Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 5 (2010), 311 -- 320

IDENTIFIABILITY OF THE MULTIVARIATE NORMAL BY THE MAXIMUM AND THE MINIMUM

Arunava Mukherjea

Abstract. In this paper, we have discussed theoretical problems in statistics on identification of parameters of a non-singular multi-variate normal when only either the distribution of the maximum or the distribution of the minimum is known.

2010 Mathematics Subject Classification: 62H05; 62H10; 60E05.
Keywords: Multivariate normal distributions; Identification of parameters.

Full text

References

  1. T. Amemiya, A note on a Fair and Jaffee model, Econometrica 42 (1974), 759-762.

  2. T. W. Anderson and S. G. Ghurye, Identification of parameters by the distribution of a maximum random variable, J. of Royal Stat. Society 39B (1977), 337-342. MR0488416 (58 7960). Zbl 0378.62020.

  3. T. W. Adnerson and S. G. Ghurye, Unique factorization of products of bivariate normal cumulative distribution functions, Annals of the Institute of Statistical Math. 30 (1978), 63-69. MR0507082. Zbl 0444.62020.

  4. A. P. Basu, Identifiability problems in the theory of competing and complementary risks: a survey in Statistical Distributions in Scientific Work, vol. 5, (C.Taillie, et. al, eds.), D. Reidel Publishing Co., Dordrecht, Holland, 1981, 335-347. MR0656347. Zbl 0472.62097.

  5. A. P. Basu and J. K. Ghosh, Identifiability of the multinormal and other distributions under competing risks model, J. Multivariate Analysis 8 (1978), 413-429. MR0512611. Zbl 0396.62032.

  6. A. P. Basu and J. K. Ghosh, Identifiablility of distributions under competing risks and complementary risks model, Commun. Statistics A9 (14) (1980), 1515-1525. MR0583613. Zbl 0454.62086 .

  7. T. Bedford and I. Meilijson, A characterization of marginal distributions of (possibly dependent) lifetime variables which right censor each other, The Annals of Statistics 25(4) (1997), 1622-1645. MR1463567. Zbl 0936.62014.

  8. S. M. Berman, Note on extreme values, competing risks and semi-Markov processes, Ann. Math. Statist. 34 (1963), 1104-1106. MR0152018. Zbl 0203.21702.

  9. M. Dai and A.Mukherjea, Identification of the parameters of a multivariate normal vector by the distribution of the maximum, J. Theoret. Probability 14 (2001), 267-298. MR1822905. Zbl 1011.62050.

  10. H. A. David, Estimation of means of normal population from observed minima, Biometrika 44 (1957), 283-286.

  11. H. A. David and M. L. Moeschberger, The Theory of Competing Risks, Griffin, London, 1978. MR2326244. Zbl 0434.62076.

  12. J. Davis and A. Mukherjea, Identification of parameters by the distribution of the minimum, J. Multivariate Analysis 9 (2007), 1141-1159. MR0592960. Zbl 1119.60008.

  13. M. Elnaggar and A. Mukherjea, Identification of parameters of a tri-variate normal vector by the distribution of the minimum, J. Statistical Planning and Inference 78 (1999), 23-37. MR1705540. Zbl 0928.62039.

  14. R. C. Fair and H. H. Kelejian, Methods of estimation for markets in disequilibrium: a further study, Econometrica 42 (1974), 177-190. MR0433788. Zbl 0284.90011.

  15. F.M. Fisher, The Identification Problem in Econometrics, McGraw Hill, New York, 1996.

  16. D. C. Gilliand and J. Hannan, Identification of the ordered bi-variate normal distribution by minimum variate, J. Amer. Statist. Assoc. 75(371) (1980), 651-654. MR0590696. Zbl 0455.62089.

  17. J. Gong and A. Mukherjea, Solution of the problem on the identification of parameters by the distribution of the maximum random variable: A multivariate normal case, J. Theoretical Probability 4 (4) (1991), 783-790. MR1132138. Zbl 0743.60021.

  18. A. Mukherjea, A. Nakassis and J. Miyashita, Identification of parameters by the distribution of the maximum random variable: The Anderson-Ghuiye theorem, J. Multivariate Analysis 18 (1986), 178-186. MR0832994. Zbl 0589.60013.

  19. A. Mukherjea and R. Stephens, Identification of parameters by the distribution of the maximum random variable: the general multivariate normal case, Prob. Theory and Rel. Fields 84 (1990), 289-296. MR1035658. Zbl 0685.62048.

  20. A. Mukherjea and R. Stephens, The problem of identification of parameters by the distribution of the maximum random variable: solution for the tri-variate normal case, J. Multivariate Anal. 34 (1990), 95-115. MR1062550. Zbl 0699.62009.

  21. A. Nadas, On estimating the distribution of a random vector when only the smallest coordinate is observable, Technometrics 12 (4) (1970), 923-924. Zbl 0209.50004.

  22. A. A. Tsiatis, A non-identifiability aspect of the problem of computing risks, Proc. Natl. Acad.Sci. (USA) 72 (1975), 20-22. MR0356425. Zbl 0299.62066.

  23. A. A. Tsiatis, An example of non-identifiability in computing risks, Scand. Actuarial Journal 1978 (1978), 235-239. Zbl 0396.62084.



Arunava Mukherjea
Department of Mathematics,
The University of Texas-Pan American,
1201 West University, Edinburg, Tx, 78541, USA.
e-mail: arunava.mukherjea@gmail.com




http://www.utgjiu.ro/math/sma