Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 7 (2012), 69 -- 103

DIFFERENT VERSIONS OF THE IMPRIMITIVITY THEOREM

Tania-Luminiţa Costache

Abstract. In this paper we present different versions of the imprimitivity theorem hoping that this might become a support for the ones who are interested in the subject. We start with Mackey's theorem [26] and its projective version [29]. Then we remind Mackey's fundamental imprimitivity theorem in the bundle context [14]. Section 5 is dedicated to the imprimitivity theorem for systems of G-covariance [6]. In Section 6 and 7 we refer to the imprimitivity theorem in the context of C* -algebras [39] and to the symmetric imprimitivity theorem [36], [42], [11].

2010 Mathematics Subject Classification: 22D05; 22D10; 20C25; 22D30; 55R10; 57S17; 46L05; 46L35.
Keywords: unitary representation of a locally compact group; projective representation; induced representation; fiber bundle; system of imprimitivity; Morita equivalence.

Full text

References

  1. S. T. Ali, Commutative systems of covariance and a generalization of Mackey's imprimitivity theorem, Canad. Math. Bull., 27 (4) (1984), 390-397. MR0763033. Zbl 0596.22003.

  2. S.C. Bagchi, J. Mathew and M.G. Nadkarni, On systems of imprimitivity on locally compact groups with dense actions, Acta Math., 133 (1) (1974), 287-304. MR0419672(54 #7690). Zbl 0325.22003.

  3. R. J. Blattner, Positive definite measures, Proc. Amer. Math. Soc. 14 (1963), 423-428. MR0147580. Zbl 0135.36202.

  4. N. Bourbaki, Eléments de mathématique. Livre V: Espaces vectoriels topologiques, Chaps. 3 \gravea 5 (ASI 1229), Hermann, Paris (1967). MR0203425 (34 #3277). Zbl 0143.27101.

  5. H. H. Bui, Morita equivalence of twisted crossed products by coactions, J. Funct. Anal. 123 (1994), 59-98. MR1279296. Zbl 0815.46059.

  6. U. Cattaneo, On Mackey's imprimitivity theorem, Comment. Math. Helvetici 54 (1979), 629-641. MR0552681. Zbl 0425.22010.

  7. I. Colojoară , Représentations des groupes localement compacts, Université de Bucharest (1996).

  8. J.  Dixmier, Dual et quasi-dual d'une algèbre de Banach involutive, Trans. Amer. Math. Soc. 104 (1962), 278-283. MR0139960. Zbl 0112.07302.

  9. J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964.

  10. S. Echterhoff and I. Raeburn, Multipliers of imprimitivity bimodules and Morita equivalence of crossed products, Math. Scand. 76 (1995), 289-309. MR1354585. Zbl 0843.46049.

  11. S. Echterhoff and I. Raeburn, Induced C* -algebras, coactions and equivariance in the symmetric imprimitivity theorem, Math. Proc. Camb. Phil. Soc. 128 (2000), 327-342. MR1735301(2001g:46133). Zbl 0982.46053.

  12. S. Echterhoff, S. Kaliszewski, J. Quigg and I. Raeburn, A categorial approach to imprimitivity theorems for C* -dynamical systems, Memoirs of the Amer. Math. Soc., vol. 180, No. 850 (2006). MR2203930(2007m:46107). Zbl 1097.46042.

  13. E. Effros and F. Hahn, Locally compact transformation groups and C* -algebras, Memoirs Amer. Math. Soc. 75 (1967). MR0227310(37 #2895). Zbl 0184.17002.

  14. J. M. G. Fell, An extension of Mackey's method to Banach * -algebras bundles, Memoir Amer. Math. Soc., 90 (1969). MR0247469(40 #735). Zbl 0194.44301.

  15. J. M. G. Fell, A new look at Mackey's imprimitivity theorem, Lecture Notes in Mathematics, Springer Berlin, 266 (1972), 43-58. MR0409719. Zbl 0234.43008.

  16. J. Glimm, Families of induced representations, Pacific J. Math. 12 (1962), 885-911. MR0146297. Zbl 0121.10303.

  17. E. C. Gootman and J. Rosenberg, The structure of crossed product C* -algebras: a proof of the generalized Effros-Hahn conjecture, Invent. Math. 52 (1979), 283-298. MR0537063(80h:46091). Zbl 0405.22005.

  18. P. Green, The local structure of twisted covariance algebras, Acta Math. 140 (1978), 191-250. MR0493349. Zbl 0407.46053.

  19. P. Green, The structure of imprimitivity algebras, J. Funct. Anal. 36 (1980), 88-104. MR0568977. Zbl 0422.46048.

  20. P. R. Halmos, Measure Theory, Van Nostrand, Princeton (1950). MR0033869. Zbl 0040.16802.

  21. A. an Huef, I. Raeburn and D.P. Williams, An equivariant Brauer semigroup and the symmetric imprimitivity theorem, Trans. Amer. Math. Soc., vol. 352, No. 10 (2000), 4759-4787. MR1709774(2001b:46107). Zbl 1001.46044.

  22. A. an Huef and I. Raeburn, Regularity of induced representations and a theorem of Quigg and Spielberg, Math. Proc. Camb. Phil. Soc. 133 (2002), 249-259. MR1912400 (2003g:46080). Zbl 1030.46064.

  23. A. an Huef, I. Raeburn and D. P. Williams, Proper actions on imprimitivity bimodules and decompositions of Morita equivalences, J. of Func. Anal. 200 (2003), 401-428. MR1979017(2004j:46089). Zbl 1031.46068.

  24. G. G. Kasparov, Equivariant KK-theory and the Novikov conjecture, Invent. Math. 91 (1988), 147-201. MR0918241. Zbl 0647.46053.

  25. E. C. Lance, Hilbert C* -modules. A toolkit for operator algebraists, London Mathematical Society Lecture Note Series 210, Cambridge University Press, Cambridge (1995). MR1325694(96k:46100). Zbl 0822.46080.

  26. G. W. Mackey, Imprimitivity for representations of locally compact groups I, Proc. Nat. Acad. Sci. USA 35 (1949), 537-545. MR0031489. Zbl 0035.06901.

  27. G.W. Mackey, Induced representations of locally compact groups I, Ann. Math. 55 (1952), 101-139. MR0044536. Zbl 0046.11601.

  28. G.W. Mackey, Borel structure in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134-165. MR0089999. Zbl 0082.11201.

  29. G.W. Mackey, Unitary representations of group extensions, I, Acta Math. 99 (1958), 265-311. MR0098328. Zbl 0082.11301.

  30. G.W. Mackey, A remark on systems of imprimitivity, Math. Ann. 145 (1962), 50-51. MR0139688. Zbl 0126.06102.

  31. M. A. Neumark, On a representation of additive operator set function, C. R. (Doklady) Acad. Sci. URSS 41 (1943), 359-361. MR0010789. Zbl 0061.25410.

  32. B. Ø rsted, Induced representations and a new proof of the imprimitivity theorem, J. of  Func. Anal. 31 (1979), 355-359. MR0531137. Zbl 0402.22004.

  33. D. Pask and I. Raeburn, Symmetric imprimitivity theorems for graph C* -algebras, Internat. J. of Math., 12, No. 5 (2001), 609-623. MR1843869. Zbl 1116.46305.

  34. J. Phillips and I. Raeburn, Twisted crossed products by coactions, J. Austral. Math. Soc. (Series A) 56 (1994), 320-344. MR1271525(95e:46079). Zbl 0805.46067.

  35. J. C. Quigg and J. Spielberg, Regularity and hyporegularity in C* -dynamical systems, Houston J. Math. 18 (1992), 139-152. MR1212711(93c:46122). Zbl 0785.46052.

  36. I. Raeburn, Induced C* -algebras and a symmetric imprimitivity theorem, Math. Ann. 280 (1988), 369-387. MR0936317(90k:46144). Zbl 0617.22009.

  37. C. E. Rickart, General theory of Banach algebras, Van Nostrand, Princeton, 1960, MR0115101. Zbl 0095.09702.

  38. M. A. Rieffel, Induced representations of C* -algebras, Bull. Amer. Math. Soc., 78, No. 4 (1972), 606-609. MR0301519(46 #677). Zbl 0256.22011.

  39. M. A. Rieffel, Induced representations of C* -algebras, Adv. Math. 13 (1974), 176-257. MR0353003(50 #5489). Zbl 0284.46040.

  40. M. A. Rieffel, Strong Morita equivalence of certain transformation group C* -algebra, Math. Ann. 222 (1976), 7-22. MR0419677(54 #7695). Zbl 0328.22013.

  41. M.A. Rieffel, Applications of strong Morita eqivalence to transformation group C* -algebras, Operator algebras and applications. Proc. Symposia in Pure Math., vol. 38, Part 1, p. 299-310. Am. Math. Soc., Priovidence 1982. MR679709(84k:46046). Zbl 0526.46055.

  42. D. Williams, Crossed Products of C* -algebras, Mathematical Surveys and Monographs, Vol. 134 (2007). MR2288954(2007m:46003). Zbl 1119.46002.


Tania-Luminiţa Costache
Faculty of Applied Sciences, University "Politehnica" of Bucharest,
Splaiul Independentei 313, Bucharest, Romania.
e-mail: lumycos1@yahoo.com

http://www.utgjiu.ro/math/sma