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FIXED POINT THEOREMS FOR GENERALIZED
WEAKLY CONTRACTIVE MAPPINGS

Ramendra Krishna Bose and Mrinal Kanti Roychowdhury

Abstract. In this paper several fixed point theorems for generalized weakly contractive

mappings in a metric space setting are proved. The set of generalized weakly contractive mappings

considered in this paper contains the family of weakly contractive mappings as a proper subset.

Fixed point theorems for single and multi-valued mappings, approximating scheme for common

fixed point for some mappings, and fixed point theorems for fuzzy mappings are presented. It

extends the work of several authors including Bose and Roychowdhury.

1 Introduction

Weakly contractive mappings in a Hilbert space setting was first introduced by Alber
and Guerre-Delabriere (cf. [1]). Rhoades proved that most of the results in [1] hold
in a Banach space setting, and Bae considered these type of multi-valued mappings
(cf. [6]). Kamran, Zhang and Song, Beg and Abbas, Bose and Roychowdhury
considered some generalized versions of these mappings and proved some fixed point
theorems (cf. [17, 27, 7, 9]). Recently, Dutta and Choudhury have given another
generalization of the weakly contractive mappings (for single-valued mappings) (cf.
[12]). We have considered a family of generalized weakly contractive mappings which
contains the class of mappings considered by Dutta and Choudhury, and also the
class of weakly contractive mappings. We have proved several fixed point theorems
for both single-valued as well as multi-valued mappings of this type which extends
the work of several authors (cf. [12, 5, 7, 24, 9]).

Approximating fixed points of some mappings by an iterative scheme is an area
of active research work. Mann (cf. [19]) introduced a one-step iterative scheme,
Isikawa (cf. [15]) introduced a two-step iterative scheme, and Noor (cf. [21])
introduced a three-step iterative scheme. Bose and Mukherjee (cf. [8]) and others
used Mann iterative scheme to approximate a fixed point of some mappings, and
Ghose and Debnath (cf. [13]) and others considered Ishikawa iterative scheme to
approximate a fixed point of some mappings. In this paper, we considered the
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216 R. K. Bose and M. K. Roychowdhury

(modified) Mann iterative scheme and (modified) Ishikawa iterative scheme which
were first introduced by Rhoades (cf. [24]), and later on by Beg and Abbas (cf.
[7]). Azam and Shakeel (cf. [5]) considered these schemes in slightly modified
form for weakly contractive mappings with respect to f . We have extended their
results to generalized weakly contractive mappings with respect to f and proved
their results under less conditions, i.e., without imposing extra conditions on the
constant sequences in the iterative scheme.

Azam and Beg (cf. [4]) considered weakly contractive fuzzy mappings and
proved a common fixed point theorem for a pair of such fuzzy mappings. Next,
Bose and Roychowdhury considered such fuzzy mappings and its two generalized
versions, and proved some fixed point theorems (cf. [9]). The work in this paper
extends/generalizes the work of Azam and Beg (cf. [4]), and Bose and Roychowdhury
(cf. [9]).

In this paper in Section 2, we give all the basic definitions and lemmas that
are used. In Section 3, we have presented all fixed point theorems for single-valued
and multi-valued mappings and approximating scheme for common fixed point of
some mappings. In Section 4, we have considered some fixed point theorems for
generalized fuzzy weakly contractive mappings.

2 Basic Definitions and Lemmas

In this section first we give the following basic definitions for single and multi-valued
mappings, and then that for the fuzzy mappings. (X, d) always represents a metric
space, H represents the Haudorff distance induced by the metric d, and K(X) the
family of nonempty compact subsets of X. A point x in a metric space (X, d) is
called a fixed point of a multi-valued mapping T : X → 2X if x ∈ T (x). Note that, x
is a fixed point of a multi-valued mapping T if and only if d(x, T (x)) = 0, whenever
T (x) is a closed subset of X.

Definition 1. (generalized weakly contractive single-valued mappings). A mapping
T : X → X is said to be generalized weakly contractive with respect to f : X → X if
for all x, y ∈ X,

ψ(d(T (x), T (y))) ≤ ψ(d(f(x), f(y)))− φ(d(f(x), f(y))),

where ψ, φ : [0,∞) → [0,∞) are both continuous functions such that ψ(t), φ(t) > 0
for t ∈ (0,∞) and ψ(0) = 0 = φ(0). In addition, φ is non-decreasing and ψ is
monotonically increasing (strictly). If f is the identity mapping on X, then the
mapping is said to be generalized weakly contractive.

Remark 2. The class of generalized weakly contractive mappings considered by
Dutta and Choudhury (cf. [12]) used an additional condition which is monotonicity
of φ, which is not required anywhere. If ψ(t) = t for all t ∈ [0,∞), then the mapping
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Fixed point theorems for generalized weakly contractive mappings 217

T : X → X satisfying the above inequality is said to be weakly contractive with
respect to f and if f is the identity mapping, T is said to be weakly contractive.

Definition 3. (generalized weakly contractive multi-valued mappings). A multi-
valued mapping T : X → K(X) is said to be generalized weakly contractive with
respect to f : X → X if for all x, y ∈ X,

ψ(H(T (x), T (y))) ≤ ψ(d(f(x), f(y)))− φ(d(f(x), f(y))),

where ψ, φ : [0,∞) → [0,∞) are both continuous functions such that ψ(t), φ(t) > 0
for t ∈ (0,∞) and ψ(0) = 0 = φ(0). In addition, φ is non-decreasing and ψ
is monotonically increasing (strictly). If f is the identity mapping on X, then
the multi-valued mapping T : X → K(X) is simply said to be generalized weakly
contractive. If ψ(t) = t for all t ∈ [0,∞), then the mapping is said to be weakly
contractive (with respect to f).

Definition 4. Let (X, d) be a metric space and let f and g be self-mappings of X.
The mappings f and g are called R-weakly commuting, provided there exists some
positive real number R such that

d(fgx, gfx) ≤ Rd(fx, gx)

for each x ∈ X. For details see Pant [22].

Note that R-weakly commuting mappings commute at their coincidence points.
Jungck and Rhoades (cf. [16]) then defined a pair of self-mappings to be weakly
compatible if they commute at their coincidence points.

Definition 5. (cf. [26]) Let (X, d) be a metric space and I = [0, 1]. A mapping
W : X × X × I → X is said to be a convex structure on X if for each (x, y, λ) ∈
X ×X × I and u ∈ X,

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y).

A metric space X together with the convex structure W is called a convex metric
space.

Definition 6. Let X be a convex metric space. A nonempty subset C ⊂ X is said to
be convex if W (x, y, λ) ∈ C whenever (x, y, λ) ∈ C ×C × [0, 1]. Takahashi (cf. [26])
has shown that open spheres B(x, r) = {y ∈ X : d(x, y) < r} and closed spheres
B[x, r] = {y ∈ X : d(x, y) ≤ r} are convex. Also if {Cα : α ∈ A} is a family of
convex subsets of X, then

⋂
{Cα : α ∈ A} is convex. All normed spaces and their

convex subsets are convex metric spaces.
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Definition 7. (generalized modified Mann iterative scheme). Let (X, d) be a convex
complete metric space (or Banach space) and let T, f be self-mappings on X such
that for all x, y ∈ X

ψ(d(T (x), T (y))) ≤ ψ(d(f(x), f(y)))− φ(d(f(x), f(y))),

where ψ, φ : [0,∞) → [0,∞) are both continuous functions such that ψ(t), φ(t) > 0
for t ∈ (0,∞) and ψ(0) = 0 = φ(0). In addition, φ is non-decreasing and ψ
is monotonically increasing (strictly). Assume that T (X) ⊂ f(X) and f(X) is a
convex subset of X. Define a sequence {yn} in f(X) as

yn = f(xn+1) = W (T (xn), f(xn), αn) (or (1−αn)f(xn) +αnT (xn)) x0 ∈ X,n ≥ 0,

where 0 ≤ αn ≤ 1 for each n ≥ 0. The sequence {yn} thus obtained is called
generalized modified Mann iterative scheme.

Remark 8. In the above definition if we put ψ(t) = t for all t ∈ [0,∞), then it
reduces to the definition of modified Mann iterative scheme (cf. [7, 5]). If ψ(t) = t
for all t ∈ [0,∞) and f is the identity mapping on X, then the reduced definition is
called Mann iterative scheme (cf. [24]).

Definition 9. (generalized modified Ishikawa iterative scheme). Let (X, d) be a
convex complete metric space (or Banach space) and let T, f be self-mappings on X
such that for all x, y ∈ X

ψ(d(T (x), T (y))) ≤ ψ(d(f(x), f(y)))− φ(d(f(x), f(y))),

where ψ, φ : [0,∞) → [0,∞) are both continuous functions such that ψ(t), φ(t) > 0
for t ∈ (0,∞) and ψ(0) = 0 = φ(0). In addition, φ is non-decreasing and ψ
is monotonically increasing (strictly). Assume that T (X) ⊂ f(X) and f(X) is a
convex subset of X. Suppose two sequences {yn} and {zn} in f(X) are defined as

zn = f(xn+1) = W (T (vn), f(xn), αn) (or (1− αn)f(xn) + αnT (vn))
yn = f(vn) = W (T (xn), f(xn), βn) (or (1− βn)f(xn) + βnT (xn)),

where x0 ∈ X and 0 ≤ αn, βn ≤ 1 for each n ≥ 0. Then the sequence {zn} thus
obtained is called generalized modified Ishikawa iterative scheme.

Remark 10. In the above definition if we put ψ(t) = t for all t ∈ [0,∞), then the
reduced definition we call as modified Ishikawa iterative scheme. If ψ(t) = t for all
t ∈ [0,∞) and f is the identity mapping on X, then the reduced definition is called
Ishikawa iterative scheme (cf. [24]).

Lemma 11. (cf. [20]) Let A and B be nonempty compact subsets of a metric space
(X, d). If a ∈ A, then there exists b ∈ B such that d(a, b) ≤ H(A,B).
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Fixed point theorems for generalized weakly contractive mappings 219

A real linear space X with a metric d is called a metric linear space if d(x+z, y+
z) = d(x, y) and αn → α, xn → x =⇒ αnxn → αx. Let (X, d) be a metric linear
space. A fuzzy set A in a metric linear space X is a function from X into [0, 1]. If
x ∈ X, the function value A(x) is called the grade of membership of x in A. The
α-level set of A, denoted by Aα, is defined by

Aα = {x : A(x) ≥ α} if α ∈ (0, 1],

A0 = {x : A(x) > 0}.

Here B̄ denotes the closure of the (non-fuzzy) set B.

Definition 12. A fuzzy set A is said to be an approximate quantity if and only if
Aα is compact and convex in X for each α ∈ [0, 1] and supx∈X A(x) = 1.

When A is an approximate quantity and A(x0) = 1 for some x0 ∈ X, A
is identified with an approximation of x0. For x ∈ X, let {x} ∈ W (X) with
membership function equal to the characteristic function χx of the set {x}.

Let F(X) be the collection of all fuzzy sets in X and W (X) be a sub-collection
of all approximate quantities.

Definition 13. Let A,B ∈W (X), α ∈ [0, 1]. Then we define

pα(A,B) = inf
x∈Aα, y∈Bα

d(x, y),

p(A,B) = sup
α
pα(A,B),

Dα(A,B) = H(Aα, Bα),
D(A,B) = sup

α
Dα(A,B).

where H is the Hausdorff distance induced by the metric d.

The function Dα(A,B) is called an α-distance between A,B ∈ W (X), and D
a metric on W (X). We note that pα is a non-decreasing function of α and thus
p(A,B) = p1(A,B). In particular if A = {x}, then p({x}, B) = p1(x,B) = d(x,B1).
Next we define an order on the family W (X), which characterizes the accuracy of a
given quantity.

Definition 14. Let A,B ∈ W (X). Then A is said to be more accurate than B,
denoted by A ⊂ B (or B includes A), if and only if A(x) ≤ B(x) for each x ∈ X.

The relation ⊂ induces a partial order on the family W (X).

Definition 15. Let X be an arbitrary set and Y be any metric linear space. F is
called a fuzzy mapping if and only if F is a mapping from the set X into W (Y ).
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Definition 16. For F : X → W (X), we say that u ∈ X is a fixed point of F if
{u} ⊂ F (u), i.e. if u ∈ F (u)1.

Lemma 17. (cf. [14]) Let x ∈ X and A ∈ W (X). Then {x} ⊂ A if and only if
pα(x,A) = 0 for each α ∈ [0, 1].

Remark 18. Note that from the above lemma it follows that for A ∈W (X), {x} ⊂
A if and only if p({x}, A) = 0. If no confusion arises instead of p({x}, A) we will
write p(x,A).

Lemma 19. (cf. [14]) pα(x,A) ≤ d(x, y) + pα(y,A) for each x, y ∈ X.

Lemma 20. (cf. [14]) If {x0} ⊂ A, then pα(x0, B) ≤ Dα(A,B) for each B ∈W (X).

Lemma 21. (cf. [18]) Let (X, d) be a complete metric linear space, F : X →W (X)
be a fuzzy mapping and x0 ∈ X. Then there exists x1 ∈ X such that {x1} ⊂ F (x0).

Remark 22. Let f : X → X be a self map and T : X →W (X) be a fuzzy mapping
such that ∪{T (X)}α ⊆ f(X) for α ∈ [0, 1]. Then from Lemma 21, it follows that
for any chosen point x0 ∈ X there exist points x1, y1 ∈ X such that y1 = f(x1) and
{y1} ⊂ T (x0). Here T (x)α = {y ∈ X : T (x)(y) ≥ α}.
Definition 23. (generalized weakly contractive fuzzy mappings). A fuzzy mappings
T : X →W (X) is said to be generalized weakly contractive with respect to f : X → X
if for all x, y ∈ X,

ψ(D(T (x), T (y))) ≤ ψ(d(f(x), f(y)))− φ(d(f(x), f(y))),

where ψ, φ : [0,∞) → [0,∞) are both continuous functions such that ψ(t), φ(t) > 0
for t ∈ (0,∞) and ψ(0) = 0 = φ(0). In addition, φ is non-decreasing and ψ is
monotonically increasing (strictly). If f is the identity mapping on X, then the
fuzzy mapping T : X → W (X) is simply said to be generalized weakly contractive.
If ψ(t) = t for all t ∈ [0,∞), then the mapping is said to be weakly contractive (with
respect to f).

3 Fixed point theorems for single and multi-valued mappings

In this section we prove the following main theorems of this paper concerning single
and multi-valued mappings.

Theorem 24. Let (X, d) be a complete metric space and let T, S : X → X be
self-mappings such that for all x, y ∈ X

ψ(d(T (x), S(y))) ≤ ψ(d(x, y))− φ(d(x, y)), (3.1)

where ψ, φ : [0,∞) → [0,∞) are both continuous functions such that ψ(t), φ(t) > 0
for t ∈ (0,∞) and ψ(0) = 0 = φ(0). In addition, φ is non-decreasing and ψ is
monotonically increasing (strictly). Then there exists a unique point u ∈ X such
that u = T (u) = S(u).
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Proof. Let x0 ∈ X, we construct a sequence {xk} in X by taking x2k+1 = T (x2k)
and x2k+2 = S(x2k+1) for all k ≥ 0. Hence by (3.1) we have,

ψ(d(x2k+1, x2k+2)) = ψ(d(T (x2k), S(x2k+1)))
≤ ψ(d(x2k, x2k+1))− φ(d(x2k, x2k+1)) (3.2)
≤ ψ(d(x2k, x2k+1)).

Again by (3.1) we have,

ψ(d(x2k+2, x2k+3)) = ψ(d(S(x2k+1), T (x2k+2)))
= ψ(d(T (x2k+2), S(x2k+1)))
≤ ψ(d(x2k+2, x2k+1))− φ(d(x2k+2, x2k+1)) (3.3)
≤ ψ(d(x2k+2, x2k+1))
= ψ(d(x2k+1, x2k+2)).

Thus for n ≥ 0 we have, ψ(d(xn+1, xn+2)) ≤ ψ(d(xn, xn+1)). As ψ is monotonically
increasing, from this inequality we have d(xn+1, xn+2) ≤ d(xn, xn+1), which implies
that {d(xn, xn+1)} is a non-increasing sequence of positive real numbers and therefore
tends to a limit ` ≥ 0. If possible, let ` > 0. By (3.2) and (3.3) for any n ≥ 0 we
have,

ψ(d(xn+1, xn+2)) ≤ ψ(d(xn, xn+1))− φ(d(xn, xn+1)).

Taking n→∞ and using the continuity of ψ and φ, we obtain

ψ(`) ≤ ψ(`)− φ(`) =⇒ φ(`) ≤ 0,

which is a contradiction as ` > 0, and φ(t) > 0 for t > 0. Therefore, d(xn, xn+1)→ 0
as n → ∞. Now proceeding in the same way as in Theorem 3.4 in [9], it can be
shown that the sequence {xn} is a Cauchy sequence. From the completeness of
X, it follows that there exists u ∈ X such that xn → u as n → ∞. Moreover,
x2n → u and x2n+1 → u as n→∞. Now we show that u = T (u) = S(u). We know
x2n+1 = T (x2n) and x2n+2 = S(x2n+1). Note that,

ψ(d(x2n+1, S(u))) = ψ(d(T (x2n), S(u))) ≤ ψ(d(x2n, u))− φ(d(x2n, u)).

Letting n→∞ and using the continuity of both ψ and φ we have, ψ(d(u, S(u))) ≤
ψ(0)− φ(0) = 0 =⇒ ψ(d(u, S(u))) ≤ 0. Now using the fact ψ(t) > 0 for t > 0 and
ψ(0) = 0 we have, ψ(d(u, S(u))) = 0 =⇒ d(u, S(u))) = 0 =⇒ u = S(u). Similarly
we can show u = T (u). Thus, we have u = T (u) = S(u).

If there exists another point v ∈ X such that v = T (v) = S(v), then we have
ψ(d(u, v)) = ψ(d(T (u), S(v))) ≤ ψ(d(u, v)) − φ(d(u, v)) =⇒ φ(d(u, v)) ≤ 0, and
hence u = v. Thus, the proof is complete.
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Corollary 25. If we take T = S, then we have Theorem 2.1 of Dutta and Choudhury
(cf. [12]).

Corollary 26. If we take ψ(t) = t for all t ∈ [0,∞), then Theorem 24 reduces to
usual weak contraction theorem (cf. [24, Theorem 1]).

Theorem 27. Let (X, d) be a complete metric space and T, S : X → K(X) be two
mappings such that for all x, y ∈ X

ψ(H(Tx, Sy)) ≤ ψ(d(x, y))− φ(d(x, y)), (3.4)

where ψ, φ : [0,∞) → [0,∞) are both continuous functions such that ψ(t), φ(t) > 0
for t ∈ (0,∞) and ψ(0) = 0 = φ(0). In addition, φ is non-decreasing and ψ is
monotonically increasing (strictly). Then T and S have a common fixed point.

Proof. Let {xk} be a sequence in X such that x2k+1 ∈ T (x2k) and x2k+2 ∈ S(x2k+1)
for all k ≥ 0, and d(x2k+1, x2k+2) ≤ H(T (x2k), S(x2k+1)) (by Lemma 11). Hence,

ψ(d(x2k+1, x2k+2)) ≤ ψ(H(T (x2k), S(x2k+1)))
≤ ψ(d(x2k, x2k+1))− φ(d(x2k, x2k+1))
≤ ψ(d(x2k, x2k+1)).

Similarly we can show that

ψ(d(x2k+2, x2k+3)) ≤ ψ(d(x2k+1, x2k+2))− φ(d(x2k+1, x2k+2)) ≤ ψ(d(x2k+1, x2k+2)).

Thus for n ≥ 0 we have ψ(d(xn+1, xn+2)) ≤ ψ(d(xn, xn+1)). As ψ is monotonically
increasing, from this inequality it follows that for n ≥ 0, d(xn+1, xn+2) ≤ d(xn, xn+1),
which shows that {d(xn, xn+1)} is a non-increasing sequence of positive real numbers.
Now proceeding in the same way as in Theorem 3.4 in [9], it can be shown that the
sequence {xn} is a Cauchy sequence in X. Hence from the completeness of X it
follows that xn → u for some u ∈ X. Moreover, x2n → u and x2n+1 → u as
n → ∞. Now we show that u ∈ T (u) and u ∈ S(u). We know x2n+1 ∈ T (x2n) and
x2n+2 ∈ S(x2n+1). Note that,

ψ(d(x2n+1, S(u))) ≤ ψ(d(T (x2n), S(u))) ≤ ψ(d(x2n, u))− φ(d(x2n, u)).

Letting n→∞ and using the continuity of both ψ and φ we have, ψ(d(u, S(u))) ≤
ψ(0)− φ(0) = 0 =⇒ ψ(d(u, S(u))) ≤ 0. Now using the fact ψ(t) > 0 for t > 0 and
ψ(0) = 0 we have, ψ(d(u, S(u))) = 0 =⇒ d(u, S(u))) = 0 =⇒ u ∈ S(u). Similarly,
we can show u ∈ T (u), i.e., T and S have a common fixed point.

Corollary 28. If T = S, then T has a fixed point.
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Theorem 29. Let (X, d) be a metric space and T, S, f be self-mappings on X such
that for all x, y ∈ X,

ψ(d(T (x), S(y))) ≤ ψ(d(f(x), f(y)))− φ(d(f(x), f(y)),

where ψ, φ : [0,∞) → [0,∞) are both continuous functions such that ψ(t), φ(t) > 0
for t ∈ (0,∞) and ψ(0) = 0 = φ(0). In addition, φ is non-decreasing and ψ is
monotonically increasing (strictly). If T (X)∪S(X) ⊂ f(X) and f(X) is a complete
subspace of X, then there exists a point p ∈ X such that f(p) = T (p) = S(p) (the
point p is unique if f is one-to-one).

Proof. Let x0 be a point in X. Choose a point x1 ∈ X such that f(x1) = T (x0). This
can be done since T (X) ⊂ f(X). Similarly, choose x2 ∈ X such that f(x2) = S(x1).
In general, having chosen xk ∈ X, we obtain xk+1 ∈ X such that f(x2k+1) = T (x2k)
and f(x2k+2) = S(x2k+1) for any integer k ≥ 0. Hence, by the given hypothesis

ψ(d(f(x2k+1), f(x2k+2))) = ψ(d(T (x2k), S(x2k+1)))
≤ ψ(d(f(x2k), f(x2k+1)))− φ(d(f(x2k), f(x2k+1))) (3.5)
≤ ψ(d(f(x2k), f(x2k+1))),

and similarly,

ψ(d(f(x2k+2), f(x2k+3))) = ψ(d(S(x2k+1), T (x2k+2))) ≤ ψ(d(f(x2k+1), f(x2k+2))).
(3.6)

As ψ is monotonically increasing, from (3.5) and (3.6) it follows {d(f(xn), f(xn+1))}
is a non-increasing sequence of positive real numbers and therefore, tends to a limit
` ≥ 0. By (3.5) and (3.6),

ψ(d(f(xn+1), f(xn+2))) ≤ ψ(d(f(xn), f(xn+1)))−φ(d(f(xn), f(xn+1))) for all n ≥ 0.

Taking n→∞ and using the continuity of ψ and φ, we obtain

ψ(`) ≤ ψ(`)− φ(`) =⇒ φ(`) ≤ 0,

which is a contradiction as ` > 0, and φ(t) > 0 for t > 0. Therefore ` = 0, i.e.,
limn→∞ d(f(xn), f(xn+1)) = 0. Now proceeding in the same way as in Theorem 3.4
in [9], it can be shown that the sequence {f(xn)} is a Cauchy sequence in f(X). As
f(X) is a complete subspace of X, {f(xn)} has a limit q in f(X). Consequently, we
obtain a point p in X such that f(p) = q. Thus, f(x2k+1) → q and f(x2k) → q as
k →∞. Now by the given hypothesis,

ψ(d(f(x2k+1), S(p))) ≤ ψ(d(f(x2k), f(p)))− φ(d(f(x2k), f(p))).

******************************************************************************
Surveys in Mathematics and its Applications 4 (2009), 215 – 238

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v04/v04.html
http://www.utgjiu.ro/math/sma


224 R. K. Bose and M. K. Roychowdhury

Letting n→∞ and using the continuity of both ψ and φ we have, ψ(d(q, S(p))) ≤
ψ(d(q, f(p))) − φ(d(q, f(p))) = ψ(0) − φ(0) = 0 =⇒ ψ(d(q, S(p))) ≤ 0. Now
using the fact ψ(t) > 0 for t > 0 and ψ(0) = 0 we have, ψ(d(q, S(p))) = 0 =⇒
d(q, S(p)) = 0 =⇒ q = S(p). Similarly, we can show q = T (p). Thus, we have
q = f(p) = T (p) = S(p) for a point p ∈ X. Clearly the point p is unique if f is
one-to-one.

Remark 30. The above theorem extends Theorem 2.1 of Beg and Abbas (cf. [7]),
and Theorem 2.3 of Azam and Shakeel (cf. [5])

Theorem 31. In the above theorem Theorem 29, if further we have the pairs (f, T )
and (f, S) are weakly compatible (or R-weakly commuting) (see Definition 4), then
f, T and S have a common fixed point (and the point is unique if f is one-to-one).

Proof. Note thatR-weakly commuting mappings commute at their coincidence point.
We have q = f(p) = T (p) = S(p) and this implies that f(T (p)) = T (f(p)) and
f(S(p)) = S(f(p)). Also we have T (q) = f(q) = S(q). We claim that f(q) = q. We
have,

ψ(f(q), q) = ψ(T (q), S(p)) ≤ ψ(d(f(q), f(p)))− φ(d(f(q), f(p)))
=⇒ φ(d(f(q), f(p))) ≤ 0 =⇒ φ(d(f(q), f(p))) = 0
=⇒ d(f(q), f(p)) = 0 =⇒ f(q) = f(p) = q,

which implies q is a fixed point of f , and then from f(T (p)) = T (f(p)) and f(S(p)) =
S(f(p)) we have q is also a fixed point of both T and S. Hence, f, T and S have a
common fixed point. Clearly the point is unique if f is one-to-one.

Corollary 32. In the above theorem if T = S, then we have that f and T have a
common (unique if f is one-to-one) fixed point in X.

Remark 33. The above theorem extends Theorem 2.5 of Beg and Abbas (cf. [7]),
and Theorem 2.5 of Azam and Shakeel (cf. [5]).

Proceeding in the same way as Theorem 29 (taking the sequence {xn} such that
xn+1 = Tn+1(xn) for n = 0, 1, 2, · · · ), the following theorem can also be proved.

Theorem 34. Let (X, d) be a metric space and {Ti}∞i=1 be a sequence of self-
mappings on X such that for all x, y ∈ X,

ψ(d(Ti(x), Tj(y))) ≤ ψ(d(f(x), f(y)))− φ(d(f(x), f(y)) for all i, j ≥ 1,

where ψ, φ : [0,∞) → [0,∞) are both continuous functions such that ψ(t), φ(t) > 0
for t ∈ (0,∞) and ψ(0) = 0 = φ(0). In addition, φ is non-decreasing and ψ
is monotonically increasing (strictly). If Ti(X) ⊂ f(X) for all i and f(X) is a
complete subspace of X, then there exists a point p ∈ X such that f(p) = Ti(p) for
all i ≥ 1 (the point p is unique if f is one-to-one).
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Theorem 35. Let (X, d) be a convex metric space and let T, f be self-mappings on
X such that for all x, y ∈ X

ψ(d(T (x), T (y))) ≤ ψ(d(f(x), f(y)))− φ(d(f(x), f(y))),

where ψ, φ : [0,∞) → [0,∞) are both continuous functions such that ψ(t), φ(t) > 0
for t ∈ (0,∞) and ψ(0) = 0 = φ(0). In addition, φ is non-decreasing, and ψ
is both monotonically increasing (strictly) and convex. If the pair (f, T ) is weakly
compatible (or R-weakly commuting) and T (X) ⊂ f(X) and f(X) is a convex and
complete subspace of X, then the generalized modified Mann iterative scheme (see
Definition 7) converges to a common fixed point of f and T .

Proof. By Corollary 32, we obtain a common fixed point q of f and T . Now consider

ψ(d(yn, q) = ψ(d(f(xn+1), f(p))) = ψ(d(W (T (xn), f(xn), αn), f(p)))
≤ ψ((1− αn)d(f(xn), f(p)) + αnd(T (xn), f(p)))
≤ (1− αn)ψ(d(f(xn), f(p))) + αnψ(d(T (xn), f(p)))
≤ (1− αn)ψ(d(f(xn), f(p))) + αn(ψ(d(f(xn), f(p)))− φ(d(f(xn), f(p)))
≤ ψ(d(f(xn), f(p)))− φ(d(f(xn), f(p))) (3.7)
= ψ(d(yn−1, q)).

As ψ is monotonically increasing from the above inequality it follows that d(yn, q) ≤
d(yn−1, q), i.e., {d(yn, q)} is a non-increasing sequence of positive real numbers, which
gives limn→∞ d(yn, q) = ` ≥ 0. Now if ` > 0, then from (3.7) as both ψ and φ are
continuous, taking n → ∞ we have, limn→∞ ψ(d(yn, q)) ≤ limn→∞ ψ(d(yn−1, q)) −
φ(d(yn−1, q)) =⇒ ψ(`) ≤ ψ(`) − φ(`) =⇒ φ(`) ≤ 0, which is a contradiction as
` > 0 and φ(t) > 0 for t > 0. Therefore, ` = 0. Hence, the generalized modified
Mann iterative scheme converges to a common fixed point of f and T .

Corollary 36. If we take ψ(t) = t for all t ∈ [0,∞), then the modified Mann
iterative scheme converges to a common fixed point of f and T , which is the work
of Azam and Shakeel (cf. [5, Theorem 2.7]) without the condition

∑
αn =∞.

Remark 37. With reference to Theorem 31 (when f is one-to-one), one can show
that the generalized modified Mann iterative scheme (either for the mapping T or
for the mapping S) converges to a unique common fixed point of f , T and S.

Theorem 38. Let (X, d) be a normed linear space and let T, f be self-mappings on
X such that for all x, y ∈ X

ψ(d(T (x), T (y))) ≤ ψ(d(f(x), f(y)))− φ(d(f(x), f(y))),

where ψ, φ : [0,∞) → [0,∞) are both continuous functions such that ψ(t), φ(t) > 0
for t ∈ (0,∞) and ψ(0) = 0 = φ(0). In addition, φ is non-decreasing, and ψ is both
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monotonically increasing (strictly) and convex. If the pair (f, T ) is weakly compatible
(or R-weakly commuting) and T (X) ⊂ f(X) and f(X) is a complete subspace of X,
then the generalized modified Mann iterative scheme (see Definition 7) converges to
a common fixed point of f and T .

Proof. By Corollary 32, we obtain a common fixed point q of f and T . Writing
d(yn, q) = ||yn − q|| and yn = (1− αn)f(xn) + αnT (xn), and then proceeding in the
same way as in Theorem 35 we can show that limn→∞ ||yn − q|| = 0, that is, the
generalized modified Mann iterative scheme converges to a common fixed point of
f and T .

Corollary 39. If we take ψ(t) = t for all t ∈ [0,∞), then the modified Mann
iterative scheme converges to a common fixed point of f and T , which is the work
of Beg and Abbas (cf. [7, Theorem 2.6]) without the condition

∑
αn =∞.

Corollary 40. If we take ψ(t) = t for all t ∈ [0,∞) and f is the identity mapping on
X, then it reduces to the work of Rhoades (cf. [24]) without the condition

∑
αn =∞.

Remark 41. Rhoades, Beg and Abbas, Azam and Shakeel in their proofs used an
extra condition

∑
αn =∞ on the sequence {αn}, which we do not need in our proof.

We can also prove the following two theorems.

Theorem 42. Let (X, d) be a convex metric space and let T, f be self-mappings on
X such that for all x, y ∈ X

ψ(d(T (x), T (y))) ≤ ψ(d(f(x), f(y)))− φ(d(f(x), f(y))),

where ψ, φ : [0,∞) → [0,∞) are both continuous functions such that ψ(t), φ(t) > 0
for t ∈ (0,∞) and ψ(0) = 0 = φ(0). In addition, φ is non-decreasing, and ψ
is both monotonically increasing (strictly) and convex. If the pair (f, T ) is weakly
compatible (or R-weakly commuting) and T (X) ⊂ f(X) and f(X) is a convex and
complete subspace of X, then the generalized modified Ishikawa iterative scheme (see
Definition 9) converges to a common fixed point of f and T .

Corollary 43. If we take ψ(t) = t for all t ∈ [0,∞), then the modified Ishikawa
iterative scheme converges to a common fixed point of f and T , which is the work
of Azam and Shakeel (cf. [5, Theorem 2.8]) without the condition

∑
αnβn =∞.

Theorem 44. Let (X, d) be a normed linear space and let T, f be self-mappings on
X such that for all x, y ∈ X

ψ(d(T (x), T (y))) ≤ ψ(d(f(x), f(y)))− φ(d(f(x), f(y))),

where ψ, φ : [0,∞) → [0,∞) are both continuous functions such that ψ(t), φ(t) > 0
for t ∈ (0,∞) and ψ(0) = 0 = φ(0). In addition, φ is non-decreasing, and ψ is both
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monotonically increasing (strictly) and convex. If the pair (f, T ) is weakly compatible
(or R-weakly commuting) and T (X) ⊂ f(X) and f(X) is a complete subspace of X,
then the generalized modified Ishikawa iterative scheme (see Definition 9) converges
to a common fixed point of f and T .

Corollary 45. If we take ψ(t) = t for all t ∈ [0,∞), then the modified Ishikawa
iterative scheme converges to a common fixed point of f and T , which is the work
of Beg and Abbas (cf. [7, Theorem 2.7]) without the condition

∑
αnβn =∞ on the

sequence {αn}.

Corollary 46. If we take ψ(t) = t for all t ∈ [0,∞) and f is the identity mapping on
X, then it reduces to the work of Rhoades (cf. [24]) without the condition

∑
αnβn =

∞.

Remark 47. Rhoades, Beg and Abbas, Azam and Shakeel in their proofs used an
extra condition

∑
αnβn =∞, which we do not need in our proof.

Theorem 48. Let (X, d) be a metric space, f : X → X be a self-mapping and
T, S : X → K(X) be multi-valued mappings such that for all x, y ∈ X,

ψ(H(T (x), S(y))) ≤ ψ(d(f(x), f(y)))− φ(d(f(x), f(y)),

where ψ, φ : [0,∞) → [0,∞) are both continuous functions such that ψ(t), φ(t) > 0
for t ∈ (0,∞) and ψ(0) = 0 = φ(0). In addition, φ is non-decreasing and ψ
is monotonically increasing (strictly). If ∪x∈XT (x) ⊂ f(X), ∪x∈XS(x) ⊂ f(X)
and f(X) is a complete subspace of X, then there exists a point p ∈ X such that
f(p) ∈ T (p) and f(p) ∈ S(p).

Proof. Let x0 be a point in X. Choose a point x1 ∈ X such that f(x1) ∈ T (x0). This
can be done since ∪x∈XT (x) ⊂ f(X). Similarly, choose x2 ∈ X such that f(x2) ∈
S(x1) and such that d(f(x1), f(x2)) ≤ H(T (x0), S(x1)). In general, having chosen
xk ∈ X, we obtain xk+1 ∈ X such that f(x2k+1) ∈ T (x2k), f(x2k+2) ∈ S(x2k+1),
and such that d(f(x2k+1), f(x2k+2)) ≤ H(T (x2k), S(x2k+1)) for any integer k ≥ 0
(by Lemma 11). Hence, by the given hypothesis

ψ(d(f(x2k+1), f(x2k+2))) ≤ ψ(H(T (x2k), S(x2k+1)))
≤ ψ(d(f(x2k), f(x2k+1)))− φ(d(f(x2k), f(x2k+1))) (3.8)
≤ ψ(d(f(x2k), f(x2k+1))),

and similarly,

ψ(d(f(x2k+2), f(x2k+3))) ≤ ψ(H(S(x2k+1), T (x2k+2))) ≤ ψ(d(f(x2k+1), f(x2k+2))),
(3.9)
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which show that {d(f(xn), f(xn+1))} is a non-increasing sequence of positive real
numbers and therefore, tends to a limit ` ≥ 0. By (3.8) and (3.9),

ψ(d(f(xn+1), f(xn+2))) ≤ ψ(d(f(xn), f(xn+1)))−φ(d(f(xn), f(xn+1))) for all n ≥ 0.

Taking n→∞ and using the continuity of ψ and φ, we obtain

ψ(`) ≤ ψ(`)− φ(`) =⇒ φ(`) ≤ 0,

which is a contradiction as ` > 0, and φ(t) > 0 for t > 0. Therefore ` = 0, i.e.,
limn→∞ d(f(xn), f(xn+1)) = 0. Now proceeding in the same way as in Theorem 3.4
in [9], it can be shown that the sequence {f(xn)} is a Cauchy sequence in f(X). As
f(X) is a complete subspace of X, {f(xn)} has a limit q in f(X). Consequently, we
obtain p in X such that f(p) = q. Thus, f(x2k+1) → q and f(x2k) → q as k → ∞.
Now by the given hypothesis,

ψ(d(f(x2k+1), S(p))) ≤ ψ(d(f(x2k), f(p)))− φ(d(f(x2k), f(p))).

Letting n→∞ and using the continuity of both ψ and φ we have, ψ(d(q, S(p))) ≤
ψ(d(q, f(p))) − φ(d(q, f(p))) = ψ(0) − φ(0) = 0 =⇒ ψ(d(q, S(p))) ≤ 0. Now
using the fact ψ(t) > 0 for t > 0 and ψ(0) = 0 we have, ψ(d(q, S(p))) = 0 =⇒
d(q, S(p)) = 0 =⇒ q ∈ S(p). Similarly, we can show q ∈ T (p) and hence is the
theorem.

Remark 49. If we take ψ(t) = t for all t ∈ [0,∞), then the above theorem reduces
to Theorem 3.7 of Bose and Roychowdhury (cf. [9]).

Proceeding in the same way as Theorem 48 (taking the sequence {xn} such that
xn+1 ∈ Tn+1(xn) for n ∈ Z+), the following theorem can also be proved.

Theorem 50. Let (X, d) be a metric space, f : X → X be a self-mapping and
{Ti : X → K(X)}i∈Z+ be a sequence of multi-valued mappings such that for all
x, y ∈ X,

ψ(H(Ti(x), Tj(y))) ≤ ψ(d(f(x), f(y)))− φ(d(f(x), f(y)) for all i, j ≥ 1,

where ψ, φ : [0,∞) → [0,∞) are both continuous functions such that ψ(t), φ(t) > 0
for t ∈ (0,∞) and ψ(0) = 0 = φ(0). In addition, φ is non-decreasing and ψ is
monotonically increasing (strictly). If ∪x∈XTi(x) ⊂ f(X) for all i and f(X) is a
complete subspace of X, then there exists a point p ∈ X such that f(p) ∈ Ti(p) for
all i.

Theorem 51. Let (X, d) be a complete metric space and T, S : X → K(X) be two
mappings such that for all x, y ∈ X

ψ(H(Tx, Sy)) ≤ ψ(M(x, y))− φ(M(x, y)), (3.10)
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where

M(x, y) = max{d(x, y), d(T (x), x), d(S(y), y),
1
2

[d(y, T (x)) + d(x, S(y))]},

and ψ, φ : [0,∞) → [0,∞) are both continuous functions such that ψ(t), φ(t) > 0
for t ∈ (0,∞) and ψ(0) = 0 = φ(0). In addition, φ is non-decreasing and ψ is
monotonically increasing (strictly). Then there there exists a point u ∈ X such that
u ∈ T (u) and u ∈ S(u).

Proof. Clearly M(x, y) = 0 if and only if x = y is a common fixed point of T and
S. Let {xk} be a sequence in X such that x2k+1 ∈ T (x2k) and x2k ∈ S(x2k+1) for
all k ≥ 0, and d(x2k+1, x2k) ≤ H(T (x2k), S(x2k+1)). Hence as ψ is monotonically
increasing we have,

ψ(d(x2k+1, x2k+2)) ≤ ψ(H(T (x2k), S(x2k+1)))
≤ ψ(M(x2k, x2k+1))− φ(M(x2k, x2k+1))
≤ ψ(M(x2k, x2k+1))
≤ ψ(d(x2k, x2k+1)) [as M(x2k, x2k+1) ≤ d(x2k, x2k+1)]

=⇒ d(x2k+1, x2k+2) ≤M(x2k, x2k+1) ≤ d(x2k, x2k+1).

Similarly we have, d(x2k+2, x2k+3) ≤ M(x2k+1, x2k+2) ≤ d(x2k+1, x2k+2). Thus for
n ≥ 0 we have d(xn+1, xn+2) ≤ d(xn, xn+1), which shows that {d(xn, xn+1)} is a
non-increasing sequence of positive real numbers. Now proceeding in the same way
as in the previous theorem, and in Theorem 3.4 in [9], it can be shown that {xn} is
Cauchy sequence in X. Hence from the completeness of X it follows that xn → u
for some u ∈ X. Now we show that u ∈ T (u) and u ∈ S(u). We have,

d(S(u), u) ≤M(x2k, u) = max{d(x2k, u), d(T (x2k), x2k), d(S(u), u),
1
2

[d(u, T (x2k)) + d(x2k, S(u))]}

≤ max{d(x2k, u), d(x2k+1, x2k) + d(T (x2k), x2k+1), d(S(u), u),
1
2

[d(u, x2k+1) + d(x2k+1, T (x2k)) + d(x2k, u) + d(u, S(u))]}

= max{d(x2k, u), d(x2k+1, x2k), d(S(u), u),
1
2

[d(u, x2k+1) + d(x2k, u) + d(u, S(u))]}.

and hence, taking k →∞ we have

d(u, S(u)) ≤M(x2k, u) ≤ max{0, 0, d(S(u), u),
1
2

[0 + 0 + d(u, S(u))]} = d(S(u), u),

and so limk→∞M(x2k, u) = d(S(u), u). We have,

d(u, S(u)) ≤ d(u, x2k+1) + d(x2k+1, S(u)) ≤ d(u, x2k+1) +H(T (x2k), S(u)).
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As limk→∞ d(u, x2k+1) = 0, ψ is monotonically increasing and both ψ and φ are
continuous, we have by the given hypothesis (3.10),

ψ(d(u, S(u))) ≤ 0 + lim
k→∞

ψ(H(T (x2k), S(u)))

≤ lim
k→∞

ψ(M(x2k, u))− lim
k→∞

φ(M(x2k, u))

= ψ(d(u, S(u)))− φ(d(u, S(u))),

which implies φ(d(u, S(u))) ≤ 0, i.e. φ(d(u, S(u))) = 0 =⇒ d(u, S(u)) = 0 =⇒
u ∈ S(u). Similarly, we can show u ∈ T (u).

Remark 52. If we take ψ(t) = t for all t ∈ [0,∞), then the above theorem reduces
to Theorem 3.4 of Bose and Roychowdhury (cf. [9]).

Using the techniques used in Theorem 48 and Theorem 51 of this paper, and
Theorem 3.6 in [9] we can also prove the following theorem.

Theorem 53. Let K be a nonempty closed subset of a complete and convex metric
space (X, d) and T : K → K(X) be a mapping such that for all x, y ∈ K

ψ(H(Tx, Ty)) ≤ ψ(M(x, y))− φ(M(x, y)),

where

M(x, y) = max{d(x, y), d(T (x), x), d(T (y), y),
1
2

[d(y, T (x)) + d(x, T (y))]},

and ψ, φ : [0,∞) → [0,∞) are both continuous functions such that ψ(t), φ(t) > 0
for t ∈ (0,∞) and ψ(0) = 0 = φ(0). In addition, φ is non-decreasing and ψ is
monotonically increasing (strictly). Suppose that T (x) ⊂ K for each x ∈ ∂K (the
boundary of K). Then there there exists a point u ∈ K such that u ∈ T (u).

Remark 54. If we take ψ(t) = t for all t ∈ [0,∞), then the above theorem reduces
to Theorem 3.6 of Bose and Roychowdhury (cf. [9]).

4 Fixed point theorems concerning fuzzy mappings

In this section we give the main theorems of this paper concerning fuzzy mappings.

Theorem 55. Let (X, d) be a complete metric linear space and T, S : X → W (X)
be a pair of fuzzy mappings such that for all x, y ∈ X

ψ(D(T (x), S(y))) ≤ ψ(d(x, y))− φ(d(x, y)), (4.1)

where ψ, φ : [0,∞) → [0,∞) are both continuous functions such that ψ(t), φ(t) > 0
for t ∈ (0,∞) and ψ(0) = 0 = φ(0). In addition, φ is non-decreasing and ψ is
monotonically increasing (strictly). Then there there exists a point u ∈ X such that
{u} ⊂ T (u) and {u} ⊂ S(u).
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Proof. Let x0 be an arbitrary but fixed element of X. We shall construct a sequence
{xn} of points of X as follows. By Lemma 21, there exists x1 ∈ X such that
{x1} ⊂ T (x0). By Lemma 21 and Lemma 11, we can choose x2 ∈ X such that
{x2} ⊂ S(x1) and

d(x1, x2) ≤ H(T (x0)1, S(x1)1).

This in view of the inequality (4.1) we have,

ψ(d(x1, x2)) ≤ ψ(D1(T (x0), S(x1))) ≤ ψ(D(T (x0), S(x1))) ≤ ψ(d(x0, x1))−φ(d(x0, x1)).

Continuing this process, having chosen xk ∈ X, we obtain xk+1 ∈ X such that for
all k ≥ 0, {x2k+1} ⊂ T (x2k), {x2k+2} ⊂ S(x2k+1), and

ψ(d(x2k+1, x2k+2)) ≤ ψ(D(T (x2k), S(x2k+1))) ≤ ψ(d(x2k, x2k+1)))−φ(d(x2k, x2k+1))),

ψ(d(x2k+2, x2k+3)) ≤ ψ(D(S(x2k+1), T (x2k+2))) ≤ ψ(d(x2k+1, x2k+2)))−φ(d(x2k+1, x2k+2))).

As ψ is monotonically increasing, from the above two inequalities it follows that
for n ≥ 0, {d(xn, xn+1)} is a non-increasing sequence of positive real numbers and
therefore tends to a limit ` ≥ 0. If possible, let ` > 0. We have

ψ(d(xn+1, xn+2)) ≤ ψ(d(xn, xn+1))− φ(d(xn), xn+1)) for all n ≥ 0.

Taking n→∞ and using the continuity of ψ and φ, we obtain

ψ(`) ≤ ψ(`)− φ(`) =⇒ φ(`) ≤ 0,

which is a contradiction as ` > 0, and φ(t) > 0 for t > 0. Therefore ` = 0, i.e.,
limn→∞ d(xn, xn+1) = 0. Now proceeding in the same way as in Theorem 3.4 in
[9], it can be shown that the sequence {xn} is a Cauchy sequence in X. From the
completeness of X, it follows that there exists u ∈ X such that xn → u as n→∞.
Moreover, x2n → u and x2n+1 → u as n→∞. Now we prove that {u} ⊂ T (u) and
{u} ⊂ S(u). We know {x2k+1} ⊂ T (x2k) and {x2k} ⊂ S(x2k+1) for k ≥ 0. Note
that,

d(x2k+1, S(u)1) ≤ H(T (x2k)1, S(u)1) = D1(T (x2k), S(u)) ≤ D(T (x2k), S(u)),

and hence as ψ is monotonically increasing we have,

ψ(d(x2k+1, S(u)1)) ≤ ψ(D(T (x2k), S(u))) ≤ ψ(d(x2k, u))− φ(d(x2k, u)).

Letting n→∞ and using the continuity of both ψ and φ we have, ψ(d(u, S(u)1)) ≤
ψ(d(u, u)) − φ(d(u, u)) = ψ(0) − φ(0) = 0 =⇒ ψ(d(u, S(u)1)) ≤ 0. Now using the
fact ψ(t) > 0 for t > 0 and ψ(0) = 0 we have, ψ(d(u, S(u)1)) = 0 =⇒ d(u, S(u)1) =
0 =⇒ u ∈ S(u)1, i.e., {u} ⊂ S(u). Similarly, we can show {u} ⊂ T (u) and hence is
the theorem.
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Theorem 56. Let (X, d) be a complete metric linear space and T, S : X → W (X)
be a pair of mappings such that for all x, y ∈ X

ψ(D(T (x), S(y))) ≤ ψ(M(x, y))− φ(M(x, y)), (4.2)

where

M(x, y) = max{d(x, y), p(T (x), x), p(S(y), y),
1
2

[p(y, T (x)) + p(x, S(y))]}.

and ψ, φ : [0,∞) → [0,∞) are both continuous functions such that ψ(t), φ(t) > 0
for t ∈ (0,∞) and ψ(0) = 0 = φ(0). In addition, φ is non-decreasing and ψ is
monotonically increasing (strictly). Then there there exists a point u ∈ X such that
{u} ⊂ T (u) and {u} ⊂ S(u).

Proof. Note that M(x, y) = 0 if and only if x = y is a common fixed point of T and
S (cf. Theorem 3.4 in [9]).

Let x0 be an arbitrary but fixed element of X. We shall construct a sequence
{xn} of points of X as follows. By Lemma 21, there exists x1 ∈ X such that
{x1} ⊂ T (x0). By Lemma 21 and Lemma 11, we can choose x2 ∈ X such that
{x2} ⊂ S(x1) and

d(x1, x2) ≤ H(T (x0)1, S(x1)1) = D1(T (x0), S(x1)) ≤ D(T (x0), S(x1)).

Continuing this process, having chosen xn ∈ X, we obtain xn+1 ∈ X such that
{x2k+1} ⊂ T (x2k), {x2k+2} ⊂ S(x2k+1) and

d(x2k+1, x2k+2) ≤ D(T (x2k), S(x2k+1)) and d(x2k+2, x2k+3) ≤ D(S(x2k+1), T (x2k+2)).

Hence by the given hypothesis and as ψ is monotonically increasing we have,

ψ(d(x2k+1, x2k+2)) ≤ ψ(M(x2k, x2k+1))− φ(M(x2k, x2k+1)) ≤ ψ(M(x2k, x2k+1)),
(4.3)

ψ(d(x2k+2, x2k+3)) ≤ ψ(M(x2k+1, x2k+2))− φ(M(x2k+1, x2k+2)) ≤ ψ(M(x2k+1, x2k+2)).
(4.4)

As done in Theorem 3.4 in [9], we have

M(x2k, x2k+1) ≤ d(x2k, x2k+1) and M(x2k+1, x2k+2) ≤ d(x2k+1, x2k+2). (4.5)

As ψ is monotonically increasing by (4.3), (4.4) and (4.5) for n ≥ 0 we have,

d(xn+1, xn+2) ≤M(d(xn, xn+1)) ≤ d(xn, xn+1), (4.6)
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which shows that {d(xn, xn+1)} is a non-increasing sequence of positive real numbers
and therefore tends to a limit ` ≥ 0. If possible, let ` > 0. Now taking n → ∞
from (4.6) we have, limn→∞M(xn, xn+1) = `. Again by (4.3) and (4.4) for n ≥ 0
we have,

ψ(d(xn+1, xn+2) ≤ ψ(M(xn, xn+1))− φ(M(xn, xn+1)).

Now taking n → ∞ and using the continuity of both ψ and φ we have, ψ(`) ≤
ψ(`) − φ(`) =⇒ φ(`) ≤ 0, which is a contradiction as ` > 0, and φ(t) > 0 for
t > 0. Therefore, d(xn, xn+1) → 0 as n → ∞. Proceeding in the same way as in
Theorem 3.4 in [9], we can show that {xn} is a Cauchy sequence. It follows from
the completeness of X, there exists u ∈ X such that xn → u as n→∞. Moreover,
x2n → u and x2n+1 → u as n→∞.

Now we prove that {u} ⊂ T (u) and {u} ⊂ S(u). We have {x2k+1} ⊂ T (x2k) and
{x2k} ⊂ S(x2k+1), and

p(u, S(u)) ≤M(x2k, u)
= max{d(x2k, u), p(T (x2k), x2k), p(S(u), u),

1
2

[p(u, T (x2k)) + p(x2k, S(u))]}

≤ max{d(x2k, u), d(x2k, x2k+1) + p(T (x2k), x2k+1), p(S(u), u),
1
2

[d(u, x2k+1) + p(x2k+1, T (x2k)) + d(x2k, u) + p(u, S(u))]}

≤ max{d(x2k, u), d(x2k, x2k+1), p(S(u), u),
1
2

[d(u, x2k+1) + d(x2k, u) + p(u, S(u))]}.

Now taking k →∞ we have,

p(u, S(u)) ≤M(x2k, u) ≤ max{0, 0, p(S(u), u),
1
2

[0 + 0 + p(u, S(u))]} = p(u, S(u)),

and so limk→∞M(x2k, u) = p(u, S(u)). Note that

p(u, S(u)) ≤ d(u, x2k+1) + p(x2k+1, S(u)) ≤ d(u, x2k+1) +D(T (x2k), S(u)).

Hence taking k →∞ we have,

p(u, S(u)) ≤ 0 + lim
k→∞

D(T (x2k), S(u)) = lim
k→∞

D(T (x2k), S(u)).

As ψ is non-decreasing, using the continuity of ψ and φ and the given hypothesis
(4.2) we have,

ψ(p(u, S(u)) ≤ lim
k→∞

ψ(D(T (x2k), S(u)))

≤ lim
k→∞

ψ(M(x2k, u))− lim
k→∞

φ(M(x2k, u))

= ψ(p(u, S(u))− φ(p(u, S(u)))
=⇒ φ(p(u, S(u))) ≤ 0.

******************************************************************************
Surveys in Mathematics and its Applications 4 (2009), 215 – 238

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v04/v04.html
http://www.utgjiu.ro/math/sma


234 R. K. Bose and M. K. Roychowdhury

Now using the fact φ(t) > 0 for t > 0 and φ(0) = 0 we have, φ(p(u, S(u))) = 0 =⇒
p(u, S(u)) = 0 =⇒ {u} ⊂ S(u). Similarly we can show, {u} ⊂ T (u).

Remark 57. If we take ψ(t) = t for all t ∈ [0,∞), then the above theorem reduces
to Theorem 4.1 of Bose and Roychowdhury (cf. [9]).

Theorem 58. Let (X, d) be a complete metric linear space. Let f : X → X be a
self-mapping, and T : X →W (X) be a fuzzy mapping such that for all x, y ∈ X

ψ(D(T (x), T (y))) ≤ ψ(d(f(x), f(y)))− φ(d(f(x), f(y))),

where ψ, φ : [0,∞) → [0,∞) are both continuous functions such that ψ(t), φ(t) > 0
for t ∈ (0,∞) and ψ(0) = 0 = φ(0). In addition, φ is non-decreasing and ψ is
monotonically increasing (strictly). Suppose ∪{T (X)}α ⊆ f(X) for α ∈ [0, 1], and
f(X) is complete. Then there exists u ∈ X such that u is a coincidence point of f
and T , that is {f(u)} ⊂ T (u). Here T (x)α = {y ∈ X : T (x)(y) ≥ α}.

Proof. Let x0 ∈ X and y0 = f(x0). Since ∪{T (X)}α ⊂ f(X) for each α ∈ [0, 1],
by Remark 22 for x0 ∈ X there exist points x1, y1 ∈ X such that y1 = f(x1) and
{y1} ⊂ T (x0). Again by Remark 22 and Lemma 11, for x1 ∈ X there exist points
x2, y2 ∈ X such that y2 = f(x2) and {y2} ⊂ T (x1), and

d(y1, y2) ≤ H(T (x0)1, T (x1)1) ≤ D(T (x0), T (x1)).

By repeating this process for any k ≥ 1, we can select points xk, yk ∈ X such that
yk = f(xk) and {yk} ⊂ T (xk−1), and

d(yk, yk+1) ≤ H(T (xk−1)1, T (xk)1) ≤ D(T (xk−1), T (xk)).

As ψ is monotonically increasing, from the above inequalities for k ≥ 0 we have,

ψ(d(yk+1, yk+2)) ≤ ψ(D(T (xk), T (xk+1)))
≤ ψ(d(f(xk), f(xk+1)))− φ(d(f(xk), f(xk+1))) (4.7)
≤ ψ(d(yk, yk+1)).

As ψ is monotonically increasing from the above inequality we have, d(yn+1, yn+2) ≤
d(yn, yn+1) for n ≥ 0, which shows that {d(yn, yn+1)} is a non-increasing sequence
of positive real numbers and therefore tends to a limit ` ≥ 0. If possible, let ` > 0.
For any n ≥ 0 by (4.7) we have, ψ(d(yn+1, yn+2)) ≤ ψ(d(yn, yn+1))−φ(d(yn, yn+1)).
Taking n→∞ and using the continuity of ψ and φ, we obtain

ψ(`) ≤ ψ(`)− φ(`) =⇒ φ(`) ≤ 0,

which is a contradiction as ` > 0, and φ(t) > 0 for t > 0. Therefore ` = 0, i.e.,
limn→∞ d(yn, yn+1) = 0. Now proceeding in the same way as in Theorem 3.4 in
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[9], it can be shown that the sequence {yn} is a Cauchy sequence. Since f(X) is
complete, {yn} converges to some point in f(X). Let y = limn→∞ yn and u ∈ X be
such that y = f(u). Note that,

d(yk+1, T (u)1) ≤ H(T (xk)1, T (u)1) = D1(T (xk), T (u)) ≤ D(T (xk), T (u)),

and hence as ψ is monotonically increasing we have,

ψ(d(yk+1, T (u)1)) ≤ ψ(D((T (xk), T (u))) ≤ ψ(d(f(xk), f(u)))− φ(d(f(xk), f(u))).

Letting n→∞ and using the continuity of both ψ and φ we have, ψ(d(y, T (u)1)) ≤
ψ(d(y, y)) − φ(d(y, y)) = ψ(0) − φ(0) = 0 =⇒ ψ(d(y, T (u)1)) ≤ 0. Now using the
fact ψ(t) > 0 for t > 0 and ψ(0) = 0 we have, ψ(d(y, T (u)1)) = 0 =⇒ d(y, S(u)1) =
0 =⇒ y = f(u) ∈ T (u)1, i.e., {f(u)} ⊂ T (u), and hence is the theorem.

Remark 59. If we take ψ(t) = t for all t ∈ [0,∞), then the above theorem reduces
to Theorem 4.2 of Bose and Roychowdhury (cf. [9]).

Remark 60. Dutta and Choudhury in their paper ([12, Theorem 2.1]) assumed
that ψ, φ : [0,∞) → [0,∞) are both continuous and monotone non-decreasing with
ψ(t) = 0 = φ(t) if and only if t = 0. In the proof they wrote that ψ(d(xn, xn+1)) ≤
ψ(d(xn−1, xn)) =⇒ d(xn, xn+1) ≤ d(xn−1, xn), that means by ‘monotone non-
decreasing’ they meant that reverse implication holds. But this is not the way that
monotone functions are defined. In the example they gave, the function φ is not
one-to-one, which creates confusion (cf. [12, Example 2.2]). Their example clearly
fits in our paper, as in our case ψ is monotonically increasing (strictly), i.e., ψ is
one-to-one and φ is non-decreasing.

Example: Let X = [0, 1] ∪ {2, 3, 4, · · · } and

d(x, y) =


|x− y|, if x, y ∈ [0, 1], x 6= y,
x+ y, if at least one of x or y /∈ [0, 1] and x 6= y,
0, if x = y.

Then (X, d) is a complete metric space (cf. [11]). Let ψ : [0,∞)→ [0,∞) be defined
as

ψ(t) =
{
t, if 0 ≤ t ≤ 1,
t2, if t > 1,

and let φ : [0,∞)→ [0,∞) be defined as

φ(t) =
{

1
2 t

2, if 0 ≤ t ≤ 1,
1
2 , if t > 1.

Let T : X → X be defined as

Tx =
{
x− 1

2x
2, if 0 ≤ x ≤ 1,

x− 1, if x ∈ {2, 3, 4, · · · }.

Then it is seen that T has a unique fixed point which is 0 (cf. [12]).
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