Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 6 (2011), 1 - 7

COMMON FIXED POINT THEOREM FOR OCCASIONALLY WEAKLY COMPATIBLE MAPPINGS IN MENGER SPACE

B.D. Pant and Sunny Chauhan

Abstract. The concept of occasionally weakly compatible (shortly, owc) mappings introduced by Al-Thagafi and Shahzad [2], which is more general than the concept of weakly compatible maps. In this paper, we prove a common fixed point theorem for owc mappings in Menger space using arbitrary continuous t-norm for a nonlinear case.

2010 Mathematics Subject Classification: 54H25; 47H10.
Keywords: Triangle function (t-norm); Menger space; Weakly compatible maps; Occasionally weakly compatible maps.

Full text

References

  1. M. Aamri and D. El Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl., 270(2002), 181-188. MR1911759. Zbl 1008.54030.

  2. M.A. Al-Thagafi and N. Shahzad, Generalized I-nonexpansive selfmaps and invariant approximations, Acta Math. Sinica, 24(5)(2008), 867-876. MR2403120. Zbl 1175.41026.

  3. A. Bhatt, H. Chandra and D.R. Sahu, Common fixed point theorems for occasionally weakly compatible mappings under relaxed conditions, Nonlinear Analysis, 73(1)(2010), 176-182. MR2645842. Zbl pre05718400.

  4. H. Chandra and A. Bhatt, Fixed point theorems for occasionally weakly compatible maps in probabilistic semi-metric space, Int. J. Math. Anal., 3(12)(2009), 563-570. MR2553969. Zbl 1176.54029.

  5. S. Chauhan and B.D. Pant, Common fixed point theorems for occasionally weakly compatible mappings using implicit relation, Journal of the Indian Math. Soc., 77(1-4)(2010) 13-21.

  6. G. Jungck, Compatible mappings and common fixed points, Int. J. Math. & Math. Sci., 9(1986), 771-779. MR0870534. Zbl pre0613.54029.

  7. G. Jungck, Common fixed points for noncontinuous nonself maps on nonmetric spaces, Far East J. Math. Sci., 4(1996), 119-215. MR1426938. Zbl 0928.54043.

  8. G. Jungck and B.E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math., 29(3)(1998), 227-238. MR1617919. Zbl 09047.54034.

  9. G. Jungck and B.E. Rhoades, Fixed point theorems for occasionally weakly compatible mappings, Fixed Point Theory, 7(2006), 286-296. MR2284600. Zbl 1118.47045.

  10. G. Jungck and B.E. Rhoades, Fixed point theorems for occasionally weakly compatible mappings, Fixed Point Theory, 9(2008), 383-384 (Erratum). MR2421749.

  11. K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. U.S.A., 28(1942), 535-537. MR0007576. Zbl 0063.03886.

  12. S.N. Mishra, Common fixed points of compatible mappings in PM-spaces, Math. Japon., 36 (1991), 283-289. MR1095742. Zbl 0731.54037.

  13. K.P.R. Sastry, G.A. Naidu, P.V.S. Prasad, V.M. Latha, S.S.A. Sastry, A critical look at fixed point theorems for occasionally weakly compatible maps in probabilistic semi-metric spaces, Int. J. Math. Anal., 4(2010), 1341-1348. MR2665637.

  14. B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math., 10(1960), 313-334. MR0115153. Zbl 0091.29801.

  15. B. Schweizer and A. Sklar, Probabilistic metric spaces, North-Holland Publishing Co., New York, (1983). MR790314. Zbl 0546.60010.

  16. B. Singh and S. Jain, A fixed point theorem in Menger Space through weak compatibility, J. Math. Anal. Appl., 301(2005), 439-448. MR2105684. Zbl 1068.54044.

  17. C. Vetro, Some fixed point theorems for occasionally weakly compatible mappings in probabilistic semi-metric spaces, Int. J. Modern Math., 4(3) (2009), 277-284. MR2588994. Zbl pre05651470.



B.D. Pant Sunny Chauhan
Government Degree Collage, R.H. Government Postgraduate College,
Champawat, Uttarakhand, India. Kashipur, Uttarakhand, India 244713.
e-mail: sun.gkv@gmail.com


http://www.utgjiu.ro/math/sma