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ENCLOSING ROOTS OF POLYNOMIAL
EQUATIONS AND THEIR APPLICATIONS TO

ITERATIVE PROCESSES

Ioannis K. Argyros and Säıd Hilout

Abstract. We introduce a special class of real recurrent polynomials fn (n ≥ 1) of degree n,
with unique positive roots sn, which are decreasing as n increases. The first root s1, as well as the
last one denoted by s∞ are expressed in closed form, and enclose all sn (n > 1).

This technique is also used to find weaker than before [5] sufficient convergence conditions for

some popular iterative processes converging to solutions of equations.

1 Introduction

We introduce a special class of recurrent polynomials fn (n ≥ 1) of degree n with
real coefficients.

Then, we find sufficient conditions under which each polynomial fn has a unique
positive root sn, such that sn+1 ≤ sn (n ≥ 1). The first root s1, as well as the last
one denoted by s∞ are expressed in simple closed form.

Two applications are provided. In the first one, we show how to use s1 and s∞
to locate any sn belonging in (s∞, s1] (n ≥ 1).

In the second one, using this technique on Newton’s method (3.1), we show that
the famous for its simplicity and clarity Newton–Kantorovich condition (3.2) for
solving equations can always replaced by a weaker one (2.16).

Moreover, the ratio of the quadratic convergence of Newton’s method 2 q0 (see,
(2.16), (2.24), and (3.2)) under our approach is smaller than 2 qK given in [5].

2 Locating roots of polynomials

We need the main result on locating roots of polynomials.

Theorem 1. Let a > 0, b > 0, and c < 0 be given constants. Define polynomials
fn (n ≥ 1), g on [0,+∞) by:

fn(s)=b sn + a sn−1 + b (sn−1 + sn−2 + · · ·+ 1) + c, (2.1)
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and
g(s)=b s2 + a s− a. (2.2)

Set
d=

2 a

a +
√

a2 + 4 a b
. (2.3)

Assume:
d ≤ 1 +

b

c
, (2.4)

and
a + b + c < 0. (2.5)

Then, each polynomial fn (n ≥ 1) has a unique positive root sn.
Moreover, the following estimates hold for all n ≥ 1:

1 +
b

c
≤ s? ≤ sn+1 ≤ sn, (2.6)

and
fn(d) ≤ 0, (2.7)

where,
s?= lim

n−→∞
sn.

Proof. Each polynomial fn has a unique positive root sn (n ≥ 1), by the Descarte’s
rule of signs.

Polynomial fn can be written for s ∈ [0, 1):

fn(s)=b sn + a sn−1 + b
1− sn

1− s
+ c. (2.8)

By letting n −→∞, we get:

f∞(s)= lim
n−→∞

fn(s)=
b

1− s
+ c. (2.9)

Function f∞ has a unique positive root denoted by s∞, and given by:

s∞=1 +
b

c
< 1. (2.10)

Function f∞ is also increasing, since

f ′∞(s)=
b

(1− s)2
> 0. (2.11)

Furthermore, we shall show estimates (2.6), and (2.7) hold.
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Enclosing roots of polynomial equations and their applications 121

We need the relationship between two consecutive polynomials fn’s (n ≥ 1):

fn+1(s) = b sn+1 + a sn + b (sn + · · ·+ 1) + c
= b sn + a sn−1 + b (sn−1 + · · ·+ 1) + c+

a sn − a sn−1 + b sn+1

= fn(s) + sn−1 (b s2 + a s− a)
= fn(s) + g(s) sn−1.

(2.12)

Note that d is the unique positive root of function g.
Then, using (2.12), we obtain for all n ≥ 1:

fn(d)=fn−1(d)= · · ·=f1(d).

Let i be any fixed but arbitrary natural number. Then, we get:

fi(d)= lim
n−→∞

fn(d)=f∞(d) ≤ f∞(s∞)=0, (2.13)

since, function f∞ is increasing, and d ≤ s∞ by hypothesis (2.4). It follows from the
definition of the zeros sn and (2.13) that

d ≤ sn for all n ≥ 1. (2.14)

Polynomials fn are increasing which together with (2.14) imply

fn(d) ≤ fn(sn)=0.

In particular
f∞(d)= lim

n−→∞
fn(d) ≤ 0.

Hence, estimate (2.7) holds.
We then get from (2.12), and (2.14):

fn+1(sn+1)=fn(sn+1) + g(sn+1) sn−1
n+1 η

or
fn(sn+1) ≤ 0, (2.15)

since fn+1(sn+1)=0, and g(sn+1) sn−1
n+1 η ≥ 0, which imply

sn+1 ≤ sn (n ≥ 1).

Sequence {sn} is non–increasing, bounded below by zero, and as such it con-
verges to s?.
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We shall show s∞ ≤ s?. Using (2.12), we have:

fi+1(si) = fi(si) + g(si) si−1
i η

= g(si) si−1
i η ≥ 0,

so,
fi+2(si)=fi+1(si) + g(si) si

i η ≥ 0.

If, fi+m(si) ≥ 0, m ≥ 0, then

fi+m+1(si)=fi+m(si) + g(si) si+m−1
i η ≥ 0.

Hence, by the definition of function f∞, we get:

f∞(sn) ≥ 0 for all n ≥ 1.

But we also have f∞(0)=b + c < 0. That is s∞ ≤ sn for all n ≥ 1, and
consequently s∞ ≤ s?.

That completes the proof of Theorem 1.

Set a=L η, b=2 L0 η, and c=− 2, in Theorem 1.
It is simple algebra to show that conditions (2.4), and (2.5) reduce to (2.16) in

the majorizing lemma that follows:

Lemma 2. Assume there exist constants L0 ≥ 0, L ≥ 0, and η ≥ 0, with L0 ≤ L,
such that:

q0=L η


≤ 1

2
if L0 6= 0

<
1
2

if L0=0

, (2.16)

where,

L=
1
8

(
L + 4 L0 +

√
L2 + 8 L0 L

)
. (2.17)

Then, sequence {tk} (k ≥ 0) given by

t0=0, t1=η, tk+1=tk +
L (tk − tk−1)2

2 (1− L0 tk)
(k ≥ 1), (2.18)

is nondecreasing, bounded above by t??, and converges to its unique least upper bound
t? ∈ [0, t??], where

t??=
2 η

2− δ
, (2.19)

δ=
4 L

L +
√

L2 + 8 L0 L
< 2 for L0 6= 0. (2.20)
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Enclosing roots of polynomial equations and their applications 123

Moreover the following estimates hold:

L0 t? ≤ 1, (2.21)

0 ≤ tk+1 − tk ≤
δ

2
(tk − tk−1) ≤ · · · ≤

(
δ

2

)k

η, (k ≥ 1), (2.22)

tk+1 − tk ≤
(

δ

2

)k

(2 q0)2
k−1 η, (k ≥ 0), (2.23)

0 ≤ t? − tk ≤
(

δ

2

)k (2 q0)2
k−1 η

1− (2 q0)2
k , (2 q0 < 1), (k ≥ 0). (2.24)

Proof. We shall show using induction on k that for all k ≥ 0:

L (tk+1 − tk) + δ L0 tk+1 < δ, (2.25)

0 < tk+1 − tk, (2.26)

L0 tk+1 < 1, (2.27)

and
0 < tk+1 < t??. (2.28)

Estimates (2.25)–(2.28) hold true for k=0 by the initial condition t1=η, and
hypothesis (2.16). It then follows from (2.18) that

0 < t2 − t1 ≤
δ

2
(t1 − t0) and t2 ≤ η +

δ

2
η=

2 + δ

2
η < t??.

Let us assume estimates (2.25)–(2.28) hold true for all integer values n: n ≤ k
(n ≥ 0).

We also get

tk+1 ≤ tk +
δ

2
(tk − tk−1)

≤ tk−1 +
δ

2
(tk−1 − tk−2) +

δ

2
(tk − tk−1)

≤ η +
(

δ

2

)
η + · · ·+

(
δ

2

)k

η

=
1−

(
δ

2

)k+1

1− δ

2

η

<
2 η

2− δ
=t??.

(2.29)
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We have:

L (tk+1 − tk) + δ L0 tk+1 ≤ L

(
δ

2

)k

η + L0 δ

1−
(

δ

2

)k+1

1− δ

2

η. (2.30)

In view of estimate (2.30), (2.25) holds, if

{
L

(
δ

2

)n

+ δ L0

1−
(

δ

2

)n+1

1− δ

2

}
η ≤ δ. (2.31)

Estimate (2.31) motivates us to define for s=
δ

2
, the sequence {fn} of polynomials

on [0,+∞) by

fn(s)=
(

L sn−1 + 2 L0 (1 + s + s2 + · · ·+ sn)
)

η − 2. (2.32)

In view of Theorem 1, the induction for (2.25)–(2.28) is completed.
Hence, sequence {tn} is non–decreasing, bounded above by t??, and as such that

it converges to its unique least upper bound t?. The induction is completed for
(2.21), and (2.22).

If L0=0, then (2.21) holds trivially. In this case, for L > 0, an induction argument
shows that

tk+1 − tk=
2
L

(2 q0)2
k

(k ≥ 0),

and therefore

tk+1=t1 + (t2 − t1) + · · ·+ (tk+1 − tk)=
2
L

k∑
m=0

(2 q0)2
m

,

and

t?= lim
k→∞

tk=
2
L

∞∑
k=0

(2 q0)2
k
.

Clearly, this series converges, since k ≤ 2k, 2 q0 < 1, and is bounded above by
the number

2
L

∞∑
k=0

(2 q0)k=
4

L (2− L η)
.

If L=0, then, since, 0 ≤ L0 ≤ L, we deduce: L0=0, and t?=tk=η (k ≥ 1).
In the rest of the proof, we assume that L0 > 0.
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Enclosing roots of polynomial equations and their applications 125

In order for us to later complete the induction for (2.23), we first need to show
the estimate:

1−
(

δ

2

)k+1

1− δ

2

η ≤ 1
L0

(
1−

(
δ

2

)k−1 L

4 L

)
(k ≥ 1). (2.33)

For k=1, (2.33) becomes (
1 +

δ

2

)
η ≤ 4 L− L

4 L L0

or (
1 +

2 L

L +
√

L2 + 8 L0 L

)
η ≤ 4 L0 − L +

√
L2 + 8 L0 L

L0 (4 L0 + L +
√

L2 + 8 L0 L)

In view of (2.16), it suffices to show:

L0 (4 L0 + L +
√

L2 + 8 L0 L) (3 L +
√

L2 + 8 L0 L)
(L +

√
L2 + 8 L0 L) (4 L0 − L +

√
L2 + 8 L0 L)

≤ 2 L,

which is true as equality.
Let us now assume estimate (2.33) is true for all integers smaller or equal to k.

We must show (2.33) holds for k replaced by k + 1:

1−
(

δ

2

)k+2

1− δ

2

η ≤ 1
L0

(
1−

(
δ

2

)k L

4 L

)
(k ≥ 1).

or (
1 +

δ

2
+

(
δ

2

)2

+ · · ·+
(

δ

2

)k+1)
η ≤ 1

L0

(
1−

(
δ

2

)k L

4 L

)
. (2.34)

By the induction hypothesis to show (2.34), it suffices

1
L0

(
1−

(
δ

2

)k−1 L

4 L

)
+

(
δ

2

)k+1

η ≤ 1
L0

(
1−

(
δ

2

)k L

4 L

)
or (

δ

2

)k+1

η ≤ 1
L0

((
δ

2

)k−1

−
(

δ

2

)k) L

4 L

or

δ2 η ≤ L (2− δ)
2 L L0

.
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In view of (2.16) it suffices to show

2 L L0 δ2

L (2− δ)
≤ 2 L,

which holds as equality by the choice of δ given by (2.20).
That completes the induction for estimates (2.33).
We shall show (2.23) using induction on k ≥ 0: estimate (2.23) is true for k=0

by (2.16), (2.18), and (2.20). The inductive argument later in the proof requires
the second base case of k=1. In order for us to show estimate (2.23) for k=1, since

t2 − t1=
L (t1 − t0)2

2 (1− L0 t1)
, it suffices:

L η2

2 (1− L0 η)
≤ δ L η2

or
L

1− L0 η
≤ 8 L L

L +
√

L2 + 8 L0 L
(η 6= 0)

or

η ≤ 1
L0

(
1− L +

√
L2 + 8 L0 L

8 L

)
(L0 6= 0, L 6= 0).

But by (2.16)

η ≤ 4
L + 4 L0 +

√
L2 + 8 L0 L

.

It then suffices to show

4
L + 4 L0 +

√
L2 + 8 L0 L

≤ 1
L0

(
1− L +

√
L2 + 8 L0 L

8 L

)
or

L +
√

L2 + 8 L0 L

8 L
≤ 1− 4 L0

L + 4 L0 +
√

L2 + 8 L0 L

or
L +

√
L2 + 8 L0 L

8 L
≤ L +

√
L2 + 8 L0 L

L + 4 L0 +
√

L2 + 8 L0 L
,

which is true as equality by (2.17).
Let us assume (2.34) holds for all integers smaller or equal to k. We shall show

(2.34) holds for k replaced by k + 1.
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Enclosing roots of polynomial equations and their applications 127

Using (2.18), and the induction hypothesis, we have in turn

tk+2 − tk+1 =
L

2 (1− L0 tk+1)
(tk+1 − tk)2

≤ L

2 (1− L0 tk+1)

((
δ

2

)k

(2 q0)2
k−1 η

)2

≤ L

2 (1− L0 tk+1)

((
δ

2

)k−1

(2 q0)−1 η

) ((
δ

2

)k+1

(2 q0)2
k+1−1 η

)

≤
(

δ

2

)k+1

(2 q0)2
k+1−1 η,

since,

L

2 (1− L0 tk+1)

((
δ

2

)k−1

(2 q0)−1 η

)
≤ 1, (k ≥ 1). (2.35)

Indeed, we can show instead of (2.35):

tk+1 ≤
1
L0

(
1−

(
δ

2

)k−1 L

4 L

)
,

which is true by (2.33), since, in view of (2.22), and the induction hypothesis:

tk+1 ≤ tk +
δ

2
(tk − tk−1)

≤ t1 +
δ

2
(t1 − t0) + · · ·+ δ

2
(tk − tk−1)

≤ η +
(

δ

2

)
η + · · ·+

(
δ

2

)k

η

=
1−

(
δ

2

)k+1

1− δ

2

η

≤ 1
L0

(
1−

(
δ

2

)k−1 L

4 L

)
.

That completes the induction for estimate (2.23).
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In view of (2.23), we obtain in turn for 2 q0 < 1, and j ≥ k:

tj+1 − tk = (tj+1 − tj) + (tj − tj−1) + · · ·+ (tk+1 − tk)

≤
((

δ

2

)j

(2 q0)2
j−1 +

(
δ

2

)j−1

(2 q0)2
j−1−1 + · · ·+

(
δ

2

)k

(2 q0)2
k−1

)
η

≤
(

1 + (2 q0)2
k

+
(

(2 q0)2
k

)2

+ · · ·
) (

δ

2

)k

(2 q0)2
k−1 η

=
(

δ

2

)k (2 q0)2
k−1 η

1− (2 q0)2
k .

(2.36)
Estimate (2.24) follows from (2.36) by letting j −→∞.
That completes the proof of Lemma 2.

3 Applications and examples

As a first application, we show how to locate a root of a polynomial fn (n ≥ 2),
using, say e.g. sn−1, and s∞.

Application 3. Let a=b=1, c= − 3, and n=2. We obtain using (2.1)–(2.3), and
(2.10):

f1(s)=s− 1, f2(s)=s2 + 2 s− 2,

s1=1, s∞=
2
3
, d=.618033989.

Conditions (2.4), and (2.5) become:

.618033989 <
2
3
,

and
−1 < 0.

Hence, the conclusions of Theorem 1 hold. In particular, we know s2 ∈ (s∞, s1).
Actual direct computation justifies the theoretical claim, since

s2=
√

3− 1=.732050808 ∈
(

2
3
, 1

)
.

Application 4. As a second application, we show how to use Theorem 1 to derive
sufficient convergence conditions for scalar majorizing sequences of certain popular
iterative methods such that as Newton’s method:

xn+1=xn − F ′(xn)−1 F (xn) (n ≥ 0), (x0 ∈ D), (3.1)

where, F is a Fréchet–differentiable operator defined on a convex subset D of Banach
space X with values in a Banach space Y.
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Enclosing roots of polynomial equations and their applications 129

Let us consider the famous Kantorovich hypotheses for solving nonlinear equa-
tions [5]:

(K):
x0 ∈ D, with F ′(x0)−1 ∈ L(Y,X ),

‖ F ′(x0)−1 F (x0) ‖≤ η,

‖ F ′(x0)−1 (F ′(x)− F ′(y)) ‖≤ L ‖ x− y ‖ for all x, y ∈ D,

qK=L η ≤ 1
2
, (3.2)

U(x0, r)={x ∈ X : ‖ x− x0 ‖≤ r} ⊆ D,

for

r=
1−

√
1− 2 qK

`
.

Under the (K) hypotheses, the Newton–Kantorovich method converges quadrati-
cally (if 2 qK < 1) to a unique solution x? ∈ U(x0, r) of equation F (x)=0.

Moreover, scalar iteration {vn} (n ≥ 0), given by

v0=0, v1=η, vn+2=vn+1 +
L (vn+1 − vn)2

2 (1− L vn+1)
,

is a majorizing sequence for {xn} in the sense that for all n ≥ 0:

‖ xn+1 − xn ‖≤ vn+1 − vn

and
‖ xn − x? ‖≤ r − vn.

Let us consider our hypotheses:

(A):
x0 ∈ D, with F ′(x0)−1 ∈ L(Y,X ),

‖ F ′(x0)−1 F (x0) ‖≤ η,

‖ F ′(x0)−1 (F ′(x)− F ′(y)) ‖≤ L ‖ x− y ‖,

‖ F ′(x0)−1 (F ′(x)− F ′(x0)) ‖≤ L0 ‖ x− x0 ‖ for all x, y ∈ D,

q0 ≤
1
2
,

U(x0, t
?) ⊆ D (or U(x0, t

??) ⊆ D).

******************************************************************************
Surveys in Mathematics and its Applications 4 (2009), 119 – 132

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v04/v04.html
http://www.utgjiu.ro/math/sma
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Note that the center–Lipschitz condition is not an additional hypothesis, since,
in practice the computation of L requires that of L0.

The scalar iteration {tn} is a finer majorizing sequence for {xn} than {vn} pro-
vided that L0 < L [1], [3], [5].

Remark 5. In general
L0 ≤ L

holds, and
L

L0
can be arbitrarily large [1]–[4].

Condition (2.16) coincides with the Newton–Kantorovich hypothesis (3.2).
if L=L0. Otherwise (2.16) is weaker than (3.2). Moreover the ratio 2 q0 is also

smaller than 2 qK .
That is, (2.16) can always replace (3.2) in the Newton–Kantorovich theorem [5].
Hence, the applicability of Newton’s method has been extended.

Example 6. Define the scalar function F by F (x)=c0 x + c1 + c2 sin ec3 x, x0=0,
where ci, i=1, 2, 3 are given parameters. Then it can easily be seen that for c3 large

and c2 sufficiently small,
L

L0
can be arbitrarily large. That is (2.16) may be satisfied

but not (3.2).

Example 7. Let X=Y=R2, be equipped with the max–norm, and

x0=(1, 1)T , U0={x : ‖ x− x0 ‖≤ 1− β}, β ∈
[
0,

1
2

)
.

Define function F on U0 by

F (x)=(w3 − β, z3 − β), x=(w, z)T . (3.3)

The Fréchet–derivative of operator F is given by

F ′(x)=
[

3 w2 0
0 3 z2

]
. (3.4)

Using our hypotheses, we get:

η=
1
3

(1− β), L0=3− β, and L=2 (2− β).

The Kantorovich condition (3.2) is violated, since

4
3

(1− β) (2− β) > 1 for all β ∈
[
0,

1
2

)
.

Hence, there is no guarantee that Newton’s method (3.1) converges to x?=( 3
√

β, 3
√

β)T ,
starting at x0.

However, our condition (2.16) is true for all β ∈ I=
[
.450339002,

1
2

)
.

Hence, our results apply to solve equation (3.3) for all β ∈ I.
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Other applications where L0 < L can be found in [1], [3].

Remark 8. Define scalar sequence {αn} by

α0=0, α1=η, αn+2=αn +
L1 (αn+1 − αn)2

2 (1− L0 αn+1)
(n ≥ 0), (3.5)

where,

L1=
{

L0, if n=0
L, if n > 0

.

It follows from (2.18), and (3.5) that {αn} converges under the hypotheses of
Lemma 2. Note that, under the (K) hypotheses, {αn} is a finer majorizing sequence
for {xn} than {tn}. More precisely, we have the following estimates (if L0 < L):

‖ xn+1 − xn ‖≤ αn+1 − αn < tn+1 − tn < vn+1 − vn, (n ≥ 1),

‖ xn − x? ‖≤ α? − αn < t? − tn < v? − vn, (n ≥ 0),

αn < tn < vn, (n ≥ 2),

and
α? ≤ t? ≤ r,

where,
α?= lim

n−→∞
αn.

Remark 9. Our new technique of recurrent functions can be used on other Newton–
type methods [1]–[9], so we can obtain the similar improvements as in the case of
Newton’s method above. These advantages are generalized, since we use the (needed,
and more precise than the Lipschitz) center–Lipschitz condition for the computation
of the upper bounds of the norms ‖ F ′(xn)−1 F ′(x0) ‖. This modification leads to
more precise majorizing sequences, which in turn motivate the introduction of the
recurrent functions.

Acknowledgement. The authors would like to thank the referees for the helpful
suggestions.
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