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POSITIVE DEFINITE SOLUTION OF TWO KINDS
OF NONLINEAR MATRIX EQUATIONS

Xuefeng Duan, Zhenyun Peng and Fujian Duan

Abstract. Based on the elegant properties of the Thompson metric, we prove that the following
two kinds of nonlinear matrix equations X = i Ar X% A; and X = i (A; X A:)%, (0< 8] <1)
always have a unique positive definite solutiolrj.1 Iterative methods Za:ré proposed to compute the
unique positive definite solution. We show that the iterative methods are more effective as § =
maz{|d;|, i =1,2,---,m} decreases. Perturbation bounds for the unique positive definite solution

are derived in the end.

1 Introduction

We consider the following nonlinear matrix equation

m
X =) ArX%A;, 0<|6] <1, (1.1)
i=1
and .
X =) (AXA)", 0<6] <1, (1.2)
i=1
where A, As,--- , Ay, are n X n nonsingular complex matrix, and m is a positive

integer. Here, A} denotes the conjugate transpose of the matrix A;. We mainly
discuss the positive definite solution of Egs. (1.1) and (1.2).

In the last few years there has been a constantly increasing interest in developing
the theory and numerical approaches for positive definite solutions to the nonlinear
matrix equation of the form (1.1) [1]-[11], [15]-[17], [13, 19]. Shi-Liu-Umoh-Gibson
[17] used Brouwer’s fixed point theorem to study the existence of solutions of the Egs.
(1.1) and (1.2). Multi-step stationary iterative methods were proposed to solve them
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in that paper. Duan-Liao-Tang [3] and Huang-Huang-Tsai[10] gave some theorems
on the existence and uniqueness of positive definite solution for the similar form of
Egs. (1.1) and (1.2) by using fixed point theorems and projective metric technique,
respectively.

In this paper, we firstly use Thompson metric method to prove that Eqgs. (1.1)
and (1.2) always have a unique positive definite solution. Iterative methods are
proposed to compute the unique positive definite solution. We also show that the
iterative methods are more effective as § = max{|d;|, i = 1,2,---,m} decreases.
Based on the perturbation theorem of contraction map [16], two perturbation bounds
for the unique positive definite solution of Egs. (1.1) and (1.2) are derived in the
end.

Throughout this paper, we use P(n) to denote the set of all n xn positive definite
matrix. We use Apaz(A) to denote the maximal eigenvalue of an Hermitian matrix
A. The symbol || - || stands for the spectral norm. The notation A > B indicates
that A — B is positive semidefinite. The symbol M (€2, a) denotes the set of all strict
contraction maps on 2 with the contraction constant «, that is to say, for arbitrary
f e M(Q,a), then there exists 0 < a < 1 such that

6(f(x), f(y)) < ab(x,y), Vr,y e,

where (-, ) is a metric on Q.

2 Positive definite solution of Egs. (1.1) and (1.2)

In this section, we first review the Thompson metric on the open convex cone P(n).
And then we give some theorems on the existence of positive definite solution of Egs.
(1.1) and (1.2) by using the elegant properties of the Thompson metric. Iterative
methods are constructed to solve Egs. (1.1) and (1.2). We also show that the
iterative methods are more effective as § decreases.

The Thompson metric on P(n) is defined by

d(A, B) = max{logM(A/B), logM(B/A)},

where M(A/B) = inf{\ > 0: A < AB} = Apaa(B 2AB~2). From Nussbaum [14]
we obtain that P(n) is a complete metric space with respect to the Thompson metric

and d(A, B) = ||log(A_%BA_%)||. Now we shortly introduce the elegant properties of
the Thompson metric [18]. It is invariant under the matrix inversion and congruence
transformations

d(A,B) =d(A™',B™') = d(M*AM, M*BM) (2.1)

for any n x n nonsingular matrix M. The other useful result is the nonpositive
curvature property of the Thompson metric

d(X",Y") <rd(X,Y), relo,1]. (2.2)
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Positive definite solution of two kinds of nonlinear matrix equations 181

According to (2.1) and (2.2), we have
d(M* X" M, M*Y"M) < |r|d(X,Y), re[-1,1]. (2.3)
We begin with two lemmas.

Lemma 1. [13, Lemma 2.1] For any A, B,C,D € P(n),
d(A+ B,C + D) < max{d(A,C),d(B,D)}.

FEspecially,
d(A+ B,A+C) <d(B,C).

Lemma 2. [12, Theorem 1.1.6] Let ¢ € M(, «). Then the map ¢ has a unique
fized point *(¢) on Q. Moreover, for every xo we have

¥ = lm xz,,
m—0o0
where the sequence {x,,} are determined by the iteration Vo € Q, Tpmy1 = ¢(xm), m =

0,1,2,---, and the error estimation is given by

am

l—«

Oz, x*) < d(z1, o).

Theorem 3. Eq.(1.1) always has a unique positive definite solution X. Moreover,
we have

X = lim Xy,

k—oo

where the matriz sequence { Xy} are determined by the iteration

m
VX0 € P(n), Xpp1=» AIX)Ai, k=0,1,2,--, (2.4)
=1

and the error estimation is given by

R k
d(Xp, X) < T—d(X1, Xo), k=0,1,2,---. (2.5)
Proof. Let
G(X)=>_ A;X%4;, X € P(n). (2.6)
i=1

Observe that the solution of Eq.(1.1) is a fixed point of G. Now we will prove that
G is a contraction map. It is easy to verify that

G : P(n) — P(n).
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For arbitrary X,Y € P(n), by Lemma 1 and (2.3), we have,

d(G(X), G(Y))

d(>T AXX% A ST AXY O Ay)
=1

=1

< maz{d(A; X0 Ay, ATY Ay), (Z Ar X% Ay, Z AXY% A}

< max{d(A*X51A1 ATYOL Ay, ax{d(A*X52A2 A*Y62A2)
(Z Ar X% A; Z AXY% A}

= max{d(A*X51A1 A*Y&Al), d(A5X%2 Ay, A5V 2 Ay),
(Z Ar X% Ay, Z AXY% A}

S ......

< maz{d(ATX0 Ay, A3Y O Ay), d(A5X 92 Ay, A5Y %2 Ay),

JA(AS XOm AL, AX YO AL}
< mazx{|61|d(X,Y),|02|d(X,Y), -, |6m|d(X,Y)}
= §d(X,Y),
where 6 = max{|d;|, i =1,2,--- ,m}.

Since 0 < § < 1, we know that the map G is a strict contraction for the Thompson
metric d(-, -) on P(n) with the contraction constant d, that is to say, G € M (P(n),J).
By Lemma 2, the map G has a unique fixed point X on P(n), which implies that
Eq.(1.1) has a unique solution X on P(n), and for every X € P(n), the iterative
sequence {X;} generated by (2.4) convergence to X, and the error estimation is
given by (2.5). O O

Remark 4. Similar result in Theorem 3 can be also found in Lim [13].

Theorem 5. Eq. (1.2) always has a unique positive definite solution X. Moreover,
we have
X = lim X,

k—oo
where the matriz sequence { Xy} are determined by the iteration

m

VX0 € P(n), Xep1=» (AiXpA)%, k=012, (2.7)
i=1
and the error estimation is given by
d(Xp, X) < _kéd(Xl,Xo), k=0,1,2,---. (2.8)
Proof. Let
F(X) = i(A;‘XAi)‘SZ‘, X € P(n). (2.9)
i=1
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Positive definite solution of two kinds of nonlinear matrix equations 183

Observe that the solution of Eq.(1.2) is a fixed point of F. Now we will prove that
F' is a contraction map. It is easy to verify that

F:P(n)— P(n).

For arbitrary X,Y € P(n), by Lemma 1 and (2.3), we have,

(A7Y A45)%)

NE

(A; X A4;)%,
=1 =1

NE

d(F(X), F(Y)) = d(

< maz{d((A; X A1)%, (A7Y Ap)%),d(D (AF X A%, S (ATY Ay)%)}
i= 1=2
< maz{d((AX A%, (ATY A%, maz{d((A5X A2)%, (A5Y Ag)%2),
d(Y-(AF X A%, Y (ArY Ay}
=3 1=3
= maz{d((A] X A1)%, (A]Y A1)%), d((A3X A2)%2, (A3Y Ag)%2),
d(>-(AF X A%, S (ATY A;)%)}
=3 1=3
§ ......
< maz{d((ATX A%, (ATY A1), d((A5X Ag)%2, (A5Y Ag)%2),
o d((Af X Ap)om (ARY A )om) )
maz{|61|d(X,Y),|0a|d(X,Y), -, [6,u]d(X,Y)}

I IA

5d(X,Y).

Since 0 < § < 1, we know that the map F' is a strict contraction for the Thompson
metric d(-, -) on P(n) with the contraction constant d, that is to say, G € M (P(n),d).
By Lemma 2, the map F has a unique fixed point X on P(n), which implies that
Eq. (2.1) has a unique solution X on P(n), and for every X, € P(n), the iterative
sequence {X}} generated by (2.7) convergence to X, and the error estimation is
given by (2.8). O O

Remark 6. From (2.5) and (2.8) it is easy to see that the convergence rate of
iterative method (2.4) and (2.7) are more rapid as ¢ decreases.

3 Perturbation bounds of Positive definite solution of
Egs. (1.1) and (1.2)

In this section, we discuss the perturbation bound of the unique positive definite
solution of Egs. (1.1) and (1.2) by using the perturbation theorem of contraction
map in Ran-Reurings-Rodman [16]. Consider the perturbed equation

m
)? = ZAJ:)?&“AJZ, 0< ‘(51‘ <1, (3.1)
i=1
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and
m

X =) (AXA)" 0<l6l <1, (3.2)
i=1
where g, are small perturbations of A;.

Lemma 7. [16, Theorem 2.2] Let the map ¢ € M(Q, «). Then for every e > 0 and
for all maps 1p € M (Q, «) satisfying
l-a

sup 6(¢(X), ¢(X)) < min{
XeQ

e, 1},

we have the inequality

6(z* (), z"(9)) <e,
where the symbols x* () and x*(¢) denote the unique fized point of ¥ and ¢ on §2,
respectively.

Theorem 8. Let
a; = d(A X0 Ay, AT X0 A;) = log((A; X0 A) 73 (A X0 A (AL XD A7), i = Tom.

For every e > 0, if
1-90

sup max{ai,ag, -, am}t < min{ g, 1}, (3.3)

XeP(n)

then we have o
d(Xl,X) < g,

where X and )Z'l are the unique positive definite solution of Eq.(1.1) and its perturbed
equation (3.1), respectively.

Proof. From the proof of Theorem 3 it follows that G is a strict contraction map on
P(n) with the contraction constant ¢, that is to say,

G € M(P(n),0).
Now we consider the perturbed equation (3.1). Let
G(X)=> ArX%4; X € P(n).
i=1

Using the similar method in Theorem 3, it is easy to verify that the map G is a strict
contraction with the contraction constant 4, i.e. G € M(P(n),§) and this show that
the perturbed equation (3.17) has a unique positive definite solution X1, i.e.

m
- 3 Te w0 T
X; = Az Xlei-
=1
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We will give an upper bound for d()?l, X ) by making use of the contraction map’s
perturbation Theorem 8.
For arbitrary X € P(n), according to (2.3) and Lemma 1, we have

d(G(X),G(X)) = d(i Z:X%&A;‘X‘%A»

< maz{d(AT X" A}, AT X0 Ay), d(z ArXOi A, Z ArX% A}
< max{d(A*X‘SlAl A*X‘SlAl),max{d(A*X‘s?Ag A*X52A2)
(Z Ar X0 A Z AT X% A}
= max{d(A*X51A1 A*X51A1),d(A*X52A2 A3X%2 Ay),
(Z A*X5 i A Z Ar X% A}
< e
< mar{d(ATX0 Ay, ASXO Ay, d(A5X %2 Ay, A5X 2 Ay),
L d( A% XOm Ay, A% XOm A}
= max{ai, a2, - ,am}.
(3.4)
By (3.9) and (3.4), we have
~ . 1—=90
sup d(G(X),G(X)) < sup mazx{ai,az, - ,am} < min{ g, 1},
XeP(n) XeP(n)
and from Lemma 7 it follows that
d()?l, 5(\') <e. O
O

Theorem 9. Let

— d((AFX A% (AL X AN = [llog((A; X A) 3% (AFX A,)% (Af X A;)~2%)||, i = T,m.

For every e > 0, if

_ 55, 1}, (3.5)

’ ’ ’ i
sup mazx{ay,as, - ,a,,} < min{
XeP(n)

then we have N
d(XQ,Y) <ég,

where X and )N(Q are the unique positive definite solution of Eq. (1.2) and its
perturbed equation (3.2), respectively.
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Proof. From the proof of Theorem 5 it follows that F' is a strict contraction map on
P(n) with the contraction constant ¢, that is to say,

F € M(P(n),?).

Now we consider the perturbed equation (3.2). Let
~ m ~ ~
F(X)=> (A;XA)%, X € P(n).

=1

Using the similar method in Theorem 5, it is easy to verify that the map F is a strict
contraction with the contraction constant 6, i.e. F' € M(P(n),d) and this show that
the perturbed equation (3.2) has a unique positive definite solution Xo, i.e.

m
Xop =) (A;XaA;)™.
i=1
We will give an upper bound for d(jZQ,Y) by making use of the contraction map’s
perturbation Theorem 8. For arbitrary X € P(n), according to (2.3) and Lemma 1,
we have

(A7 X A4:)%)

3

a3 (A X A,
=1 7
maz{d((A; X A)7, (A;X A, d(3 (A X A0, S (AT X AP}
)

d(F(X), F(X))

IN
I

-~ =2 =2
maz{d((ATX A%, (AL X A1), max{d((A5X Ap)%2, (A5X Ag)%2),

A3 (AT X A5, 30 (AT X A%}

IN

=3 =

ma{d((A XA (ATX AN, d((A5X A2), (45X An)),
A3 (AT X A%, 3 (AT X A)%))

1=3 1=3

maz{d((ALX A%, (ATX AP, d((AX o), (A5X Az)*),
c (AL X Ap)m, (A7, X A )m) )
max{a,l? (1/2, T 7alm}'

IN N

(3.6)
By (3.5) and (3.6), we have

-~ / / ’ 1 - 6
sup d(F(X),F (X)) < sup max{aj,aq, - ,a,,} < min{
XeP(n) XeP(n) 3

57 1}7
and from Lemma 7 it follows that
d(Xy,X) <e. O

O]
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4 Numerical Experiments

In this Section, we use the iterative methods (2.4) and (2.7) to compute the unique
positive definite solution of Egs. (1.1) and (1.2), respectively. The positive definite
solutions are computed for different matrices A;, 7 = 1,2,--- ,m and different values
of §; i=1,2,---,m. All programs are written in MATLAB version 7.1.

Example 10. Consider the matriz equation

X = ATX2A; + A X 3 Ay, (4.1)
where
0.3060 0.6894 0.6093 0.9529 0.6450 0.4801
Ay = 0.2514 0.4285 0.7642 |, Ao = | 0.4410 0.1993 0.9823
0.0222 0.0987 0.8519 0.9712 0.0052 0.9200
We use the iterative method (2.4) to solve Eq.(}.1). Let
1 00
Xo=|( 010
0 0 1

After 21 iterations of iterative method (2.4), we get the unique positive definite

solution
1.4739 1.0322 1.7366

X~ X9 =| 10322 1.4710 2.1083 |,
1.7366 2.1083 5.4395

1 _1
and its residual error R(Xa1) = || X — A3 X3 A1 — A3X,,° Aol2 = 3.91 x 10715,

Example 11. Consider the matriz equation

X = (A]X A1) 75 + (A5X Ay)7, (4.2)
where
0.4710 0.0020 0.0400 0.2000 0.2000 0.1000
A = 0.0200 0.4720 —0.0200 |, As= 0.3000 0.1500 0.1500
—0.0400 —0.0010 0.4700 0.1000 0.1000 0.2500

We use the iterative method (2.7) to solve Eq.(4.2). Let

0.2000 0.1000 0
Xo= 0.1000 0.2000 0.1000
0 0.1000 0.2000
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After 40 iterations of the iterative method (2.7), we get the unique positive definite
solution
5.8128 0.7622 0.4909
X~Xyp=| 07622 4.0749 0.4465 |,
0.4909 0.4465 7.8583

and its residual error R(X40) = || X — (A’{XAl)_% - (A;XAQ)%HQ =4.03 x 10715,

The above examples show that the iterative methods (2.4) and (2.7) is feasible
and effective to compute the unique positive definite solution of Egs. (1.1) and (1.2),
respectively.

5 Conclusion

In this paper, we consider the nonlinear matrix equations (1.1) and (1.2). We firstly
use Thompson metric method to obtain that Egs. (1.1) and (1.2) always have a
unique positive definite solution. Iterative methods are proposed to compute the
unique positive definite solution of Eqs. (1.1) and (1.2). We also show that the
iterative methods are more effective as ¢ decreases. Based on the perturbation
theorem of contraction map [16], we derived two perturbation bounds for the unique
positive definite solution of Eqgs. (1.1) and (1.2) in the end.

Acknowledgment. The authors wish to thank Professor Dan Popovici and the
anonymous referee for providing useful suggestions to improve this paper.
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