Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 6 (2011), 107 -- 116

A FIXED POINT THEOREM FOR UNIFORMLY LOCALLY CONTRACTIVE MAPPINGS IN A C-CHAINABLE CONE RECTANGULAR METRIC SPACE

Bessem Samet and Calogero Vetro

Abstract. Recently, Azam, Arshad and Beg [4] introduced the notion of cone rectangular metric spaces by replacing the triangular inequality of a cone metric space by a rectangular inequality. In this paper, we introduce the notion of c-chainable cone rectangular metric space and we establish a fixed point theorem for uniformly locally contractive mappings in such spaces. An example is given to illustrate our obtained result.

2010 Mathematics Subject Classification: 54H25; 47H10; 34B15.
Keywords: Fixed point; C-chainable cone rectangular metric space; Uniformly locally contractive mappings.

Full text

References

  1. M. Abbas and G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341 (2008) 416-42. MR2394094(2008m:47071). Zbl 1147.54022.

  2. M. Asadi, S. M. Vaezpour, V. Rakocevic and B. E. Rhoades, Fixed point theorems for contractive mapping in cone metric spaces, Math. Commun. 16 (2011) 147-155. Zbl 1217.54038.

  3. A. Azam, M. Arshad and I. Beg, Common fixed points of two maps in cone metric spaces, Rend. Circ. Mat. Palermo 57 (2008) 433-441. MR2477803(2009k:54070). Zbl 1197.54056.

  4. A. Azam, M. Arshad and I. Beg, Banach contraction principle on cone rectangular metric spaces, Appl. Anal. Discrete Math. 3 (2009) 236-241. MR2555036. Zbl 1147.54022.

  5. A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen. 57 (2000) 31-37. MR190034(2003c:54075). Zbl 0963.54031.

  6. L. Das and L. K. Dey, A fixed point theorem in a generalized metric space, Soochow J. Math. 33 (2007) 33-39. MR2294745. Zbl 1137.54024.

  7. W.-S. Du, A note on cone metric fixed point theory and its equivalence, Nonlinear Anal. 72 (2010) 2259-2261. MR2577793(2010k:47119). Zbl 1205.54040.

  8. M. Edelstein, An Extension of Banach's contraction principle, Proc. Amer. Math. Soc. 12 (1961) 7-10. MR0120625(22 #11375). Zbl 0096.17101.

  9. L. G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007) 1468-1476. MR2324351(2008d:47111). Zbl 1118.54022.

  10. D. Ilic and V. Rakocevic, Common fixed points for maps on cone metric space, J. Math. Anal. Appl. 341 (2008) 876-882. MR2398255(2009b:54043). Zbl 1156.54023.

  11. M. Jleli and B. Samet, The Kannan's fixed point theorem in a cone rectangular metric space, J. Nonlinear Sci. Appl. 2 (2009) 161-167. MR2521192(2010h:54070). Zbl 1173.54321.

  12. B. V. Kvedaras, A .V. Kibenko and A. I. Perov, On some boundary value problems, Litov. Matem. Sbornik. 5 (1) (1965) 69-84. Zbl 0148.33001.

  13. E. M. Mukhamadiev and V. J. Stetsenko, Fixed point principle in generalized metric space, Izvestija AN Tadzh. SSR, fiz.-mat. igeol.-chem. nauki. 10 (4) (1969) 8-19 (in Russian).

  14. J. J. Nieto and R. R. Lopez, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sinica, Engl. Ser. 23 (2007) 2205-2212. MR2357454(2008h:34034). Zbl 1140.47045.

  15. J. O. Olaleru, Some generalizations of fixed point theorems in cone metric spaces, Fixed Point Theory Appl. Volume 2009 (2009), Article ID 657914, 10 pages. MR2557261(2010k:54059). Zbl 1203.54043.

  16. A. I. Perov, The Cauchy problem for systems of ordinary differential equations, in: Approximate Methods of Solving Differential Equations, Kiev, Naukova Dumka. (1964) 115-134 (in Russian).

  17. A. I. Perov and A. V. Kibenko, An approach to studying boundary value problems, Izvestija AN SSSR, Ser. Math. 30 (2) (1966) 249-264 (in Russian). MR0196534(33 #4721).

  18. S. Radenovic, V. Rakocevic and S. Resapour, Common fixed points for (g,f) type maps in cone metric spaces, Appl. Math. Comput. 218 (2) (2011) 480-491.

  19. S. Rezapour and R. Hamlbarani, Some notes on paper: Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 345 (2008) 719-724. MR2429171(2009e:54096). Zbl 1145.54045.

  20. B. Samet, Discussion on :A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, by A. Branciari, Publ. Math. Debrecen. 76 (4) (2010) 493-494. MR2665121. Zbl pre05848614.

  21. B. Samet, Common fixed point under contractive condition of Ciric's type in cone metric spaces, Appl. Anal. Discrete Math. 5 (2011) 159-164. MR2809043.

  22. B. Samet, Common fixed point theorems involving two pairs of weakly compatible mappings in K-metric spaces, Appl. Math. Lett. 24 (2011) 1245-1250. MR2784190. Zbl pre05883291.

  23. J. S. Vandergraft, Newton's method for convex opertaors in partially ordered spaces, SIAM J. Numer. Anal. 4 (1967) 406-432. MR0221794(36 #4846).

  24. P. Vetro, Common fixed points in cone metric spaces, Rend. Circ. Mat. Palermo. 56 (2007) 464-468. MR2376280(2008k:47125).

  25. P. P. Zabrejko, K-metric and K-normed linear spaces: survey, Collect. Math. 48 (4-6) (1997) 825-859. MR1602605(99a:46010). Zbl 0892.46002.



B. Samet
Ecole Supérieure des Sciences et Techniques de Tunis, Département de Mathématiques
5, Avenue Taha Hussein-Tunis,
B.P.:56, Bab Menara-1008, Tunisie.
e-mail: bessem.samet@gmail.com

C. Vetro
Dipartimento di Matematica e Informatica, Università degli Studi di Palermo
Via Archirafi 34,
90123 Palermo, Italy.
e-mail: cvetro@math.unipa.it

http://www.utgjiu.ro/math/sma