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RIDGE REGRESSION ESTIMATOR: COMBINING
UNBIASED AND ORDINARY RIDGE REGRESSION

METHODS OF ESTIMATION

Feras Sh. M. Batah and Sharad Damodar Gore

Abstract. Statistical literature has several methods for coping with multicollinearity. This

paper introduces a new shrinkage estimator, called modified unbiased ridge (MUR). This estimator

is obtained from unbiased ridge regression (URR) in the same way that ordinary ridge regression

(ORR) is obtained from ordinary least squares (OLS). Properties of MUR are derived. Results on

its matrix mean squared error (MMSE) are obtained. MUR is compared with ORR and URR in

terms of MMSE. These results are illustrated with an example based on data generated by Hoerl

and Kennard [8].

1 Introduction

Consider the linear regression model

Y = Xβ + ε, (1.1)

with the usual notation. The ordinary least squares (OLS) estimator

β̂LS = (X ′X)−1X ′Y , (1.2)

follows N(β, σ2(X ′X)−1). If X ′X is singular or near singular, we say that there is
multicollinearity in the data. As a consequence, the variances of elements of β̂LS are
inflated. Hence, alternative estimation techniques have been proposed to eliminate
inflation in the variances of β̂LS . Hoerl and Kennard [7] proposed Ordinary Ridge
Regression (ORR) as

β̂(k) = [I − k(X ′X + kIp)−1]β̂LS

= (X ′X + kIp)−1X ′Y, k ≥ 0. (1.3)
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100 F. Batah and S. D. Gore

Usually 0 < k < 1. This estimator is biased but reduces the variances of the
regression coefficients. Subsequently, several other biased estimators of β have been
proposed (see, Swindel [12]; Sarkar [11]; Batah and Gore [1]; Batah et al. [2]; Batah
et al. [3]; Batah et al. [4]). Swindel [12] defined modified ridge regression (MRR)
estimator as follows:

β̂(k, b) = (X ′X + kIp)−1(X ′Y + kb), k ≥ 0, (1.4)

where b is a prior estimate of β. As k increases indefinitely, the MRR estimator ap-
proaches b. Crouse et al. [5] defined the unbiased ridge regression (URR) estimator
as follows:

β̂(k, J) = (X ′X + kIp)−1(X ′Y + kJ), k ≥ 0, (1.5)

where J ∼ N(β, σ2

k Ip) for k > 0. They also proposed the following estimator of the
ridge parameter k:

k̂CJH =


pσ̂2

(β̂LS−J)′(β̂LS−J)−σ̂2tr(X′X)−1 if
(
β̂LS − J

)′ (
β̂LS − J

)
> σ̂2tr (X ′X)−1

pσ̂2

(β̂LS−J)′(β̂LS−J)
otherwise,

where σ̂2 = (Y−Xβ̂LS)′(Y−Xβ̂LS)
(n−p) is an unbiased estimator of σ2. They further noted

that k̂CJH is a generalization of k̂HKB = pσ̂2

β̂LS ′β̂LS
of Hoerl et al. [8]. Consider

Spectral decomposition of X ′X, namely X ′X = TΛT ′, where TT ′ = T ′T = I.
Model (1.1) can be written as

Y = XTT ′β + ε
= Zγ + ε, (1.6)

with Z = XT , γ = T ′β where Z ′Z = T ′X ′XT = Λ = diag(λ1, λ2, . . . , λp). The
diagonal elements of Λ are the eigenvalues of X ′X and T consists of corresponding
the eigenvectors of X ′X. Hence OLS, ORR and URR of γ are written as γ̂OLS =
Λ−1Z ′Y, γ̂(k) = (Λ+kIp)−1Z ′Y, and γ̂(k, J) = (Λ+kIp)−1(Z ′Y +kJ), respectively.

This paper introduces a new shrinkage estimator, called modified unbiased ridge
(MUR). This estimator is obtained from URR in the same way that ORR is obtained
from OLS. It is observed that OLS is unbiased but has inflated variances under
multicollinearity. Similarly, URR suffers from inflated variances while eliminating
the bias. The construction of MUR is based on the logic that just as ORR avoids
inflating the variances at the cost of bias, MUR would have similar properties. With
pre-multiple the matrix [I − k(X ′X + kIp)−1] to reduce the inflated variances in
OLS, so that we expect the same effect with URR. This is our motivating the new
estimator. In this paper, it is indeed observed that MUR performs well under the
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Modified Unbiased Ridge Regression 101

conditions of multicollinearity. The properties of this new estimator are studied
in Section 2. Some conditions for the new estimator to have smaller MMSE than
ORR and URR are derived in Section 3. The value of k must be specified for k in
MUR in the same way as in ORR and URR. Three different ways of determining
k are compared using simulated data. Optimal ridge parameters are considered in
Section 4. Section 5 contains some estimators of the ridge parameter k. Results of
the paper are illustrated with Hoerl and Kennard data in Section 6. The paper ends
with concluding remarks in section 7.

2 The proposed Estimator

We propose the following estimator of β

β̂J(k) = [I − k(X ′X + kIp)−1]β̂(k, J)
= [I − k(X ′X + kIp)−1](X ′X + kIp)−1(X ′Y + kJ), (2.1)

where J ∼ N(β, σ2

k Ip) and k > 0. This estimator is called modified unbiased ridge
regression (MUR) because it is developed from URR. The MUR in model (1.6)
becomes

γ̂J(k) = [I − k(Λ + kIp)−1]γ̂(k, J). (2.2)

The MUR estimator has the following properties.

1. Bias

Bias(β̂J(k)) = E(β̂J(k))− β
= −kS−1

k β, (2.3)

where S = X ′X, and Sk = (S + kI).

2. Variance

V ar(β̂J(k)) = E[(β̂J(k)− E(β̂J(k)))(β̂J(k)− E(β̂J(k)))′

= σ2WS−1
k W ′, (2.4)

where W = [I − kS−1
k ].

3. Matrix Mean Squared Error (MMSE)

MMSE(β̂J(k)) = V ar(β̂J(k)) + [bias(β̂J(k))][bias(β̂J(k))]′

= σ2WS−1
k W ′ + k2S−1

k ββ′S−1
k . (2.5)
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102 F. Batah and S. D. Gore

4. Scalar Mean Squared Error (SMSE)

SMSE(β̂J(k)) = E[(β̂J(k)− β)′(β̂J(k)− β)]
= tr(MMSE(β̂J(k))),

where tr denotes the trace. Then

SMSE(γ̂J(k)) = σ2
p∑

i=1

λ2
i

(λi + k)3
+ k2

p∑
i=1

(λi + k)γ2
i

(λi + k)3
. (2.6)

where {λi} are eigenvalues of X ′X.

5. β̂J(k = 0) = β̂LS = (X ′X)−1X ′Y is the OLS estimator.

6. limk→0 β̂J(k) = β̂LS .

3 Comparison with other estimators

MUR is biased and it is therefore compared with other estimators in terms of MMSE.
We obtain conditions for MUR to have smaller MMSE than another estimator.

3.1 Comparison with ORR

The MMSE of ORR is (Özkale and Kaçiranlar [10])

MMSE(β̂(k)) = σ2WS−1W ′ + k2S−1
k ββ′S−1

k , (3.1)

so that

SMSE(γ̂(k)) = σ2
p∑

i=1

λi

(λi + k)2
+ k2

p∑
i=1

γ2
i

(λi + k)2
. (3.2)

Consider

∆ = MMSE(β̂(k))−MMSE(β̂J(k))
= σ2W (S−1 − S−1

k )W ′

= σ2H. (3.3)

Since Sk − S = kIp is positive definite (p.d.), it is easy to show that S−1 − S−1
k is

p.d. whenever k > 0. Hence we have the following result.

Result 1. MUR has smaller MMSE than ORR when k > 0.
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3.2 Comparison with URR

The MMSE of the URR estimator is (Özkale and Kaçiranlar [10])

MMSE(β̂(k, J)) = σ2S−1
k , (3.4)

and hence

SMSE(β̂(k, J)) = tr(MMSE(β̂(k, J))). (3.5)

Then

SMSE(γ̂(k, J)) = σ2
p∑

i=1

1
(λi + k)

. (3.6)

From (2.5),

∆ = MMSE(β̂(k, J))−MMSE(β̂J(k))
= σ2[S−1

k −WS−1
k W ′]− k2S−1

k ββ′S−1
k

= S−1
k [k2σ2(

2
k
Ip − S−1

k )− k2ββ′]S−1
k .

Now, ∆ is non-negative definite (n.n.d.) (assuming k > 0) if and only if Φ =
1
k2 Sk∆Sk is n.n.d. Further,

Φ = σ2(
2
k
Ip − S−1

k )− ββ′. (3.7)

Since the matrix 2
kIp − S−1

k is positive definite (Farebrother [6]), Φ is n.n.d. if and
only if

β′[
2
k
Ip − S−1

k ]−1β ≤ σ2. (3.8)

Hence we have the following result.

Result 2. MUR has smaller MMSE than URR if

β′[
2
k
Ip − S−1

k ]−1β ≤ σ2.

The condition of Result (2) is verified by testing

H0 : β′[
2
k
Ip − S−1

k ]−1β ≤ σ2,

against

H1 : β′[
2
k
Ip − S−1

k ]−1β > σ2.
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Since Λ − Λ∗(k) is positive semi definite, the condition in Result (2) becomes
β′TΛ∗(k)−1T ′β ≤ σ2 if β′TΛ−1T ′β ≤ σ2 . Under the assumption of normality
σ−1Λ∗(k)−1/2T ′β̂J(k) ∼ N(σ−1Λ∗(k)−1/2(I − kΛ−1

k )T ′β, Λ∗(k)−1(I − kΛ−1
k )2), and

the test statistics

F =
β̂J(k)′TΛ−1T ′β̂J(k)/p

ε̂′ε̂/n− p
∼ F (p, n− p,

β′TΛ−1T ′β

2σ2
),

under H0. The conclusion is that MUR has a smaller MMSE than URR if H0 is
accepted and hence Result (2) holds.

4 Optimal Ridge Parameter

Since the MMSE of MUR depends on the ridge parameter k, the choice of k is crucial
for the performance of MUR. Hence we find conditions on the values of k for MUR
to be better than other estimators in terms of SMSE.

Result 3. We have
1. SMSEi(γ̂J(k)) < SMSEi(γ̂(k, J)), for 0 < ki < ki1.
2. SMSEi(γ̂J(k)) > SMSEi(γ̂(k, J)), for ki1 < ki < ∞

where

ki1 =
(σ2 − λiγ

2
i )

2γ2
i

+ [
(σ2 − λiγ

2
i )2

4γ4
i

+
2σ2λi

γ2
i

]
1
2 > 0. (4.1)

Proof. Result (3) can be proved by showing that

(λi + ki)3[SMSEi(γ̂J(k))− SMSEi(γ̂(k, J))] = ki[γ2
i k2

i − (σ2 − λiγ
2
i )ki − 2λiσ

2],

which is obtained from (2.6) and (3.6). This completes the proof.

Next, we compare SMSE of γ̂J(k) with that of OLS component-wise. Notice that
the MUR estimator reduced to OLS when k = 0. The i-th component for SMSE of
γ of OLS is given by

SMSEi(γ̂LS) =
σ2

λi
, i = 1, 2, · · · , p. (4.2)

We state the following result.

Result 4. We have
1. If λiγ

2
i − σ2 ≤ 0, then the

SMSEi(γ̂J(k)) < SMSEi(γ̂LS), for 0 < ki < ∞.

2. If λiγ
2
i − σ2 > 0, then there exists a positive ki2, such that
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SMSEi(γ̂J(k)) > SMSEi(γ̂LS), for 0 < ki < ki2,

and

SMSEi(γ̂J(k)) < SMSEi(γ̂LS), for ki2 < ki < ∞,

where

ki2 = [
(λ2

i γ
2
i − 3σ2λ)2

4(λiγ2
i − σ2)2

+
3λ2

i σ
2

(λiγ2
i − σ2)

]
1
2 − (λ2

i γ
2
i − 3σ2λ)

2(λiγ2
i − σ2)

> 0. (4.3)

Proof. Result (4) can be proved by showing that

λi(λi + ki)3[SMSEi(γ̂J(k))− SMSEi(γ̂LS)] = ki[(λiγ
2
i − σ2)k2

i

+(λ2
i γ

2
i − 3σ2λi)ki − 3λ2

i σ
2],

which is obtained from (2.6) and (4.2). This completes the proof.

Furthermore, differentiating SMSEi(γ̂J(k)) with respect to ki and equating to
zero, we have the following equation

∂SMSEi(γ̂J(k))
∂k

=
2λiγ

2
i k2

i + 2λ2
i γ

2
i ki − 3σλ2

i

(λi + ki)4
= 0.

Thus, the optimal value of the ridge parameter ki is

ki(FG) =
λi

2
[(1− (

6σ

γ2
i

))
1
2 − 1]. (4.4)

From (4.1), (4.3), and (4.4), it can be easily verified that ki1 < ki(FG) < ki2 if
λiγ

2
i − σ2 > 0. In case k = k1 = k2 = . . . = kp,we can obtain k as the harmonic

mean of ki(FG) in (4.4).It is given by

k(FG) =
pσ2∑p

i=1[γ
2
i /[(γ4

i λ2
i

4σ4 + 6γ2
i λi

σ2 )1/2 − λiγ2
i

2σ2 ]]
. (4.5)

Using an argument from Hoerl et al.[8], it is reasonable to adopt the harmonic
mean of the regression coefficients. Note that k(FG) in (4.5) depends on unknown
parameters γ and σ2, and hence has to be estimated.
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5 Estimating the Ridge Parameter k

In this section, we propose to construct MUR by using the operational ridge param-
eter proposed by Hoerl et al.[8] and Crouse et al. [5]. First, since the harmonic mean
of optimal ridge parameter values, see (4.4) depends on the unknown parameters γ
and σ2, we use their OLS estimates. The operational ridge parameter in (4.5) is

k̂FG =
pσ̂2∑p

i=1[γ̂
2
i /[( γ̂4

i λ2
i

4σ̂4 + 6γ̂2
i λi

σ̂2 )1/2 − λiγ̂2
i

2σ̂2 ]]
. (5.1)

This is called the (FG) ridge parameter. Second, the HKB ridge parameter (Hoerl
et al. [8]) is

k̂HKB =
pσ̂2

γ̂′LS γ̂LS
. (5.2)

Third, CJH ridge parameter (Crouse et al. [5]) is

k̂CJH =


pσ̂2

(β̂LS−J)′(β̂LS−J)−σ̂2tr(X′X)−1 if
(
β̂LS − J

)′ (
β̂LS − J

)
> σ̂2tr (X ′X)−1

pσ̂2

(β̂LS−J)′(β̂LS−J)
otherwise.

Using these three operational ridge parameters, we compare the following ten esti-
mators.

1.OLS.
2.ORR using the HKB ridge parameter (ORR (HKB)).
3.ORR using the CJH ridge parameter (ORR (CJH)).
4.ORR using the FG ridge parameter (ORR (FG)).
5.URR using the HKB ridge parameter (URR (HKB)).
6.URR using the CJH ridge parameter (URR (CJH)).
7.URR using the FG ridge parameter (URR (FG)).
8.MUR using the HKB ridge parameter (MUR (HKB)).
9.MUR using the CJH ridge parameter (MUR (CJH)).
10.MUR using the FG ridge parameter (MUR (FG)).

6 Illustrative Example

We analyze the data generated by Hoerl and Kennard [9]. The data set is generated
by taking a factor structure from a real data set, and choosing β1 = 9.0269, β2 =
8.3384, β3 = 3.0903, β4 = 3.3411, and β5 = 11.3258 at random with constraint
β′β = 300 and a standard normal error ε is added to form the observed response
variable.β1, β2, β3, β4, β5 are random with the constraint β′β = 300 and normal
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β1 β2 β3 β4 β5 SMSE

Population 9.0269 8.3384 3.0903 3.3411 11.3258
OLS 7.9567 16.6563 2.6446 -5.9090 12.3692 144.6341

β̂(k̂HKB) 7.4966 12.5610 1.4810 0.0517 11.8267 111.7236
β̂(k̂CJH) 6.9439 10.2121 1.4999 3.4230 11.0095 157.6149
β̂(k̂FG) 6.8922 10.0442 1.5541 3.6480 10.9105 162.3889

β̂(k̂HKB, J̄) 7.5058 12.6224 1.5332 -0.0062 11.8634 88.1927
β̂(k̂CJH , J̄) 6.9812 10.3265 1.6252 3.3621 11.1187 52.3663
β̂(k̂FG, J̄) 6.9342 10.1645 1.6888 3.5901 11.0296 49.6882
β̂J̄(k̂HKB) 7.1433 10.4899 1.1554 3.1145 11.4138 94.5319
β̂J̄(k̂CJH) 6.9342 10.1645 1.6888 3.5901 11.0296 147.5083
β̂J̄(k̂FG) 6.4187 8.4265 2.2479 5.9084 9.9834 152.8586

Table 1:
Values of estimates and SMSE for k̂HKB = 0.0133, k̂CJH = 0.0436 and

k̂FG = 0.0481 where SMSE shows the SMSE for estimators

error e has zero mean and σ2 = 1. The resulting model is Y = Xβ + ε, and ε is
normally distributed as N

(
0, σ2I

)
.

The data was then used by Crouse et al.[5] to compare the SMSE performance
of URR, ORR and OLS. Recently, Batah et al. [2] and Batah et al. [4] used
the same data to illustrate the comparisons among OLS and various ridge type
estimators. We now use this data to illustrate the performance of the MUR estimator
to the OLS, ORR, and URR estimators to compare the MMSE performance of these
estimators. Table (1) shows the estimates and the SMSE values of these estimators.
The eigenvalues of X ′X matrix are 4.5792 ,0.1940 ,0.1549 ,0.0584 ,0.0138. The ratio
of the largest to the smallest eigenvalue is 331.1251 which implies the existence
of multicollinearity in the data set. The comparison between SMSE(β̂LS) and
SMSE(β̂(k̂HKB)) show that the magnitude of shrinkage is not enough.

When biased and unbiased estimators are available, we prefer unbiased estima-
tor. Crouse et al. [5] suggested J̄ = [

∑5
i=1 β̂iLS/5]15×1 as a realistic empirical prior

information where 1 is the vector of ones. URR with k̂FG leads to smaller SMSE
than with k̂CJH and k̂HKB and corrects the wrong sign. We thus find that k̂FG is
sufficient. MUR has smaller SMSE than ORR. Table (1) summarizes the perfor-
mance of estimators for special values of k. We observe that MUR estimator with
J̄ = (6.7437, 6.7437, 6.7437, 6.7437, 6.7437) is not always better than other estima-
tors in terms of having smaller SMSE. Also we can see that MUR is better than
ORR for all k̂HKB, k̂CJH , and k̂FG under the MMSE criterion, which is Result (1).

The value of β̂′LS [ 2kIp − S−1
k ]−1β̂LS given in Result (2) is obtained as 4.0791 for

k̂HKB, 14.9195 for k̂CJH and 16.6142 for k̂FG which are not smaller than the OLS
estimate of σ2 = 1.4281. Therefore, URR estimator is better than the MUR estima-
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tor for k̂HKB, k̂CJH and k̂FG in terms of MMSE as in Table (1). The value of the F
test in Result (2) is FCul = 39.1003, the non-central F parameter value calculated
is 392.888 with numerator degrees of freedom 5, denominator degrees of freedom 10
by using the Cumulative Density Function (CDF) Calculator for the Noncentral-F
Distribution (see website http://www.danielsoper.com/statcalc/calc06.aspx). Here,
the noncentral FCDF is equal to 0.031118. Then H0 is accepted and the condition
in Result (2) holds. That is, MUR has smaller MMSE than URR.

7 Conclusion

In this article we have introduced modified unbiased ridge (MUR). Comparison of
this estimator to that ORR and URR has been studied using the MMSE. Conditions
for this estimator to have smaller MMSE than other estimators are established. The
theorical results indicate that MUR is not always better than other estimators in
terms of MMSE. MUR is best and depends on the unknown parameters β, σ2, and
also using the ridge parameter k. For suitable estimates of these parameters, MUR
estimator might be considered as one of the good estimators using MMSE.

Acknowledgement. The authors would like to acknowledge the editor and the
referee for their valuable comments, which improved the paper substantially.
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