|
SIGMA 21 (2025), 078, 28 pages arXiv:2412.05224
https://doi.org/10.3842/SIGMA.2025.078
Rectangular Recurrence Relations in $\mathfrak{gl}_{n}$ and $\mathfrak{o}_{2n+1}$ Invariant Integrable Models
Andrii Liashyk a, Stanislav Pakuliak b and Eric Ragoucy b
a) Beijing Institute of Mathematical Sciences and Applications (BIMSA), No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408, P.R. China
b) Laboratoire d'Annecy-le-Vieux de Physique Théorique (LAPTh), Chemin de Bellevue, BP 110, F-74941, Annecy-le-Vieux Cedex, France
Received February 25, 2025, in final form September 01, 2025; Published online September 21, 2025
Abstract
A new method is introduced to derive general recurrence relations for off-shell Bethe vectors in quantum integrable models with either type $\mathfrak{gl}_n$ or type $\mathfrak{o}_{2n+1}$ symmetries. These recurrence relations describe how to add a single parameter $z$ to specific subsets of Bethe parameters, expressing the resulting Bethe vector as a linear combination of monodromy matrix entries that act on Bethe vectors which do not depend on $z$. We refer to these recurrence relations as rectangular because the monodromy matrix entries involved are drawn from the upper-right rectangular part of the matrix. This construction is achieved within the framework of the zero mode method.
Key words: Yangians; recurrence relations for Bethe vectors; nested algebraic Bethe ansatz.
pdf (696 kb)
tex (41 kb)
References
- Belliard S., Pakuliak S., Ragoucy E., Slavnov N.A., The algebraic Bethe ansatz for scalar products in ${\rm SU}(3)$-invariant integrable models, J. Stat. Mech. Theory Exp. 2012 (2012), P10017, 25 pages, arXiv:1207.0956.
- Belliard S., Pakuliak S., Ragoucy E., Slavnov N.A., Bethe vectors of ${\rm GL}(3)$-invariant integrable models, J. Stat. Mech. Theory Exp. 2013 (2013), P02020, 24 pages, arXiv:1210.0768.
- Drinfeld V.G., Quantum groups, J. Sov. Math. 41 (1988), 898-915.
- Faddeev L.D., How the algebraic Bethe ansatz works for integrable models, in Symétries Quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, 149-219, arXiv:hep-th/9605187.
- Gelfand I., Retakh V., Quasideterminants. I, Selecta Math. (N.S.) 3 (1997), 517-546.
- Gombor T., Exact overlaps for all integrable two-site boundary states of $\mathfrak{gl}(N)$ symmetric spin chains, J. High Energy Phys. 2024 (2024), no. 5, 194, 98 pages, arXiv:2311.04870.
- Gromov N., Levkovich-Maslyuk F., Ryan P., Determinant form of correlators in high rank integrable spin chains via separation of variables, J. High Energy Phys. 2021 (2021), no. 5, 169, 79 pages, arXiv:2011.08229.
- Gromov N., Levkovich-Maslyuk F., Sizov G., New construction of eigenstates and separation of variables for ${\rm SU}(N)$ quantum spin chains, J. High Energy Phys. 2017 (2017), no. 9, 111, 39 pages, arXiv:1610.08032.
- Hutsalyuk A., Liashyk A., Pakuliak S.Z., Ragoucy E., Slavnov N.A., Current presentation for the double super-Yangian ${\rm DY}(\mathfrak{gl}(m|n))$ and Bethe vectors, Russian Math. Surveys 72 (2017), 33-99, arXiv:1611.09620.
- Hutsalyuk A., Liashyk A., Pakuliak S.Z., Ragoucy E., Slavnov N.A., Scalar products of Bethe vectors in models with $\mathfrak{gl}(2|1)$ symmetry 2. Determinant representation, J. Phys. A 50 (2017), 034004, 22 pages, arXiv:1606.03573.
- Hutsalyuk A., Liashyk A., Pakuliak S.Z., Ragoucy E., Slavnov N.A., Scalar products of Bethe vectors in the models with $\mathfrak{gl}(m|n)$ symmetry, Nuclear Phys. B 923 (2017), 277-311, arXiv:1704.08173.
- Hutsalyuk A., Liashyk A., Pakuliak S.Z., Ragoucy E., Slavnov N.A., Norm of Bethe vectors in models with $\mathfrak{gl}(m|n)$ symmetry, Nuclear Phys. B 926 (2018), 256-278, arXiv:1705.09219.
- Hutsalyuk A., Liashyk A., Pakuliak S.Z., Ragoucy E., Slavnov N.A., Actions of the monodromy matrix elements onto $\mathfrak{gl}(m|n)$-invariant Bethe vectors, J. Stat. Mech. Theory Exp. 2020 (2020), 093104, 31 pages, arXiv:2005.09249.
- Izergin A.G., Korepin V.E., The quantum inverse scattering method approach to correlation functions, Comm. Math. Phys. 94 (1984), 67-92.
- Jing N., Liu M., Molev A., Isomorphism between the $R$-matrix and Drinfeld presentations of Yangian in types $B$, $C$ and $D$, Comm. Math. Phys. 361 (2018), 827-872, arXiv:1705.08155.
- Khoroshkin S., Pakuliak S., A computation of universal weight function for quantum affine algebra $U_q(\widehat{\mathfrak {gl}}_N)$, J. Math. Kyoto Univ. 48 (2008), 277-321, arXiv:0711.2819.
- Korepin V.E., Calculation of norms of Bethe wave functions, Comm. Math. Phys. 86 (1982), 391-418.
- Kosmakov M., Tarasov V., New combinatorial formulae for nested Bethe vectors, SIGMA 21 (2025), 060, 28 pages, arXiv:2312.00980.
- Kosmakov M., Tarasov V., New combinatorial formulae for nested Bethe vectors II, Lett. Math. Phys. 115 (2025), 12, 20 pages, arXiv:2402.15717.
- Kulish P.P., Reshetikhin N.Yu., On ${\rm GL}\sb{3}$-invariant solutions of the Yang-Baxter equation and associated quantum systems, J. Sov. Math. 34 (1982), 1948-1971.
- Kulish P.P., Reshetikhin N.Yu., Diagonalisation of ${\rm GL}(N)$ invariant transfer matrices and quantum $N$-wave system (Lee model), J. Phys. A 16 (1983), L591-L596.
- Liashyk A., Pakuliak S., Gauss coordinates vs currents for the Yangian doubles of the classical types, SIGMA 16 (2020), 120, 23 pages, arXiv:2006.01579.
- Liashyk A., Pakuliak S., Algebraic Bethe ansatz for $\mathfrak o_{2n+1}$-invariant integrable models, Theoret. and Math. Phys. 206 (2021), 19-39, arXiv:2008.03664.
- Liashyk A., Pakuliak S., Recurrence relations for off-shell Bethe vectors in trigonometric integrable models, J. Phys. A 55 (2022), 075201, 23 pages, arXiv:2109.07528.
- Liashyk A., Pakuliak S., Ragoucy E., Scalar products and norm of Bethe vectors in $\mathfrak{o}_{2n+1}$ invariant integrable models, SciPost Phys. 19 (2025), 023, 38 pages, arXiv:2503.01578.
- Liashyk A., Pakuliak S., Ragoucy E., Slavnov N.A., Bethe vectors for orthogonal integrable models, Theoret. and Math. Phys. 201 (2019), 1545-1564, arXiv:1906.03202.
- Liashyk A., Pakuliak S., Ragoucy E., Slavnov N.A., New symmetries of $\mathfrak{gl}(N)$-invariant Bethe vectors, J. Stat. Mech. Theory Exp. 2019 (2019), 044001, 24 pages, arXiv:1810.00364.
- Maillet J.M., Niccoli G., On quantum separation of variables, J. Math. Phys. 59 (2018), 091417, 47 pages, arXiv:1807.11572.
- Maillet J.M., Niccoli G., Vignoli L., On scalar products in higher rank quantum separation of variables, SciPost Phys. 9 (2020), 086, 64 pages, arXiv:2003.04281.
- Molev A., Yangians and classical Lie algebras, Math. Surveys Monogr., Vol. 143, American Mathematical Society, Providence, RI, 2007.
- Reshetikhin N.Yu., Calculation of the norm of Bethe vectors in models with ${\rm SU}(3)$ symmetry, J. Sov. Math. 46 (1989), 1694-1706.
- Reshetikhin N.Yu., Algebraic Bethe ansatz for ${\rm SO}(N)$-invariant transfer matrices, J. Sov. Math. 54 (1991), 940-951.
- Reshetikhin N.Yu., Takhtadzhyan L.A., Faddeev L.D., Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (1990), 193-225.
- Ryan P., Volin D., Separation of variables for rational $\mathfrak{gl}(n)$ spin chains in any compact representation, via fusion, embedding morphism and Bäcklund flow, Comm. Math. Phys. 383 (2021), 311-343, arXiv:2002.12341.
- Sklyanin E.K., Functional Bethe ansatz, in Integrable and Superintegrable Systems, World Scientific Publishing, Teaneck, NJ, 1990, 8-33.
- Sklyanin E.K., Separation of variables - new trends, Progr. Theoret. Phys. Suppl. 118 (1995), 35-60, arXiv:solv-int/9504001.
- Slavnov N.A., Calculation of scalar products of wave functions and form-factors in the framework of the algebraic Bethe ansatz, Theoret. and Math. Phys. 79 (1989), 502-508.
- Yang C.N., Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett. 19 (1967), 1312-1315.
- Zamolodchikov A.B., Zamolodchikov A.B., Factorized $S$-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models, Ann. Physics 120 (1979), 253-291.
|
|