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PERTURBATION ANALYSIS FOR THE COMPLEX
MATRIX EQUATION Q± AHXpA−X = 0

Juliana K. Boneva, Mihail M. Konstantinov and Petko H. Petkov

Abstract. We study the sensitivity of the solution of a general type matrix equation Q ±
AHXpA −X = 0. Local and nonlocal perturbation bounds are derived. The results are obtained

using the technique of Lyapunov majorants and fixed point principles. A numerical example is

given.

1 Introduction

In this paper we shall use the following notation: N, R and C – the sets of natural, real and complex

numbers, respectively; Km×n – the space of m× n matrices over K, where K is R or C; A>, A and

AH – the transpose, complex conjugate and complex conjugate transpose of the matrix A; In – the

unit n × n matrix; ‖A‖F – the Frobenius norm of a matrix A; vec(A) = [a>1 , a>2 , . . . , a>n ]> ∈ Kmn

– the column–wise vector representation of the matrix A = [a1, a2, . . . , an] ∈ Km×n, aj ∈ Km;

Pm,n ∈ Rmn×mn – the vec-permutation matrix, such that vec(M>) = Pm,nvec(M) for M ∈ Km×n;

A ⊗ B = [aijB] ∈ Kmp×nq – the Kronecker product of the matrices A = [ai,j ] ∈ Km×n and B ∈
Kp×q; spect(A){λ1(A), λ2(A), . . . , λn(A)} – the full spectrum (the collection of eigenvalues counted

according to their algebraic multiplicities) of A ∈ Kn×n; Sn×n
+ ⊂ Kn×n – the set of Hermitian

positive definite matrices; λmin(A) – the minimum eigenvalue of the matrix A ∈ Sn×n
+ ; L(n) –

the space of linear matrix operators Kn×n → Kn×n. The abbreviation “:=” stands for “equal by

definition”.

In what follows we present a complete local perturbation analysis for the matrix complex

equation

Q±AHXpA−X = 0, (1)

where A ∈ Cn×n, Q ∈ Sn×n
+ and X ∈ Sn×n

+ is the unknown matrix and p ∈ R. We derive nonlocal

perturbation bounds for the case p = 1/s, s ∈ N. The computation of the principal s–th root A1/s

in this case may be done the algorithms considered in [4].

Nonlinear matrix equations of the form (1) arise in many areas of theory and practice. More

general matrix equations X + AHG(X)A = Q have been studied in [19, 18]. Most of the existing

results in this area are connected with particular classes of such equations. Various cases for G(X)

were studied in [8, 7, 1] for G(X) = ±X−1, in [2, 13] for G(X) = ±X−2 and in [12, 9, 10, 17, 11]

for G(X) = ±X−n, n = 1, 2, . . ..

2000 Mathematics Subject Classification: 15A24

Keywords: Perturbation bounds, sensitivity analysis, nonlinear matrix equations

******************************************************************************
http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v02/v02.html
http://www.utgjiu.ro/math/sma


30 Juliana Boneva, Mihail Konstantinov and Petko Petkov

We recall that the Frechét derivative F(p, X) of the function X → Xp, p ∈ Q at the point

X ∈ Sn×n
+ is the linear operator Cn×n → Cn×n such that

(X + E)p = Xp + F(p, X)(E) + O(‖E‖2), E → 0,

where the Hermitian matrix E is a given increment of X and ‖E‖2 < λmin(X). More general

increments E may also be considered under a modified definition for Xp.

Note that Frechét derivatives of first and higher order for general operator functions f have

been considered in [3]. In particular the cases f(X) = Xr and f(X) = X1/r are studied, where

r ∈ N, X ∈ B(H) and B(H) is the space of bounded linear operators on the Hilbert space H. The

authors investigate the norms of the first and higher order Frechét derivatives of these and other

operator valued functions.

We shall need the following theorem, which has been proved in [5]

Theorem 1. For rational powers p the operator F(p, X) is defined by

1. for p = r; r ∈ N, F(r, X)(E)
Pr−1

k=0 Xr−1−kEXk;

2. for p = −r; r ∈ N, F(−r, X) = −
Pr−1

k=0 X−1−kEXk−r;

3. for p = 1/s; s ∈ N, F(1/s, X) = (F(s, X1/s))−1;

4. for p = r/s; r, s ∈ N, F(r/s, X) = F(r, X1/s) ◦ (F(s, X));

5. for p = −r/s; r, s ∈ N, F(−r/s, X)F(−1, Xr/s) ◦ F(r/s, X).

When p is irrational, explicit expressions for F(p, X) may be found (after reduction of X into

diagonal Schur form) for some particular classes of arguments X, namely in the most non-generic

case and in the generic case. The complete description of F(p, X) for irrational p involves the

analysis of some unsolved intermediate cases.

In the first case X shall be a scalar matrix, i.e. λ1 = λ2 = · · · = λn = λ and X =

diag(λ, λ, . . . , λ). This is the most “non-generic” case since here X belongs to a line (one-dimensional

variety). In this case we have the following result, which has been proved in [14].

Theorem 2. The Frechét derivative at X = λIn is given from F(p, X)(E) = pλp−1 E, or

F(p, X) = pλp−1I, (2)

where I is the identity operator in Kn×n.

In the second (generic) case the positive definite matrix X has pairwise distinct eigenvalues,

namely 0 < λ1 < λ2 < · · · < λn. This is the generic case when X belongs to a part of an open

variety in the Zariski topology.

Next we describe in explicit form the action of the operator F(p, X) in the generic case (see

[14]). Let U ∈ Kn×n be an unitary matrix such that Λ = UHXU = diag(λ1, λ2, . . . , λn) and

G = UHEU . Then the following result is valid.

Theorem 3. The action of the Frechét derivative F(p, X) in the generic case is given by

F(p, X)(E) = U(F(p, Λ)(UHEU))UH, (3)

where the elements of F(p, Λ)(G) are

(F(p, Λ)(G))ii = pλp−1
i gii, (4)

(F(p, Λ)(G))ij =
λp

i − λp
j

λi − λj
gij , i 6= j.
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Perturbation analysis 31

2 Perturbed problem

Denote by Σ := (Q, A) and X0 the collection of matrix coefficients and the solution for the equation

(1), respectively [16]. Suppose that the matrices Q and A are perturbed as

Q → Q + ∆Q, A → A + ∆A.

Then the problem is to estimate the perturbation in the solution X0 as a function of the norms of

the perturbations ∆Q and ∆A in the data matrices Q and A. The perturbation in the solution ∆X

is a hermitian matrix, such that X0 + ∆X ∈ Sn×n
+ . This shall be fulfilled if ‖∆X‖ < λmin(X) (see

[5]).

Let the perturbed collection of matrix coefficients be ∆Σ := (∆Q, ∆A). Hence the perturbed

equation is

F (X0 + ∆X, Σ + ∆Σ) := Q + ∆Q± (A + ∆A)H(X0 + ∆X)p(A + ∆A)−X0 −∆X = 0. (5)

Denote by

δ = [δ1, δ2]
> := [∆Q, ∆A]> ∈ R2

+

the vector, whose elements are the Frobenius norms of the perturbations in the data matrices, i.e.

∆Q = ‖∆Q‖F, ∆A = ‖∆A‖F.

The perturbation problem is to find a bound

∆X ≤ f(δ), δ ∈ Ω ⊂ R2
+,

for the perturbation ∆X := ‖∆X‖F, where Ω is a given set and f is a continuous function, nonde-

creasing in all of its arguments and satisfying f(0) = 0.

3 Equivalent operator equation

In this section we rewrite the perturbation problem for equation (1) as an equivalent operator

equation. This equation is used to obtain local and non–local perturbation bounds. Applying the

technique of Lyapunov majorants and the Schauder fixed point principle to the operator equation,

we may find conditions for the existence of a small solution to this equation. For this purpose we

use the technique of Frechét derivatives. Recall that F : X → Kn×n, where X is an open set of

Kn×n, is Frechét differntiable in X0, if there exists a linear operator FX(X0) : Kn×n → Kn×n such

that

F (X0 + Z) = F (X0) + FX(X0)(Z) + o(‖Z‖), Z → 0.

In our case the function depends on several matrix arguments and we shall use partial Frechét

derivatives in Q and X and the partial (pseudo) derivative in A. We rewrite the perturbed equation

(5) as

F (X0 + ∆X, Σ + ∆Σ) = F1(∆X, ∆Σ) + F2(∆X, ∆Σ) = 0,

where

F1(∆X, ∆Σ) :=
X

Z∈{Q,A}

FZ(X0, Σ)(∆Z) + FX(X0, Σ)(∆X) + F12(∆Σ)

and F2(∆X, ∆Σ) contains second and higher order terms in ∆X and ∆Σ. Here FZ(X0, Σ) are the

partial Frechét derivatives of Z in (X0, Σ) and Z stands for Q or A. The derivative FA(X0, Σ) is the

partial Frechét (pseudo) derivative in A, and for Z = X and Z = Q we have FZ(X0, Σ)(Z) ∈ L(n).

******************************************************************************
Surveys in Mathematics and its Applications 2 (2007), 29 – 41

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v02/v02.html
http://www.utgjiu.ro/math/sma


32 Juliana Boneva, Mihail Konstantinov and Petko Petkov

The derivatives in Q, A and X are

FQ(X0, Σ)(Z) = Z,

FA(X0, Σ)(Z) = ±ZHXp
0 A±AHXp

0 Z,

FX(X0, Σ)(Z) = ±AHF(p, X)(Z)A− Z.

Now we represent F1(∆X, ∆Σ) as

F1(∆X, ∆Σ) = FX(X0, Σ)(∆X) + FQ(X0, Σ)(∆Q)

+FA(X0, Σ)(∆A)±∆AHXp∆A.

Also we have

F2(∆Σ, ∆X) = F21(∆Σ, ∆X) + F22(∆Σ, ∆X),

where with F21(∆Σ, ∆X) and F22(∆Σ, ∆X) we denote respectively

F21(∆Σ, ∆X) = ±
h
AHF(p, X)(∆X)∆A + ∆AHF(p, X)(∆X)∆A + ∆AHF(p, X)A

i
,

F22(∆Σ, ∆X) = ±(AH + ∆AH)(O(‖∆X‖2))(A + ∆A).

Now we rewrite (5) as

FX(X0, Σ)(∆X) = −FQ(X0, Σ)(∆Q)− FA(X0, Σ)(∆A) (6)

∓∆AHXp∆A− F21(∆Σ, ∆X)− F22(∆Σ, ∆X).

We shall consider various cases for the power p as described above.

1) The case p = 1/s.

Here the Frechét derivative of the function X → X1/s is

F(1/s, X)(∆X) = F−1(s, X1/s)(∆X)

and in this case the matrix of FX(X0, Σ) is

Lp = ±(A> ⊗AH)L−1
1 − In2 , (7)

where

L1 :=

s−1X
k=0

(Xk/s)> ⊗X(s−1−k)/s

is the matrix of the operator F(1/s, X).

2) The case p = r/s, r and s are coprime.

Now the operator representing the Frechét derivative for Xr/s is

F(r/s, X)(∆X) = F(r, X1/s) ◦ F−1(s, X1/s).

Then the matrix of FX(X0, Σ) is

Lp = ±(A> ⊗AH)L2 − In2 , (8)

where

L2 = L−1
1

r−1X
k=0

(Xk/s)> ⊗X(r−1−k)/s

is the matrix of the operator F(r/s, X).
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3) The case p = −r/s.

Here we have a negative rational power and

F(−r/s, X)(∆X) = F(−1, Xr/s) ◦ F(r/s, X).

The matrix of FX(X0, Σ) in this case is

Lp = ∓(A> ⊗AH)L3 − In2 , (9)

where

L3 = L2

�
(X−r/s)> ⊗X−r/s

�
is the matrix of the operator F(−r/s, X). Thus all cases of rational powers have been considered.

4) The non-generic case for real p.

According to (2) we have

Lp = ∓(A> ⊗AH)L4 − In2 , (10)

where

L4 = pλp−1In2

is the matrix of the operator F(p, X).

5) The generic case for real p.

Having in mind (3) and (4) we obtain the matrix of the operator FX as

Lp = ∓(A> ⊗AH)L5 − In2 . (11)

Here L5 is the matrix of the operator F(p, X) with elements

L5(ii) = (U ⊗ U)(UH ⊗ UH)pλp−1
i

L5(ij) = (U ⊗ U)(UH ⊗ UH)
λp

i − λp
g

λi − λj
, i 6= j.

We suppose that the operator FX = FX(X0, Σ) is invertible. Then from equation (6) it follows

that

∆X = F−1
X (−∆Q∓∆AHXp

0 A∓AHXp
0∆A)∓ F−1

X (∆AHXp
0 ∆A)

−F−1
X (F21)− F−1

X (F22).

We also have

vec(∆X) = −L−1
p vec(∆Q)∓ L−1

p ((Xp
0 A)> ⊗ In)vec(∆AH)

∓(In ⊗ (AHXp
0 ))vec(∆A) + O(∆Σ)2. (12)

Set

x := vec(∆X),

y1 := vec(∆Q),

y2 := vec(∆A)

and

M1 := −L−1
p ,

M2 := ∓L−1
p

h
In ⊗ (AHXp

0 )
i
,

M3 := ∓L−1
p

h
(Xp

0 A)> ⊗ In

i
Pn2 ,
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With these notations the equivalent vector equation may be written as

x = Ψ(y, x) := Ψ1(y) + Ψ2(y, x), (13)

Ψ1(x) := Ψ11(y) + Ψ12(y),

Ψ2(x) := Ψ21(y, x) + Ψ22(y, x),

where

Ψ11(y) := −L−1
p vec(∆Q±∆AHXp

0 A±AHXp
0∆A)),

Ψ12(y) := ∓L−1
p vec(∆AHXp

0∆A),

Ψ21(y, x) := −L−1
p vec(F21(∆Σ, ∆X)),

Ψ22(y, x) := −L−1
p vec(F22(∆Σ, ∆X)).

Moreover, it is fulfilled that

Ψ11(y) = M1y1 + M2y2 + M3y2,

‖Ψ12(y)‖2 ≤ δ2
2‖L−1

p ‖2‖X0‖p
2.

4 Local perturbation analysis

In this section we use the results from Section 3 in order to derive condition numbers and local first

order bounds for the perturbation ∆X = ‖∆X‖F in the solution X0 of equation (1). In calculating

condition numbers and first order estimates in the complex case a special technique [15] must be

used based on the theory of additive complex operators. The reason is that the function A → AH

is not linear (it is additive but not homogeneous). In the Frobenius norm the absolute condition

numbers KZ for the solution of the equation (1) relative to the matrix coefficients, Z = Q, A are

KQ = ‖L−1
p ‖2,

KA = ‖Θ(M2, M3)‖2,

where

Θ(M2, M3) :=

"
M20 + M30 M21 −M31

M21 + M31 M20 −M30,

#
∈ Rn2×n2

and

M2 = M20 + ıM21, M3 = M30 + ıM31

are complex n× n matrices with M20, M21, M30, M31 real. Here Lp is the matrix given in (7), (8),

(9), (10) and (11) corresponding to various cases for p.

Let

ξ := ‖∆X‖F = ‖vec(∆X)‖2 = ‖x‖2.

Then the first local estimate, based on the condition numbers, is

ξ ≤ ω1(δ) + O(‖δ‖2), δ → 0,

where

ω1(δ) := KQδ1 + KAδ2.

We shall give two more local bounds including an improved first order homogeneous bound.

These bounds are not formulated in terms of condition numbers. The reason is that linear local
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bounds, based on condition numbers, may be more conservative than other first order homogeneous

bounds. The second bound is

ξ ≤ ω2(δ) + O(‖δ‖2), δ → 0,

where

ω2(δ) :=



h MR

1 Θ(M2, M3)
i




2
‖δ‖2

and MR
1 is a real representation of matrix M1, i.e.

MR
1 :=

"
M10 −M11

M11 M10

#
∈ R2n×2n

and

M1 = M10 + ıM11.

The third perturbation bound is

ξ ≤ ω3(δ) + O(‖δ‖2), δ → 0,

where

ω3(δ) :=
√

δ>Mδ

and

M := [mij ] ∈ R2×2
+

is a symmetric matrix with non–negative elements

M =

"
(MR

1 )HMR
1 (MR

1 )HΘ(M2, M3)

Θ(M2, M3)
HMR

1 Θ(M2, M3)
HΘ(M2, M3)

#
.

We have ω3(δ) ≤ ω1(δ) for all δ, while both inequalities ω2(δ) < ω3(δ) and ω2(δ) > ω3(δ) are

possible for some non–negative 2–vectors δ. Hence for small δ we obtain the improved bound

ξ ≤ ω(δ) + O(‖δ‖2), δ → 0,

where

ω(δ) := min{ω2(δ), ω3(δ)}.

As a corollary of the above considerations we may formulate the following result giving a local

perturbation bound for the solution of the equation.

Theorem 4. For small ‖δ‖ the norm ‖∆X‖F of the perturbation ∆X in the solution X0 of equation

(1) satisfies the local perturbation estimate

ξ ≤ ω(δ) + O(‖δ‖2), δ → 0,

where

ω(δ) := min{ω2(δ), ω3(δ)}.

5 Nonlocal perturbation analysis

In this section we present a nonlocal perturbation analysis for the equation (1) for some particular

cases for the power p. For the nonlocal perturbation analysis we show that if δ belongs to a certain

small set Ω then the equivalent operator Ψ from (13) maps a closed convex set B ⊂ Rn2
into itself.

******************************************************************************
Surveys in Mathematics and its Applications 2 (2007), 29 – 41

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v02/v02.html
http://www.utgjiu.ro/math/sma


36 Juliana Boneva, Mihail Konstantinov and Petko Petkov

Moreover, the set B is small being of diameter f(δ) = O(‖δ‖). According to the Schauder fixed

point principle there exists a solution ξ ∈ B of (13) and ∆X = ‖ξ‖2 ≤ f(δ).

Consider the operator equation

x = Ψ(y, x),

Ψ(y, x) = Ψ1(y) + Ψ2(y, x).

Then the next estimates are valid

‖Ψ(y, x)‖2 ≤ ‖Ψ1(y)‖2 + ‖Ψ2(y, x)‖2,

‖Ψ1(y)‖2 ≤ b0(δ) : ω(δ) + δ2
2‖L−1

p ‖2‖X0‖p
2, (14)

‖Ψ2(y, x)‖2 ≤ ‖Ψ21(y, x)‖2 + ‖Ψ22(y, x)‖2,

where

‖Ψ21(y, x)‖ ≤ β1δ2 + β2δ
2
2 .

Here we have set

β1 = ‖L−1
p ‖




(In ⊗AH)Mat(F(p, X)) + (AH ⊗ In)Mat(F(p, X))





2
,

β2 = ‖L−1
p ‖‖Mat(F(p, X))‖2,

where Mat(F(p, X)) are the matrices L1, L2 and L3 from(7), (8), (9) for the different cases of p.

Next we shall we need some results for the accuracy of the affine approximation of matrix power

functions. We have

(X + ∆X)p = Xp + F(p, X)(∆X) + O(‖∆X‖)2.

Denote

Gs = (X + ∆X)p −Xp −F(p, X)(∆X) = O(‖∆X‖2), X → 0.

Here we shall consider the cases p = 1/2, p = 1/3 and the general case p = 1/s. Set ε := ‖∆X‖F
and suppose that ‖∆X‖2 < λmin(X).

5.1 The case p = 1/2.

For G2 we have the next estimate (see [6])

‖G2‖F ≤
2l32ε

2

1− 2l22ε +
p

1− 4l22ε
,

where

l2 = ‖Mat(F(1/2, X))‖2.

Then for Ψ22 we have

‖Ψ22(y, x)‖2 ≤ ‖L−1
1/2‖(‖A‖2 + δ2)

2 2l32ε
2

1− 2l22ε +
p

1− 4l22ε

and

‖Ψ2(y, x)‖2 ≤ b1(δ)ε + b2(δ)ε
2,

b1(δ) = β1δ2 + β2δ
2
2 , (15)

b2(δ) = ‖L−1
1/2‖(‖A‖2 + δ2)

2l32.
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5.2 The case p = 1/3.

Here we have (see [6])

‖G3‖F ≤
2a0(ε)

1− a1(ε) +
p

(1− a1(ε))2 − 4a0(ε) ba2(ε)
,

where

b := ‖X0‖1/3
2 ,

l3 = ‖Mat(F(1/3, X))‖2,
a0 = l33ε

2(3b + l3ε),

a1 = 3l23(2b + l3ε),

â2 = 2l3(b + l3ε) +
q

b2l23 + l3/3.

For small ε it is fulfilled

‖G3‖F ≤ 3bl33ε
2 + O(ε3).

Finally we have the next estimate

‖Ψ2(y, x)‖2 ≤ b1(δ)ε + b2(δ)ε
2,

b1(δ) = β1δ2 + β2δ
2
2 , (16)

b2(δ) = 3‖L−1
1/3‖(‖A‖2 + δ2)

2l33b.

5.3 The case p = 1/s, s ∈ N
In this case we have the next estimate for ‖Gs‖F (see [6])

‖Gs‖F ≤
2a0(ε)

1− a1(ε) +

q
(1− a1(ε)2 − 4a0(ε)(a2(ε) + b̂(ε))

,

where

b̂(ε) :=

s−1X
j=2

αj+1(ε),

αj+1 := a
1/j
j+1

�
1− a1

j + 1

�1−1/j

, j = 2, 3, . . . , s− 1.

The coefficients are

a0 = ls
�
(b + lsε)

s − sbs−1(lsε)− bs� ,
a1 = lss

�
(b + lsε)

s−1 − bs−1� ,
ai = ls

 
s

i

!
(b + lsε)

s−i, i = 2, 3, . . . , s.

Here

b := ‖X0‖1/s
2 , ls := ‖Mat(F(1/s, X))‖2.

For small ε it is fulfilled

‖Gs‖F ≤
l3sbs−2ε2s(s− 1)

2
+ O(ε3).
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Now it may be shown that

‖Ψ2(y, x)‖2 ≤ b1(δ)ε + b2(δ)ε
2,

b1(δ) = β1δ2 + β2δ
2
2 , (17)

b2(δ) = ‖L−1
1/s‖(‖A‖2 + δ2)

2 l3sbs−2ε2s(s− 1)

2
.

The next step is to construct the majorant equation, whose solution will give the desired

nonlocal perturbation bounds

ξ ≤ h(δ, ε) := b0(δ) + b1(δ)ε + b2(δ)ε
2.

Here the coefficients b0, b1 and b2 are given by (14), (15) for p = 1/2, by (14), (16) for p = 1/3 and

by (14), (17) for p = 1/s. The function h is Lyapunov majorant (see [15]) of second degree for the

vector operator equation

x = Ψ(y, x).

Consider the domain

Ω :=
n

δ ∈ R2
+ : b1(δ) + 2

p
b0(δ)b2(δ) ≤ 1

o
(18)

in R2
+. If δ ∈ B, then the majorant equation

ε = h(δ, ε),

or, equivalently,

b2(δ)ε
2 − (1− b1(δ))ε + b0(δ) = 0,

has a solution. Let f(δ) be the smaller solution of the majorant equation. Then

ε0 = f(δ) =
2b0(δ)

1− b1(δ) +
p

(1− b1(δ))2 − 4b0(δ)b2(δ)
, (19)

where the coefficients bk are determined from (14), (15) for p = 1/2, (14), from (16) for p = 1/3

and from (14), (17) for p = 1/s. Hence, for δ ∈ Ω the operator Ψ(x, .) maps the set Bf(δ) into itself,

where Br is the closed central ball of radius r ≥ 0. According to the Schauder fixed point principles

there exists a solution ξ ∈ Bf(δ) of equation (13) and we have the following result.

Theorem 5. Let δ ∈ Ω, where Ω is given by (18). Then the perturbed equation (5) has a solution

Y = X0 + ∆X in a neighborhood of X0 such that

‖∆X‖F ≤ f(δ),

where f is defined from (19).

Next we will give some remarks about the case, when p is a real number.

5.4 The case p ∈ R
Supposing that we have an estimate

‖G(∆X)‖ ≤ g(ε)

we may rewrite (12) as

vec(∆X) = −L−1
p vec(∆Q)∓ L−1

p ((Xp
0 A)> ⊗ In)vec(∆AH)

∓L−1
p (In ⊗ (AHXp

0 ))vec(∆A) + R(∆X),
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where

‖R‖2 ≤ 2‖A‖(‖F(p, X)‖+ g(ε))δ2 + δ2
2‖(X + ∆X)p‖

= 2‖A‖(‖F(p, X)‖+ g(ε))δ2 + δ2
2(‖X0‖p

2 + ‖F(p, X)‖+ g(ε))

:= r(δ, ε).

Then

ξ ≤ h(δ, ε),

where h(δ, ε) is a Lyapunov majorant for the operator equation x = Ψ(y, x) and

h(δ, ε) = ω(δ) + r(δ, ε)


L−1

p



 .

We stress that this majorant is not in general of polynomial type.

6 Numerical example

Example 6. Consider the complex matrix equation

Q + AHX1/3A−X = 0

with coefficient matrices

A =

264 0.2 0 0.1

−0.1 −0.1ı 1

−0.1 0.2 0

375 ; Q =

264 1, 92 0.03− 0.1ı 0.07

0.3 + 0.1ı 0.93 −0.1ı

0.07 0.1ı 0.98

375 .

The solution of the equation is

X0 =

264 2 0 0

0 1 0

0 0 2

375 .

The condition numbers for the matrix coefficients A and Q are

KA = 2.0385, KQ = 1, 1927,

which shows that the equation is very well conditioned.

Let the perturbation in the matrix A be

∆A = ε1

264 1 0 0

0 1 0

0 0 1

375 ,

where ε1 > 0 is a small parameter. Here we use two parameters, namely ε1 and the Frobenius norm

of the perturbation in the matrix Q. Then

‖∆A‖F = 1.7321 ε1.

The estimate est3 := ω3 give better results than the estimates est1 := ω1 and est2 =: ω2. The

perturbation ‖∆X‖F in the solution of the equation is estimated by the local bound est from

Section (4) and by the nonlinear nonlocal bound from Section (5). The results derived for local and

nonlocal bounds are presented in Table 1 for ε1 = 10−k and k = 8, 7, . . . , 1.
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Table 1

k ‖∆Q‖F ‖∆X‖F local bounds nonlocal bounds

8 2.1466× 10−7 2.2405× 10−7 2.8818× 10−7 2.8818× 10−7

7 2.1466× 10−6 2.2405× 10−6 2.8818× 10−6 2.8818× 10−6

6 2.1466× 10−5 2.2405× 10−5 2.8818× 10−5 2.8818× 10−5

5 2.1466× 10−4 2.2405× 10−4 2.8818× 10−4 2.8823× 10−4

4 2.1465× 10−3 2.2405× 10−3 2.8817× 10−3 2.8869× 10−3

3 2.1464× 10−2 2.2405× 10−2 2.8815× 10−2 2.9355× 10−2

2 2.1450× 10−1 2.2405× 10−1 2.8880× 10−1 3.6116× 10−1

1 2.1252× 100 2.2405× 100 2.8562× 100 ∗

For k = 1 the nonlocal perturbation bound does not exist because of break of the condition

δ ∈ Ω.

For this example both the local and nonlocal bounds are very tight.

Acknowledgment. The authors would like to thank the anonymous referee for the helpful

remarks.
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