., Foerster A., Tonel A.P., Integrable atomtronic interferometry, Phys. Rev. Lett. 129 (2022), 020401, 9 pages, arXiv:2004.11987.
  13. Kirillov A.N., Sakamoto R., Singular solutions to the Bethe ansatz equations and rigged configurations, J. Phys. A 47 (2014), 205207, 20 pages, arXiv:1402.0651.
  14. Koch T., Lahaye T., Metz J., Fröhlich B., Griesmaier A., Pfau T., Stabilization of a purely dipolar quantum gas against collapse, Nature Phys. 4 (2008), 218-222, arXiv:0710.3643.
  15. Kollath C., Roux G., Biroli G., Läuchli A.M., Statistical properties of the spectrum of the extended Bose-Hubbard model, J. Stat. Mech. Theory Exp. 2010 (2010), P08011, 18 pages, arXiv:1004.2203.
  16. Kolovsky A.R., Bose-Hubbard Hamiltonian: quantum chaos approach, Internat. J. Modern Phys. B 30 (2016), 1630009, 21 pages, arXiv:1507.03413.
  17. Kolovsky A.R., Buchleitner A., Quantum chaos in the Bose-Hubbard model, Europhys. Lett. 68 (2004), 632-638, arXiv:cond-mat/0403213.
  18. Lahaye T., Menotti C., Santos L., Lewenstein M., Pfau T., The physics of dipolar bosonic quantum gases, Rep. Progr. Phys. 72 (2009), 126401, 71 pages, arXiv:0905.0386.
  19. Lahaye T., Santos L., Pfau T., Mesoscopic ensembles of polar bosons in triple-well potentials, Phys. Rev. Lett. 104 (2010), 170404, 8 pages, arXiv:0911.5288.
  20. Links J., Foerster A., Tonel A.P., Santos G., The two-site Bose-Hubbard model, Ann. Henri Poincaré 7 (2006), 1591-1600, arXiv:cond-mat/0605486.
  21. Links J., Hibberd K.E., Bethe ansatz solutions of the Bose-Hubbard dimer, SIGMA 2 (2006), 095, 8 pages, arXiv:nlin.SI/0612063.
  22. Links J., Moghaddam A., Zhang Y.Z., BCS model with asymmetric pair scattering: a non-Hermitian, exactly solvable Hamiltonian exhibiting generalized exclusion statistics, J. Phys. A 46 (2013), 305205, 18 pages, arXiv:1304.5818.
  23. Links J., Zhao S.Y., A Bethe ansatz study of the ground state energy for the repulsive Bose-Hubbard dimer, J. Stat. Mech. Theory Exp. 2009 (2009), P03013, 16 pages.
  24. Moshinsky M., Patera J., Sharp R.T., Winternitz P., Everything you always wanted to know about ${\rm SU}(3)\supset {\rm O}(3)$, Ann. Physics 95 (1975), 139-169.
  25. Nakerst G., Haque M., Chaos in the three-site Bose-Hubbard model: classical versus quantum, Phys. Rev. E 107 (2023), 024210, 14 pages, arXiv:2203.09953.
  26. Nepomechie R.I., Wang C., Twisting singular solutions of Bethe's equations, J. Phys. A 47 (2014), 505004, 9 pages, arXiv:1409.7382.
  27. Oelkers N., Links J., Ground-state properties of the attractive one-dimensional Bose-Hubbard models, Phys. Rev. B 75 (2007), 115119, 17 pages, arXiv:cond-mat/0611510.
  28. Pan F., Li A., Wu Y., Draayer J.P., An exact solution of the homogenous trimer Bose-Hubbard model, J. Stat. Mech. Theory Exp. 2023 (2023), 033101, 21 pages.
  29. Rovirola M., Briongos-Merino H., Juliá-Díaz B., Guilleumas M., Ultracold dipolar bosons trapped in atomtronic circuits, Phys. Rev. A 109 (2024), 063331, 8 pages, arXiv:2403.11620.
  30. Simon B., Sturm oscillation and comparison theorems, in Sturm-Liouville theory, Birkhäuser, Basel, 2005, 29-43, arXiv:math.SP/0311049.
  31. Tonel A.P., Ymai L.H., Wittmann W. K., Foerster A., Links J., Entangled states of dipolar bosons generated in a triple-well potential, SciPost Phys. 2 (2020), 003, 20 pages, arXiv:1909.04815.
  32. Wittmann W. K., Castro E.R., Foerster A., Santos L.F., Interacting bosons in a triple well: preface of many-body quantum chaos, Phys. Rev. E 105 (2022), 034204, 15 pages, arXiv:2111.13714.
  33. Wittmann W. K., Castro E.R., Roditi I., Foerster A., Hirsch J.G., Subtle nuances between quantum and classical regimes, Chaos 35 (2025), 043108, 9 pages, arXiv:2411.07373.
  34. Wittmann W. K., Ymai L.H., Barros B.H.C., Links J., Foerster A., Controlling entanglement in a triple-well system of dipolar atoms, Phys. Rev. A 108 (2023), 033313, 11 pages, arXiv:2305.09754.
  35. Wittmann W. K., Ymai L.H., Foerster A., Tonel A.P., J. L., Control of tunneling in an atomtronic switching device, Commun. Phys. 1 (2018), 91, 10 pages, arXiv:1710.05831.
  36. Ymai L.H., Tonel A.P., Foerster A., Links J., Quantum integrable multi-well tunneling models, J. Phys. A 50 (2017), 264001, 13 pages, arXiv:1606.00816.
  37. Zheng M., Qiao Y., Wang Y., Cao J., Chen S., Exact solution of the Bose-Hubbard model with unidirectional hopping, Phys. Rev. Lett. 132 (2024), 086502, 7 pages, arXiv:2305.00439.

Previous article  Next article  Contents of Volume 21 (2025)