Surveys in Mathematics and its Applications

ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 4 (2009), 139 — 153

COMPUTING OPTIMAL CONTROL WITH A
QUASILINEAR PARABOLIC PARTIAL
DIFFERENTIAL EQUATION

M. H. Farag

Abstract. This paper presents the numerical solution of a constrained optimal control problem
(COCP) for quasilinear parabolic equations. The COCP is converted to unconstrained optimization
problem (UOCP) by applying the exterior penalty function method. Necessary optimality conditions
for the considered problem are established. The computing optimal controls are helped to identify

the unknown coefficients of the quasilinear parabolic equation. Numerical results are reported.

1 Introduction

Optimal control problems for partial differential equations are currently of much
interest. A large amount of the theoretical concept which governed by quasilinear
parabolic equations has been investigated in the field of optimal control problems
[1], [2] and [18]. These problems have dealt with the processes of hydro- and gas
dynamics, heat physics, filtration, the physics of plasma and others [12] and [15].
From the mathematical point of view, the definition and refinement of the unknown
parameters of the model present the problem of identification and optimal control
of partial differential equations. The importance of investigating the identification
and optimal control problems was developed in [6] and [9]. This paper presents the
numerical solution of a constrained optimal control problem (COCP) for quasilinear
parabolic equations. The COCP is converted to unconstrained optimization problem
(UOCP) by applying the exterior penalty function method. Necessary optimality
conditions for the considered problem are established. The computing optimal
controls are helped to identify the unknown coefficients of the quasilinear parabolic
equation. Numerical results are reported.

Let D be a bounded domain of the N-dimensional Euclidean space Epy. Let
V={v:v=(v,v2,..,un) € En,||v||gy < R}, where R > 0 is a given number.
Let I,T be given positive numbers and let Q = {(z,t) : x € D = (0,1),t € (0,T)}.
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140 M. H. Farag

Now, we need to introduce some functional spaces as follows [10]:
0) Ey is the N-dimensional Euclidean space with
N

(v1,v2) By = Z(Ul)i(UQ)ia [vllEy =1/ (v,0)Ey-

i=1
1) Ly(D) is a Banach space which consisting of all measurable functions on D with
the norm

1
||z||L2(D)=[/ |2|* da 2.
D

2) L2(0,1) is a Hilbert space which consisting of all measurable functions on (0,1)

with
!
<Z17Z2>L2(O,l) :/0 z1(x)22(z)dx, ||Z”L2(0,l) =/ <372>L2(0,l)'

3) L2(0,T) is a Hilbert space which consisting of all measurable functions on (0, 7")

with
T
(21, 22) Lo(0,1) = /0 z1(t)z2(t)dl, || 2| Ly0,m) = 1/ (2 2) La0,7)-

4) Ly(9) is a Hilbert space which consisting of all measurable functions on  with

[ T
(o1, 22) Loy = /0 /0 21, )z (o )deedt, |2 1y = 1/ 2) o).

5) Wy '(Q) = {2 € Lo(Q) and 92 € Ly()} is a Hilbert space with

. 821 82’2
<Z1, 22>W21’0(Q) = /Q [ 2129 + %%]dl‘dt
0z 1
||Z||W21’0(Q) = [||Z||2L2(Q) + ||%”%2(Q)]2~

6) Wy (Q) = {2 € La(Q) and % € Ly(Q), % € Ly(Q)} is a Hilbert space with
. 6z1 822 621 6Z2
<Zl, Z2>W21’1(Q) = /Q [ 2122 + %% + Wﬁ]dxdt

0z 0z 1
12l ) = 21170 + II%II%Q(Q) + Hallig(m]%

7) V2(f2) is a Banach space which consisting of the elements of the space VV21 ()
with the norm

) 82 1
I12llva(0) = vraimazo<i<r||z(z,t)| 1.0y + (/Q ‘873 2)3,

8) Vzl’o(Q) is a subspace of V5(Q2), the elements of which have in sections D; =
{(z,7) : * € D,7 = t} traces from Lo(D) at all ¢ € [0,7], continuously changing
from ¢ € [0,7] in the norm Ly(D).
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2 Problem Formulation

We consider the heat exchange process described by the following quasilinear parabolic
equation:

ou 0 Ou

o - M)t

ot on )+ B(u,v)u(z,t) = f(z,t), (z,t) € Q (2.1)

with initial and boundary conditions

u(z,0) = ¢(x),z € (0,1) (2.2)
A ) glomo = 90(8), M, 0) olact = (0,0 S S T 2.3

where ¢(x) € La(D) , go(t),91(t) € L2(0,T) and f(z,t) € L2(Q2) is a given function.
Besides, functions A(u,v), B(u,v) are continuous on (u,v) € [ri,72] x Ep, have
continuous derivatives in u, V(u,v) € [r1, 2] x Ey and the derivatives 8’\(“ V), BBESZ )
are bounded. Here 71,79 are given numbers.

On the set V, under the conditions (2.1)-(2.3) and additional restrictions

vo < AMu,v) < g, 1 < Bu,v) <pgp o <u(z,t) <rg (2.4)

is required to minimize the function [4]

T

T
h@%ﬂ%%[%@ﬂh@Wﬁ+ﬂ{/hﬂi)ﬁ@Pﬁ+aww%N (2.5)

0

where fo(t) , f1(t) € L2(0,T) are given functions, o > 0, v, pu; > 0,7 = 0,1, Gy >
0,61 >0, Bo+ 1 # 0 are given numbers, w € Fy is also given : w = (w1, w2, ..., wn ).

Definition 1. The problem of finding a function v = u(x,t) € ‘/21’0(9) from
conditions (2.1)-(2.4) at given v € V is called the reduced problem.

Definition 2. The solution of the reduced problem (2.1)-(2.4) corresponding to the

v eV is a function u(x,t) € VQI’O(Q) and satisfies the integral identity

/ /T u@ - v)augn — B(u,v)u(z,t)n+ f(z,t)n]dedt =  (2.6)

Ox Oz

T T
/¢ xOM+A?@ﬁ%®ﬁ—A7Nﬁm@%

vV =n(x,t) € W2171(Q) and n(z,T) = 0.
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142 M. H. Farag

The solution of the reduced problem (2.1)-(2.4) explicitly depends on the control
v, therefore we shall also use the notation u = u(z, t;v).

On the basis of adopted assumptions and the results of [11] follows that for
every v € V the solution of the problem (2.1)-(2.4) exists, unique and |uy| < Cp,
V(x,t) € Q, Vv € V | where Cp is a certain constant.

The inequality constrained problem (2.1)-(2.5) is converted to a problem without
inequality constrains {UOC P} by applying the exterior penalty method [17], yielding
the following function ®, 1 (v, A):

Do (v, Ay) = P(v) = [, (v) + Pp(v) (2.7)
where

Z(u,v) = [max{vy — A(u,v); 0}]* + [max{\(u,v) — po; 0}
Y (u,v) = [max{v; — B(u,v);0}]* + [max{B(u,v) — u1;0}]?
Q' (u) = [max{r; — u(z,t;v);0}]%, Q*(u) = [max{u(z,t;v) — r9; 0}]2

Ak/ / (w4, 0) + Y (u,0) + Q' (u) + Q(w)]dzdt

and Ay , k=1,2,... are positive numbers, lim;_, o, A = +o0.

3 Well-posedness of the control problem

Optimal control problems of the coefficients of differential equations do not always
have solution [14].

Lemma 3. Let 6v = (dvy,dva, - -+ ,0vn) be an increment of control on elementv € V
such that v+ 0v € V. Let du(zx, t) u(z, t;v+9) —u(z, t;v) and uw = u(z, t;v). At
above adopted assumptions, then du(x,t) satisfies the following estimation

( t) 2

1
[6u(, t) < Cil[oA 17, + 10Bul@, )17, (3.1)

o)

where 6\ = Au, v+ 0v) — A(u,v), 0B = B(u,v+0v) — B(u,v) and Cy > 0 is constant
not depending on dv.

Proof. The proof is quite similar to the one given in Farag [5]. O

Corollary 4. From the above adopted assumptions the right part of estimation (3.1)
converges to zero at ||0v| gy — 0. Therefore ||5uHV1,o(Q) — 0 as ||0v||gy — 0. Hence
2

from trace theorem [13] we get

16w(0, )| Ly0,m) — 0 [|6u(l, )| Ly (0,) — 0, at [|6v]|my — 0 (3.2)
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Lemma 5. The function Jo(v) = (o fOT[u(O,t) — fo(®)]2dt + B fOT[u(l,t) — f1(t))2at
s continuous on V.

Proof. Let 6v = (dvy,dve,--- ,dvy) be an increment of control on element v € V
such that v 4+ dv € V. For the increment of the function Jy(v) the following holds

0Jo(v) = Jo(v + dv) — Jo(v) = 20 foT[u(O,t) — fo(t)]ou(0,t)dt
+261 [ Tul,t) — f(®))du(l,t)dt + Bo [} [6u(0,6))2dt + Bi [ [du(l, £)]2dt. (3.3)
Applying the Cauchy Bunyakoviskii inequality, we obtain
[0 Jo(v)] < 21 Bo[u(0, 1) = fo(®)l| La(o,m)[10%(0, )| o0,y + Bollow(0, )12, 0 1)
+261lu(l t) = i) Lo 166, ) Lo 0.7y + Brlldul OIIF, 0.7)- (3.4)

From corollary 4 and (3.4), the continuity of the function Jy(v) on V follows. Then
the lemma 5 is proved. O

Theorem 6. The problem (2.1)-(2.5) at any o > 0 has at least one solution.

Proof. The set V is closed and bounded in Fy. From the affirmation of lemma 5
follows the continuity of function Jy(v) on V, the function J,(v) = Jo(v) + afjv —
wl|%,, will be continuous on V' also. Then from the Weierstrass’s Theorem [9] follows
that the problem (2.1)-(2.5) has at least one solution. Theorem 6 is proved. O

Theorem 7. The problem (2.1)-(2.5) at o > 0, at almost all w € Enx has a unique
solution.

Proof. From lemma 5 follows the continuity of function Jy and J,(v),« > 0 will be
continuous on V also. Besides,Fy is a uniformly convex space, then from a theorem
in [7] follows the existence of a dense subset K of the space En such that for any
w € K at a > 0 the problem (2.1)-(2.5) has a unique solution. Consequently for
almost all w € F and w > 0 the problem (2.1)-(2.5) has a unique solution. Theorem
7 is proved. ]

4 The adjoint problem

The Lagrangian function L(zx,t,u,v,®) for the OCP problem is defined as
T

T
L(xatauvvv @) = BO/O [U(O,t) - fO(t)]th + /81/0 [u(lvt) - fl(t)]th"F (4'1)
[ T
+allv - wll?, + Ax /0 /0 (2, 0) + Y (u,0) + Q (1) + Q2 (u)drdt

LT oy u
—i—/o /0 @[gt - aam()\(u,v)gm) + B(u,v)u(x,t) + f(z,t)|dzdt.
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144 M. H. Farag

Setting the variation in the Lagrangian equal to zero, the first order necessary
condition for minimizing L(z,t,u,v, ©), we obtain the adjoint problem [4]:

O+ (Mu,v)04) s — Ay (u, v)Ozu, = (Byu + B)O(x,t)
+Ag[Zy(u,v) + Yy + Q% + QL), (z,t) € Q (4.2)

O(z,T) =0,z €D (4.3)

AOg [o=0= 20o[u(0,t) — fo(t)]
A@x |x:l: _Qﬁl [u(lvt) - fl(t)], le [OvTL (4'4)

where u = u(x,t) is the solution of problem (2.1)-(2.3) corresponding to v € V.

Definition 8. The solution of the adjoint problem (4.2)-(4.4) corresponding to the
v € V is a function O(z,t) € ‘/21,0(9) and the following integral identity is then
satisfied to

// —+A )g@gZ—i—)\u(u v)g@g“w(B u+ B)O(z, t)y(x, t)|dzdt
= —Ak/ / (u,v) + Yy + Q% + Qrly(z, t)dwdt (4.5)

where Vy = y(z,t) € W211(Q) and ~(x,0) = 0.

On the basis of adopted assumptions and the results of [10] follows that for every
v € V the solution of the conjugated boundary value problem (4.2)-(4.4) is exists,
unique and |©,| < Cy almost at all (z,t) € Q , Yv € V, where Cy is a certain
constant.

5 Gradient of the Cost functional

The sufficient differentiability conditions of function (2.7) and its gradient formulae
will be obtained by defining the Hamiltonian function [3] H(u,©,v) as

H(u,0,v) / / (u,v)Ozuy + B(u,v)u(z,t)0(x,t)|dxdt

2
—Ak/o /0 [Z(u,v) + Y (u,v)|dzdt — allv — w||g, (5.1)

Theorem 9. [t is assumed that the following conditions are fulfilled:

(i) The functions A(u,v), B(u,v) satisfy the Lipshitz condition for v.

(ii) The first derivatives of the functions \(u,v), B(u,v) with respect to v are continuous
functions and for any v € V such that ||v||gy < R , the functions A\, (u,v), By(u,v)

sk sk ok sk ok sk s ok sk sk ok s ok sk sk ok sk sk sk ok sk sk ok s ok sk sk ok sk sk sk sk ok sk sk sk ok sk sk ok ok sk sk ok sk sk sk sk sk sk sk ok sk sk ok ok sk ok sk sk ok ok sk skok ok sk ok

Surveys in Mathematics and its Applications 4 (2009), 139 — 153
http://www.utgjiu.ro/math/sma


http://www.utgjiu.ro/math/sma/v04/v04.html
http://www.utgjiu.ro/math/sma

Computing optimal control 145

belong to Loo(£2).

(#ii) Operators fo fo (u,v)dzdt and fo fo (u,v)dzdt are bounded in Ey.
Therefore, the functzon O, 1(v) = P(v) is dzﬁ‘erentzable and its gradient is given

by the expression :

oo(v) OH . OH OH oH

v o = Ovy’ 81}2"”’_8111\)'

(5.2)

Proof. Suppose that v = (v1, v, ...,on) , 0v = (dvy, dve, ..., 0uN) ,0v € Ex v+ dv €
V and denoting du = u(x,t;v + dv) — u(z, t;v). The increment of the function ®(v)
can be expressed as:
5D (v) = B(v + o0) — <v> =
=20 fo — fo(1)]ou(0, t)dt + 26 fo — fi®)]u(l, t)dt+
F A fo [T Zu(uyv + 60) + Ya(u,0 + 00) + QL (u ) + Qﬁ(u)]&u(x, t)dzdt+
+Ag fo fo (u, v+ 6v) — Z(u,v) + Y (u,v + dv) — Y (u,v)|dzdt

+20(v — w, v) gy + R1(dv) (5.3)
where . -
R1(6v) = By /O [6u(0,1)]2dt + By /0 [bu(l,t)]dt + || ov||Z,, - (5.4)

Using the estimation (3.2), then the inequality |R;(dv)| < Cs||dv||g, could be
verified where Cj3 is a constant not dependent on dv.

From results in ([8], p. 995-996), we put v = du(z,t) in identity (4.5) and put
n = O(x,t) in (2.6) and substract the obtained relations, then we have

260 f, [u — fo()16u(0, )dt + 261 [ [u(l,t) — f1(£)]du(l, t)dt+
+Ag fo fo (u,v + dv) + Yo (u, v + dv) + QL ( ) + Q2 (u))du(x, t)dxdt =
= fo fo [0Auz0 4 + u(x, t)O(x,t)d Bldzdt + Ra(dv) (5.5)

where

— ST TN+ By + Gv) — Au, 0)]| 22290 4

_|_[8/\(u+0g5u,v+5v (9)\ (u,v ]g; %(;) Su+
+[B(u + du,v + dv) — B( ,v)]@%

[ 2Blutboduvtdv) _ OB g (4 pyu(x, t)du(z, t) }dadt (5.6)

and 0; € (0,1),7 = 1,2 are positive numbers.

In virtue of assumption (i), Ra(dv) is estimated as |Ra(0v)| < Cyl|dv]| gy, where
Cy is a constant and independent of dv. Using the above assumptions, we can
estimate the following expansions as:
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Z(u, v+ 6v) — Z(u,v) = (Zy(u,v),6v) gy + O(||0v|| £y )
Y (u,v+0v) =Y (u,0) = (V. ( v),0v) By + O(]|6v] 2y )
6A = (Ao(u,v),60) By + O([|6v][ By ), 6B = (By(u, v),0v) 5y + O([|6v] £y ).
By substituting the last three expansions in (5.3) and (5.5), we obtain

fo fo o(U, V)ug O + By (u, v)u(z,t)O(x,t)
+AL(Z (u v) + Yy (u, v)) 5 VEydzdt + 2a(v — w, 0v) gy + R3(0v) (5.7)

where R3(dv) = R1(dv) + Ra(6v) + O([|0v|| gy )-
From the formula of R3(dv), we have

| R3(dv)] < Csl[6v] gy (5:8)

where Cj is a constant and independent of dv.
From (5.7), (5.8) and using the function H(u, 9, v), we have

0H (u, 9, v)

50(0) = (-

,00) By + O([|6v][2y) (5.9)
which shows the differentiability of the function ®(v) and also gives the gradient
formulae of the function ®(v). This completes the proof of the theorem. O

6 Necessary optimality conditions

Above the differentiability of the function ®(v) and its gradient formulae are proved.
Now, we are able to pass to prove the necessary conditions for optimization for the
optimal control problem (2.1)-(2.3),(2.7).

Theorem 10. Let all conditions of theorem 9 be fulfilled. In order that v* € V be
a solution of UOCP problem it is necessary that

H(u*, 0% v") = magH(u*, 0%, v) (6.1)
ve
where u*(x,t), 0" (z,t) are, respectively, solutions of the basic problem (2.1)-(2.3)
and the adjoint problem (4.2)-(4.4) at v* € V.

Proof. Suppose that v* = (v},v3,---,v}) is an optimal control. Suppose the
contrary, i.e. will be found such a control 7 = v* + (év € V and number G5 > 0 for
which

H(u*,0%,v) — H(u",0%,v) > 3 >0, (6.2)
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where ¢ > 0is a constant,v = (01, U2, - -+ ,n) = (v} +(dv1,v5+(0v2, - - -, v +(ovN),
ov = (0vy,0vg, -+ ,0UN).
If in (6.2) to take into account the formulae (5.2), then we obtain

C<8q;f]@),5v>EN < —B3 <0, (6.3)

where 0 = (0pdv = (Oy(dvy,0va, -+ ,0un) 00 € (0,1) are positive numbers.
Hence and from formula of finite increment, we have

®(0) — B(v*) = (22 50)py = (22 50) gy + (22D _ OBO) 5)

< s+ (7 — OB, 60) iy < — B3+ CO(I8v] ), (6.4)
where v° = (610v = (01 (dv1, dva, - -+ ,dvn) ,01 € (0,1) are positive numbers.

Let 0 < ¢; < ¢ is such a number that — 85+ O(||0v]| gy) < 0. Put © = v*+ (1 v.
Reasoning as in the proof of (6.4), we obtain

®(v) — @(v") < =z + G O(|6v]|y) <O (6.5)

This contradicts to the optimality of control v*. Hence, we obtain the validity of
relation (6.1). The theorem is proved. O

7 Numerical Results

The outlined of the algorithm for solving UOCP problem are as follows:
1- Given k= 0,0 > 0,1t =0, A;, > 0,¢ > 0 and vV e V.
2- At each iteration It, do
Solve (2.1)-(2.3), then find u(.,v").

Solve the adjoint problem for (4.2)-(4.4), then find ©(.,v").

Find optimal control v,(ftﬂ)

End do.
3- If |®(vtHD)) — ®(vUD)| < ¢, then Stop, else, go to Step 4.
4- Set vt = U Tt = Tt + 1,k =k + 1, A1 = A % o and go to Step 2.

using conjugate gradient method [16].

The following theorem represents the main contribution of the convergence theory
for the control sequence, generated by the above algorithm for UOCP problem.

Theorem 11. Let {U(It)} be a sequence of minimizers to the UOCP problem which
generated by the above algorithm for any increasing sequence of values Ag. Then
{v(”)} converge to the optimum solution v, of the constrained problem COCP as
Ak — OQ.

Proof. The proof is similar to that of Theorem 7.4 [16]. O
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The problem (2.1)-(2.5) is considered as one of the identification problems on
definition of unknown coefficients of parabolic quasilinear equation type. The numerical
results were carried out for the following examples:

L.u=x+t,A=tan"'(u), B =u?1—u?),x €[0,0.9],¢ € [0,0.001]
2. u=x+t,A=e"sinu,B=In(1+u),z €[0,0.7],t € [0,0.001]
3u=z+t,A=In(:L),B ="z €0,0.9],¢ € [0,0.001]

The input data of parameters and functions in our optimal control problem are
given as follows:

Table 1
Parameters | vy | 11 o | 1 ro | ™1 Go | B1 | « €
Example 1 |0 [0.7334 [0 [0.1527 |0 [ 0.901 [ 0.9] 0.9 | 0.9 | 1076
Example 2 |0 [0.3199 [0 [0.5312 |0 [0.701 [ 0.9] 0.9 | 0.9 | 1076
Example 3 |0 [23126 |1 [2.1901 |0 [ 0.901 [0.9] 0909|1076
Table 2
Functions | Example 1 Example 2 Example 3
o(z) X X X
90 = fo tan~ 't e tsint In(:%)
g1 =h tan=1(0.9 + 1) e~ O 0sin(0.7+¢t) | In(g3)
flat) | 22 4 e T i 2+ ) | 24 (34 e
e~ @ sin(z + 1) —(z+1)
—e~ (@ eos(z + 1)

Flg. 1 Number of terms versus Max Ahsolute Error

MaxErr

B W s OO
1

—=— NMa xL{u,v)
—a— Ma xB(u. V)

Q
y
]
3
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Fa. Z: CoalTicients of OPDEs (Exact & Optimal)
1
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Fig. 3 Iteration Number versus F(u)
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Fig. 4: The coefficient 4(z,v) =h{ﬁ] (Example 3)
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Fig. 5: The coefficient SEY)=¢  (Example3)
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Fig. 6: The coefficient A (2, V)=¢"" sin Example 2)
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Fig. 7: The coefficient E(x,#)=1n(l +u) (Example 2)
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The numerical study has given the following results:

1.

Knowing the computed optimal control values v* obtained by the above numerical
algorithm, we can calculate the approximate values of the unknown coefficients
Au,v), B(u,v) each of which can be represented in a series as Z,]CV:CI vpul, for
example \(u,v) = Zﬁ:{z vop—1u?* 1, B(u,v) = 252642 voru?F, where Ne is
the number of controls.

For example 3,the maximum absolute errors for A(u,v), B(u,v) versus the
number of control (Nterms) are displayed in Fig. 1. The curves denoted by
MaxA(u,v) and MaxB(u,v) are the maximum absolute errors I'y = max|Agzact—
ANe /2| and I'g = maz|Bgzact — By, /2|. It is clear that the maximum absolute
errors decrease by increasing the number of control (Nterms).

For example 1, in Fig. 2, the curves denoted by Lexact and Loptimal are the
exact values and approximate values of A(u,v) with the optimal control v*
versus the values of u(x,t).

For example 2, the curve of the computing values of ®(v) denoted by F(u) in
Fig. 3 versus the iteration numbers (It) are displayed.

For examples 2 and 3, in figures Fig. 4-Fig. 7 the curves denoted by A], A5, A3, - - -
and Bf, B3, B3, -- - are the approximate values of A(u,v) and B(u,v) with v*,
while Agzact, BEzact are the exact values of A(u,v), B(u,v). Obviously, by
increasing Ne¢, the coefficients A(u,v) and B(u,v) are agree with the exact
value.

For example 1, in Table 3, we report the number of function evaluations N EF
needed to compute the solution with an accuracy on the modified function
®(v) of the order 1075, The above algorithm takes 6 iterations for decreasing
®(v) to the value 0.8731989F — 06.

Table 3
It | ®(v) fa(v) Py(v) Ay, NEF
0 | 15.2245300 15.2245300 0.0000000 0.0000000 1
1 | 12.5949100 12.5939900 9.240004E-04 | 0.500000E+01 | 169
2 | 5.0931420 5.0926800 4.620002E-04 | 0.100000E4-02 | 506
3 | 1.4406350 1.4404040 2.310001E-04 | 0.200000E+02 | 674
4 | 6.352364E-02 | 6.340814E-02 | 1.155001E-04 | 0.400000E+-02 | 842
5 | 7.121307E-04 | 6.543807E-04 | 5.775003E-05 | 0.800000E+02 | 1010
6 | 8.731989E-05 | 8.371051E-05 | 3.609377E-06 | 0.160000E+403 | 1176
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