Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 7 (2012), 15 -- 25DETERMINATION TEMPERATURE OF A HEAT EQUATION FROM THE FINAL VALUE DATA
Tuan H. Nguyen*, Tri V. Phan, H. Vu and Hoa V. Ngo
Abstract. We introduce the truncation method for solving a backward heat conduction problem. For this method, we give the stability analysis with new error estimates. Meanwhile, we investigate the roles of regularization parameters in these two methods. These estimates prove that our method is effective.
2010 Mathematics Subject Classification: 58K05; 35K99; 47J06; 47H10.
Keywords: Backward heat problem; Ill-posed problem; Homogeneous heat; Contraction principle.
References
K. A. Ames and L. E. Payne, Continuous dependence on modeling for some well-posed perturbations of the backward heat equation, J. Inequal. Appl., Vol. 3 (1999), 51-64. MR1731669(2000m:35175). Zbl 0928.35015.
G. W. Clark and S. F. Oppenheimer, Quasireversibility methods for non-well posed problems, Elect. J. Diff. Eqns., 1994 (1994), No. 8, 1-9. MR1302574(96a:34123). Zbl 0811.35157.
Chu-Li Fu , Zhi Qian and Rui Shi, A modified method for a backward heat conduction problem, Applied Mathematics and Computation, 185 (2007), 564-573. MR2297827. Zbl 1112.65090.
M. Denche and K. Bessila, A modified quasi-boundary value method for ill-posed problems, J. Math. Anal. Appl, 301 (2005), 419-426. MR2105682(2005i:34071). Zbl 1140.34397.
Xiao-Li Feng, Zhi Qian and Chu-Li Fu, Numerical approximation of solution of nonhomogeneous backward heat conduction problem in bounded region. Math. Comput. Simulation 79 (2008), No. 2, 177-188. MR2456518(2009m:35529). Zbl 1166.65048.
Chu-Li Fu, Xiang-Tuan Xiong and Zhi Qian, Fourier regularization for a backward heat equation. J. Math. Anal. Appl. 331 (2007), No. 1, 472-480. MR2306017(2008c:35332). Zbl 1146.35420.
D. D. Trong and N. H. Tuan, Regularization and error estimates for nonhomogeneous backward heat problems, Electron. J. Diff. Eqns., 2006 (2006), No. 04, 1-10. MR2198917(2006h:35276). Zbl 1091.35114.
D. D. Trong, P. H. Quan, T. V. Khanh, and N. H. Tuan, A nonlinear case of the 1-D backward heat problem: Regularization and error estimate, Zeitschrift Analysis und ihre Anwendungen, 26 (2007), Issue 2, 231-245. MR2314164(2009a:35115). Zbl pre05202594.
Dang Duc Trong and Nguyen Huy Tuan, A nonhomogeneous backward heat problem: Regularization and error estimates, Electron. J. Diff. Eqns., 2008 (2008), No. 33, 1-14. MR2383396(2008k:35207). Zbl 1171.35488.
Dang Duc Trong and Nguyen Huy Tuan, Regularization and error estimate for the nonlinear backward heat problem using a method of integral equation, Nonlinear Anal., 71 (2009), Issue 9, 4167-4176. MR2536322(2010h:65143). Zbl 1172.35517.
Nguyen Huy Tuan and Dang Duc Trong, A new regularized method for two dimensional nonhomogeneous backward heat problem Appl. Math. Comput. 215 (2009), Issue 3, 873-880. MR2568944. Zbl 1180.65119.
T. Schroter and U. Tautenhahn, On optimal regularization methods for the backward heat equation Z. Anal. Anw. 15 (1996) 475-493. MR1394439(97c:65157). Zbl 0848.65044.
Tuan H. Nguyen Tri V. Phan Division of Applied Mathematics, Division of Applied Mathematics, Ton Duc Thang University, Ton Duc Thang University, Nguyen Huu Tho Street, District 7, Nguyen Huu Tho Street, District 7, Hochiminh City, Vietnam. Hochiminh City, Vietnam. e-mail: tuanhuy_bs@yahoo.com e-mail: phanvantri82@gmail.com
Hoa V. Ngo H. Vu Division of Applied Mathematics, Division of Applied Mathematics, Ton Duc Thang University, Ton Duc Thang University, Nguyen Huu Tho Street, District 7, Nguyen Huu Tho Street, District 7, Hochiminh City, Vietnam. Hochiminh City, Vietnam. n.v.hoamath@gmail.com e-mail: hovumath@gmail.com