Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 078, 28 pages      arXiv:2412.05224      https://doi.org/10.3842/SIGMA.2025.078

Rectangular Recurrence Relations in $\mathfrak{gl}_{n}$ and $\mathfrak{o}_{2n+1}$ Invariant Integrable Models

Andrii Liashyk a, Stanislav Pakuliak b and Eric Ragoucy b
a) Beijing Institute of Mathematical Sciences and Applications (BIMSA), No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408, P.R. China
b) Laboratoire d'Annecy-le-Vieux de Physique Théorique (LAPTh), Chemin de Bellevue, BP 110, F-74941, Annecy-le-Vieux Cedex, France

Received February 25, 2025, in final form September 01, 2025; Published online September 21, 2025

Abstract
A new method is introduced to derive general recurrence relations for off-shell Bethe vectors in quantum integrable models with either type $\mathfrak{gl}_n$ or type $\mathfrak{o}_{2n+1}$ symmetries. These recurrence relations describe how to add a single parameter $z$ to specific subsets of Bethe parameters, expressing the resulting Bethe vector as a linear combination of monodromy matrix entries that act on Bethe vectors which do not depend on $z$. We refer to these recurrence relations as rectangular because the monodromy matrix entries involved are drawn from the upper-right rectangular part of the matrix. This construction is achieved within the framework of the zero mode method.

Key words: Yangians; recurrence relations for Bethe vectors; nested algebraic Bethe ansatz.

pdf (696 kb)   tex (41 kb)  

References

  1. Belliard S., Pakuliak S., Ragoucy E., Slavnov N.A., The algebraic Bethe ansatz for scalar products in ${\rm SU}(3)$-invariant integrable models, J. Stat. Mech. Theory Exp. 2012 (2012), P10017, 25 pages, arXiv:1207.0956.
  2. Belliard S., Pakuliak S., Ragoucy E., Slavnov N.A., Bethe vectors of ${\rm GL}(3)$-invariant integrable models, J. Stat. Mech. Theory Exp. 2013 (2013), P02020, 24 pages, arXiv:1210.0768.
  3. Drinfeld V.G., Quantum groups, J. Sov. Math. 41 (1988), 898-915.
  4. Faddeev L.D., How the algebraic Bethe ansatz works for integrable models, in Symétries Quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, 149-219, arXiv:hep-th/9605187.
  5. Gelfand I., Retakh V., Quasideterminants. I, Selecta Math. (N.S.) 3 (1997), 517-546.
  6. Gombor T., Exact overlaps for all integrable two-site boundary states of $\mathfrak{gl}(N)$ symmetric spin chains, J. High Energy Phys. 2024 (2024), no. 5, 194, 98 pages, arXiv:2311.04870.
  7. Gromov N., Levkovich-Maslyuk F., Ryan P., Determinant form of correlators in high rank integrable spin chains via separation of variables, J. High Energy Phys. 2021 (2021), no. 5, 169, 79 pages, arXiv:2011.08229.
  8. Gromov N., Levkovich-Maslyuk F., Sizov G., New construction of eigenstates and separation of variables for ${\rm SU}(N)$ quantum spin chains, J. High Energy Phys. 2017 (2017), no. 9, 111, 39 pages, arXiv:1610.08032.
  9. Hutsalyuk A., Liashyk A., Pakuliak S.Z., Ragoucy E., Slavnov N.A., Current presentation for the double super-Yangian ${\rm DY}(\mathfrak{gl}(m|n))$ and Bethe vectors, Russian Math. Surveys 72 (2017), 33-99, arXiv:1611.09620.
  10. Hutsalyuk A., Liashyk A., Pakuliak S.Z., Ragoucy E., Slavnov N.A., Scalar products of Bethe vectors in models with $\mathfrak{gl}(2|1)$ symmetry 2. Determinant representation, J. Phys. A 50 (2017), 034004, 22 pages, arXiv:1606.03573.
  11. Hutsalyuk A., Liashyk A., Pakuliak S.Z., Ragoucy E., Slavnov N.A., Scalar products of Bethe vectors in the models with $\mathfrak{gl}(m|n)$ symmetry, Nuclear Phys. B 923 (2017), 277-311, arXiv:1704.08173.
  12. Hutsalyuk A., Liashyk A., Pakuliak S.Z., Ragoucy E., Slavnov N.A., Norm of Bethe vectors in models with $\mathfrak{gl}(m|n)$ symmetry, Nuclear Phys. B 926 (2018), 256-278, arXiv:1705.09219.
  13. Hutsalyuk A., Liashyk A., Pakuliak S.Z., Ragoucy E., Slavnov N.A., Actions of the monodromy matrix elements onto $\mathfrak{gl}(m|n)$-invariant Bethe vectors, J. Stat. Mech. Theory Exp. 2020 (2020), 093104, 31 pages, arXiv:2005.09249.
  14. Izergin A.G., Korepin V.E., The quantum inverse scattering method approach to correlation functions, Comm. Math. Phys. 94 (1984), 67-92.
  15. Jing N., Liu M., Molev A., Isomorphism between the $R$-matrix and Drinfeld presentations of Yangian in types $B$, $C$ and $D$, Comm. Math. Phys. 361 (2018), 827-872, arXiv:1705.08155.
  16. Khoroshkin S., Pakuliak S., A computation of universal weight function for quantum affine algebra $U_q(\widehat{\mathfrak {gl}}_N)$, J. Math. Kyoto Univ. 48 (2008), 277-321, arXiv:0711.2819.
  17. Korepin V.E., Calculation of norms of Bethe wave functions, Comm. Math. Phys. 86 (1982), 391-418.
  18. Kosmakov M., Tarasov V., New combinatorial formulae for nested Bethe vectors, SIGMA 21 (2025), 060, 28 pages, arXiv:2312.00980.
  19. Kosmakov M., Tarasov V., New combinatorial formulae for nested Bethe vectors II, Lett. Math. Phys. 115 (2025), 12, 20 pages, arXiv:2402.15717.
  20. Kulish P.P., Reshetikhin N.Yu., On ${\rm GL}\sb{3}$-invariant solutions of the Yang-Baxter equation and associated quantum systems, J. Sov. Math. 34 (1982), 1948-1971.
  21. Kulish P.P., Reshetikhin N.Yu., Diagonalisation of ${\rm GL}(N)$ invariant transfer matrices and quantum $N$-wave system (Lee model), J. Phys. A 16 (1983), L591-L596.
  22. Liashyk A., Pakuliak S., Gauss coordinates vs currents for the Yangian doubles of the classical types, SIGMA 16 (2020), 120, 23 pages, arXiv:2006.01579.
  23. Liashyk A., Pakuliak S., Algebraic Bethe ansatz for $\mathfrak o_{2n+1}$-invariant integrable models, Theoret. and Math. Phys. 206 (2021), 19-39, arXiv:2008.03664.
  24. Liashyk A., Pakuliak S., Recurrence relations for off-shell Bethe vectors in trigonometric integrable models, J. Phys. A 55 (2022), 075201, 23 pages, arXiv:2109.07528.
  25. Liashyk A., Pakuliak S., Ragoucy E., Scalar products and norm of Bethe vectors in $\mathfrak{o}_{2n+1}$ invariant integrable models, SciPost Phys. 19 (2025), 023, 38 pages, arXiv:2503.01578.
  26. Liashyk A., Pakuliak S., Ragoucy E., Slavnov N.A., Bethe vectors for orthogonal integrable models, Theoret. and Math. Phys. 201 (2019), 1545-1564, arXiv:1906.03202.
  27. Liashyk A., Pakuliak S., Ragoucy E., Slavnov N.A., New symmetries of $\mathfrak{gl}(N)$-invariant Bethe vectors, J. Stat. Mech. Theory Exp. 2019 (2019), 044001, 24 pages, arXiv:1810.00364.
  28. Maillet J.M., Niccoli G., On quantum separation of variables, J. Math. Phys. 59 (2018), 091417, 47 pages, arXiv:1807.11572.
  29. Maillet J.M., Niccoli G., Vignoli L., On scalar products in higher rank quantum separation of variables, SciPost Phys. 9 (2020), 086, 64 pages, arXiv:2003.04281.
  30. Molev A., Yangians and classical Lie algebras, Math. Surveys Monogr., Vol. 143, American Mathematical Society, Providence, RI, 2007.
  31. Reshetikhin N.Yu., Calculation of the norm of Bethe vectors in models with ${\rm SU}(3)$ symmetry, J. Sov. Math. 46 (1989), 1694-1706.
  32. Reshetikhin N.Yu., Algebraic Bethe ansatz for ${\rm SO}(N)$-invariant transfer matrices, J. Sov. Math. 54 (1991), 940-951.
  33. Reshetikhin N.Yu., Takhtadzhyan L.A., Faddeev L.D., Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (1990), 193-225.
  34. Ryan P., Volin D., Separation of variables for rational $\mathfrak{gl}(n)$ spin chains in any compact representation, via fusion, embedding morphism and Bäcklund flow, Comm. Math. Phys. 383 (2021), 311-343, arXiv:2002.12341.
  35. Sklyanin E.K., Functional Bethe ansatz, in Integrable and Superintegrable Systems, World Scientific Publishing, Teaneck, NJ, 1990, 8-33.
  36. Sklyanin E.K., Separation of variables - new trends, Progr. Theoret. Phys. Suppl. 118 (1995), 35-60, arXiv:solv-int/9504001.
  37. Slavnov N.A., Calculation of scalar products of wave functions and form-factors in the framework of the algebraic Bethe ansatz, Theoret. and Math. Phys. 79 (1989), 502-508.
  38. Yang C.N., Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett. 19 (1967), 1312-1315.
  39. Zamolodchikov A.B., Zamolodchikov A.B., Factorized $S$-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models, Ann. Physics 120 (1979), 253-291.

Previous article  Next article  Contents of Volume 21 (2025)